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Critical exponent and multifractality of states at the Anderson transition
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Based on the assumptions of the existence of a one-parameter scaling law for a self-averaging
scaling variable, and on a Bnite correlation length for the randomness, the lower bound for the
critical exponent of the Anderson transition derived earlier by Chayes et al [P.hys. Rev. Lett.
57, 2999 (1986)j for uncorrelated disorder is generalized to the case of spatially correlated disorder.
The bound is determined by the system-size dependence of the number of the random variables
that are necessary to describe the transition. It is speculated how to relate the critical exponent
to the multifractal properties of the states near the critical point. Exponents of several models are
estimated and compared with numerical scaling calculations.

There are three important results of the efI'orts of the
past two decades towards the solution of the problem of
the Anderson transition (AT). Consistent with analytical
conjectures, 3 the numerical scaling work 6 indicated
that for certain classes of models, and suKently close
to the AT, a universal, one-parameter scaling function
can be established for an appropriately defined scaling
variable, and by using a suitable scaling parameter. The
former is related to the logarithm of the density-density
correlation function, and depends on the specific disorder
configuration, but is self-averaging. Its most probable
value agrees with its mean in the limit of infinite system
size. The scaling parameter corresponds to a correlation
length that was identified with the localization length in
the regime of large disorder and with the inverse of the
dc conductivity for small disorder.

A rigorous lower bound for the critical exponent for
models with independent bond or site disorder was
found under the assumption that a one-parameter scal-
ing law existed. Not only that such a'lower bound
can be used for consistency checks of experimental and
theoretical ' ' determinations of the exponents. There
are certain aspects of the proof itself that may provide
useful information about the quantities that eventually
determine the AT.

Finally, it has been demonstrated that the quantum
states at the AT do have multifractal properties. It
was possible to determine the complete set of generalized
fractal dimensions characteristic for the statistical behav-
ior of the density distribution of the states close to the
singularity of the scaling correlation length for the three-
dimensional (3D) Anderson model and the 2D disordered
Landau model.

In this paper, the lower bound for the critical exponent
obtained previously for uncorrelated disorder is general-
ized to the case of statistically correlated disorder. It
is rigorously shown that the critical behavior is closely
related to the system-size dependence of the number of
the random variables that are necessary to describe the

transition, provided that a one-parameter scaling law for
a self-averaging scaling variable exists. Furthermore, as
a speculation, a relation between the lower bound for the
exponent and the generalized multifractal dimensions of
the states at the critical point is suggested. It is argued
that, since the multifractal property implies the informa-
tion about the wave functions being concentrated only
in subregions of the total Euclidean space, and the scal-
ing variable contains all powers of the probability density
corresponding to the states near a given energy, the lower
bound for the exponent can be improved by considering
only subsets of the random variables close to the transi-
tion. Using the suggested relation the critical behavior
of those models is discussed for which both the critical
exponents and the multifractal properties have been pre-
viously determined.

In order to generalize the lower bound it is assumed
that a positive scaling variable A(M) = A(M, e1, . . . , e1v)
exists. It is supposed to depend on a set of N = N(M)
random variables. M denotes the size of the system.
Physically, the random variables may represent the val-
ues of a potential energy at certain sites, the positions
of impurities, the values of exchange or bond matrix el-
ements, or, more generally, N of the matrix elements of
the Hamiltonian of the system when taken in a complete
orthonormal basis, The best lower bound is obtained
when the orthonormal basis is chosen in such a way that
N is smallest.

are the members of a statistical en-
semble described by a normalized distribution function
P(W, eq, . . . , e1v) = W f(eq/W, . . . , e1v/W). W is the
disorder parameter. P is assumed to be suKciently
rapidly decaying at infinity for each of the variables. For
simplicity, it is also assumed that it is continuously dif-
ferentiable, and bounded, i.e. , 0 & P & C ( oo, such
that all of its moments exist. Furthermore, the odd mo-
ments are supposed to vanish, and the second moment of
each of the variables is given by W2. In cases where some
of these assumptions are not valid, such as, for instance,

47 9888 1993 The American Physical Society



47 BRIEF REPORTS 9889

the box distribution and the random two-component al-

loy, one can always show explicitly that the result derived
in the following is correct.

The random variables may be statistically correlated.
The correlation function

K(j,j') = W-'
dE&ej 6j & P(W& El &

' '
& EN)

A(M, W) —= (A(M, eg, . . . , e~)) (2)

is identical to its most probable value in the thermody-
namical limit.

A further crucial assumption is that there is a one-
parameter scaling function

A(M, W) = h(((W)/M), (3)

which can be expanded near the critical point, R'„as

A(M, W) = A, —a(W —W, )M", (4)

where A, and c are positive constants. The scaling pa-
rameter ((W) must diverge at W, as

~

W —W, ~, with
v = 1/y.

From Eq. (2), dA(M, W)/dW may be expressed by
the derivative of the distribution function. Since A

is positive, and self-averaging, an upper bound for
~dA(M, W) jdW~ at W, can be derived by using the
Cauchy-Schwartz inequality. One obtains

i/z
A ~ 0 lnP

N —) E
W, , , Be~ Be~32'

(5)

The first term on the right-hand side results for inde-
pendent random variables. The second is due to statis-
tical correlations. If the latter does dot increase faster
than N, then

(6)

with a constant B & oo. We have still to show now that
the right-hand side of Eq. (5) does not increase faster
than N. Homogeneity of the system ensures that the
terms in the sum depend only on the difference between j
and j'. Applying again the Cauchy- Schwartz inequality
to the double sum one can show that they are propor-
tional to the correlation function, Eq. (1). Convergence
with respect to the sum over j is now guaranteed by the
above requirements concerning the correlation function.

= W (e~e~ )

is assumed to be homogeneous, K(j, j') = K(j —j'), and
to decay sufficiently rapidly for

~ j —j'
~

—+ oo so that
Q., K(j —j') exists. Consequently, P(W, E], . . . , C~) =
p~'(t~)P~ g(W, Ey, . . . , E~ y, E~+y, . . . , E~), whenever

lei —e, l~oofori=1, . . . , N, i j j.
Consistent with experience from numerical scaling

studies, 4 the scaling variable is assumed to be self-
averaging, i.e. , its configurational average

The second summation yields the required factor of ¹

Equation (6) establishes the central result of this pa-
per, together with Eq. (5). The statement is that inde-
pendent of the nature of the randomness, and of whether
or not the system is interacting, there is an upper bound
for the derivative of the scaling function at the critical
point, if it exists. It is proportional to the square root of
the number of the random variables, provided the distri-
bution function is bounded, continuously differentiable,
with all of its moments existing, and the correlations are
of finite range.

Near the critical point the dependence of the scaling
variable on the size of the system is given by M". On
the other hand, the number of the random variables must
increase with M, say as M". In general, one cannot
assume x to be smaller than d, the dimensionality of
the system, otherwise the "concentration" N/M" would
vanish in the thermodynamic limit. Because of Eq. (6) we
have y & ~/2, or, equivalently, v & v0 = 2/K, consistent
with the earlier result for uncorrelated randomness and
K = d.

It should be noted that the above derivation is valid as
long as a~W —W, ~M" (( A, . This can be satisfied for the
above bound close to W, with the choice M & M~ —=

C~W —W,
~

2~", C being a constant of order 1.
For "normal" 3D Hamiltonians the disorder will be

physically originating in the random fluctuations of a po-
tential energy, and v0 = s. The numerical scaling studies
for diagonal disorder indicate a considerably higher expo-
nent, v = 1.5 + 0.2.4 For the Anderson model with bond
disorder given by U = +1, numerically v = 1.0+0.05 was
found. 3 For the 3D case with a large homogeneous
magnetic field applied v = 1.3 + 0.3 was estimated. s

In 2D without magnetic field v0 = 1. No AT at finite
critical disorder exists in this case. However, one may
take the limit W ~ 0 as the critical point. The localiza-
tion length there has an essential singularity, i.e. , v = oo,
for vanishing magnetic field B, trivially consistent with
the bound. When B & 0 numerical evaluation of the
random Landau model yields v = 2.35 + 0.04, s 7 which
is again consistent with the bound.

In 1D the localization length diverges as W z at
W = 0, without or with statistical correlations of the
randomness. Here the bound is met.

An interesting further test would be the AT in fractal
systems. One expects va = 2/d*, d* being the fractal
dimension. Unfortunately, no determinations of critical
exponents are presently available for such models.

All of the numerically calculated exponents are con-
sistent with, and most of them are considerably higher
than, the lower bound, when K = d. One may therefore
ask whether or not this bound can be improved.

The speculation presented in the following is an at-
tempt towards motivating an answer to this question. It
is essentially based on two observations. The first is that
the scaling variable used in the numerical calculations4
is related to the average of the logarithm of the modulus
of the Green's function G(E,r, r') between two sites r, r'
that are separated by a distance M,

A '(M, W) = —(1n
~
G(E, M) ~) .
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Homogeneity guarantees again that A does not depend on
the absolute position. Using the spectral representation
one notices that the scaling variable contains all powers
of the wave functions near energy E at the sites separated
by M.

The second concerns the statistical properties of the
wave functions, @(r), near the critical point. Accord-
ing to recent numerical work their spatial proper-
ties can be characterized by a set of generalized fractal
dimensions, D(q) Th.ese describe the dependence on the
length scale of the qth powers of the quantum-mechanical
probability density ~Q~ . Using the "box probability" is

where A(j) = f" is the volume of a box-shaped region
of the linear size f with a « E « M « ( (a is the mi-

croscopic length, M is the system size), one can obtain
D(q) from the scale dependence of the average qth mo-

ment of the p~ (—oo & q & oo), p(q)(A) = Q. i p~,
where A = E/M and Z = A " is the number of the boxes,

p(q)(p) ~ p(~ —i)D(c) (9)

For a simple fractal D(q) is independent of q. However,
in general, there is no single length scale for the spatial
distribution of the density but an infinite set. D(0)(= d)
is the dimension of the total support of the wave func-
tion. D(1) is called the information dimension, and D(2)
the correlation dimension. The latter was formerly dis-
cussed in connection with the participation number. 2o ~i

Generally, D(q) may be considered as characteristic of
the distribution of the density at different levels of the
amplitudes. D(q ~ oo) provides information about the
scaling properties of those regions where the the largest
amplitudes are concentrated.

Spectra of generalized fractal dimensions were deter-
mined for the 3D Anderson model (without magnetic
field) for specific states close to the singularity of the
scaling correlation length yielding D(l) = 2.17 and
D(2) —1.68. Since the Anderson transition is related
to the scaling properties of the logarithm of the density-
density correlation function, it is tempting to identify r.
with D(2) in order to obtain a better estimate of the
lower bound, v2 = 2/D(2). One obtains vz —1.2 for the
3D Anderson model which is still lower than the exponent
obtained from the scaling calculations.

No results are available on the fractal properties of 3D
models including a magnetic field.

For the 2D random Landau model in the one-band
approximation (limit of large magnetic field) o ii similar
statements as in the above 3D case can be made for wave

functions close to the center of the band. Here D(2) =
1.43 and v2 = 1.4.

In order to ensure the self-averaging property of the
scaling variable, the togarithrn of the density-density cor-
relation function had to be considered, i.e., all of its
moments are important. Therefore one might expect
to improve the estimate for the bound by inceasing q.
v~ = 2/D(oo) could then provide a "best" estimate
for the exponent. i4 Since D(oo) —1 for the 3D Ander-
son model, iz and D(oo) = 0.85 for the random Landau
model, io ii one obtains v —2 and v~ = 2.35, respec-
tively. While the latter of these is remarkably close to
the result from numerical scaling, the former is seem-
ingly too high. However, taking into account the numer-
ical errors for the critical exponents, and D(oo), namely
6D(oo)/D(oo) —10%, one can claim that v~ provides
at least a reasonable estimate for the exponent.

Given that the above-mentioned value of the critical
exponent for the 3D Anderson model with bond disor-
der, v = 1.0,is was correct, and the suggested relation
between critical behavior and statistical properties of the
states near the transition was reasonable, one would ex-
pect D(oo) —2.0. For the 3D case with high magnetic
field one would estimate D(oo) = 1.0 as with B = 0.

In conclusion, the lower bound for the critical exponent
of the Anderson transition obtained earlier" for uncorre-
lated randomness has been generalized to correlated ran-
domness. The bound was related to the dependence of
the number of random variables on the size of the system.
All of the critical exponents obtained by the numerical
scaling method for various models without and with sta-
tistical correlations of the randomness are consistent with
the bound when assuming that the number of the random
variables increases proportional to the system size.

As recent multifractal analyses of states in random sys-
tems show that it is only a fraction of the space which
ultimately contains almost all of the information about
the states in random systems close to a phase transition,
it is speculated that it is only a fraction of the total num-
ber of the random variables of the model which eventu-
ally determines the critical behavior. If one assumes that
the dependence of this fraction on the size of the system
is given by the largest of the fractal dimensions of the
states, quantitative estimates for the critical exponents
can be obtained. They are, within the errors, consistent
with the results of the numerical scaling calculations.
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