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EfFect of substrate-imposed strain on the growth of metallic overlayers calculated
for fcc and hcp iron
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By means of electronic-structure calculations with use of the full-potential linear-muffin-tin-orbital
method and the local spin-density approximation (LSDA), the influence of the substrate-imposed
strain on a fcc (ill) or hcp (0001) iron layer is determined. A careful treatment of the elastic effects
predicts that the nonmagnetic hcp structure is more stable than the nonmagnetic fcc structure for a
vride range of lattice constants but becomes less favorable for a large positive or negative strain on
the overlayers. The stabilization of the fcc structure at large mismatches is traced to the stiffer hcp
interplanar bonds, a consequence of the decreased axial c/a ratio. It is argued that similar behavior
should be found for the other transition metals, The results are prototypical for the substrate-
overlayer elastic interaction but cannot be compared directly to experiment because of systematic
LSDA errors in the magnetic-ferromagnetic energy difference for iron.

I. INTRODUCTION

The properties of transition-metal overlayers on sub-
strates consisting of other metals are of large interest
both experimentally and theoretically. An especially fas-
cinating point is that the overlayers can sometimes be
forced into a structure which is distinct from that of the
equilibrium bulk by a suitable choice of the metal sub-
strate. To a large extent, this is a consequence of the
condition that the in-plane lattice constants of the two
materials must be commensurate if growth is to be epi-
taxial. One obtains, in this way, materials such as bcc
Pd (Ref. 1) and bcc Ag (see, for example, Ref. 2 and
references therein). Additional interest results from the
fact that the magnetic state of the overlayer metal is
often infIuenced by the structure. A system which has
been studied experimentally in the past is iron grown on
the transition metals Ru (Refs. 3 and 4), Cu (Ref. 5),
and Ag. Despite intense experimental effort the struc-
ture and the magnetic ordering of the Fe overlayers are
not yet clear in some cases and theoretical studies are
warranted.

The quantity of interest is the energy of the Fe over-
layers as a function of the substrate interatomic spacing.
Of the different effects which are relevant hereby, of pri-
mary importance is the elastic energy which is needed
to distort the Fe layers to match them to the substrate.
We focus on this aspect in this paper. To obtain a re-
alistic picture, other energy contributions must also be
considered. First, there is the interface energy, which de-
pends on the type of bonding which Fe can undergo with
the substrate atoms. Second, there will be some influ-
ence due to the surface energy. For very thin overlayers,
these two terms can become as important as the elastic
energy. For thick layers, on the other hand, the elastic
energy will dominate. In addition to these energy con-
tributions, the picture can again change if the dynamics
of the growth process is included. For instance, the first

phase of the overlayer growth involves separated Fe atoms
adsorbed on the substrate, followed by an Fe monolayer.
The geometry adopted in this step can influence the po-
sitions of the atoms in the subsequently deposited layers.
Nevertheless, despite these complications we feel that it
is important to first understand the basic elastic contri-
bution to the total energy before an investigation of the
more complicated phenomena is undertaken. For the case
of Fe considered in this paper, an additional complica-
tion arises because the local spin-density approximation
(LSDA) does not predict the ground state of the bulk ma-
terial correctly; the energy of the magnetic phases comes
out systematically too high by at least 15 mRy (see Sec.
III A). As a consequence, our calculations do not obtain
magnetic structures as favorable even when the mismatch
to the substrate is large. This is in disagreement with
recent experimental results. We reconsider the conse-
quences of the inherent LSDA error at the end of Sec.
III A.

In an attempt to clarify the question of the elastic
properties of the competitive strained iron phases, we
have calculated total energies for bulk hcp and fcc iron for
various cases of tetragonal elastic distortions by means of
the spin-polarized full-potential linear-mufIin-tin-orbital
method using the LSDA (Refs. 8 and 9) within density-
functional theory. This approach permits an accurate
description of energy changes due to lattice distortions.
Of the different possible quasihexagonal alignments on a
hcp (0001) substrate, we focus here on the competition
between the hcp (0001) and fcc (111) stacking sequence
of the close-packed hexagonal planes. By using a spin-
polarized code we permit a magnetic moment to appear
if this should be energetically favorable; however, one re-
sult of the calculations is that both the fcc and hcp phases
are nonmagnetic for all reasonable interatomic distances
around the equilibrium geometry.

The organization of the paper is as follows. In Sec.
II we give a brief description of the FP-LMTO method.
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In Sec. III we show some results concerning the ground
state of iron, a question which has been frequently dis-
cussed over the last years. The question of the LSDA
ground state was resolved by a recent full-potential lin-
ear augmented plane-wave (FLAPW) calculation. o We
use this as a test case of our method (without, however,
considering gradient correctionsi4 is) to determine the
intrinsic LSDA error when comparing magnetic with non-
magnetic ground states (Sec. III A). This error is the ori-
gin of the favor of nonmagnetic phases in our calculations.
By relaxing the interlayer spacing, we calculate in Sec.
III B the total energies for the fcc and hcp structure as a
function of the prescribed in-plane interatomic distance
and draw conclusions concerning the adopted stacking
sequence. To explain our results in simple terms, we re-
produce them using a bond-strength model in Sec. III C.
Conclusions can be found in Sec. IV.

II. DESCRIPTION OF THE METHOD

The calculations described in this work were per-
formed using the full-potential linear-muffin-tin-orbital
method. As in the atomic-sphere approximation (ASA),
the basis set consists of atom-centered Hankel func-
tions augmented by means of numerical solutions of the
Schrodinger equation inside the atom-centered "atomic
spheres. " However, in distinction to the ASA method
the atomic spheres are not taken as overlapping and the
charge density and potential can have a completely gen-
eral shape in the interstitial region as well as inside the
atomic spheres. An accurate treatment in the interstitial
region is achieved by an interpolation technique which
matches a linear combination of Hankel functions to the
values and slopes on the spheres. This procedure is ap-
plied to the interstitial charge density, the partial densi-
ties which are products of two basis functions, and the
exchange-correlation potential and energy density. The
accuracy of the approach is comparable to that of the
FLAPW method for reasonably close-packed systems.
For details, we refer to previous publications. " In the
present case, LMTO's with three diferent localizations
(given by the Hankel envelope-function kinetic energies
—2.3, —1.0, —0.7 Ry) of s, p, and d character were used
leading to a basis of 27 functions per atom. A scalar-
relativistic formulation is used. For the spin-dependent
local-density approximation to the exchange-correlation
functional we used the Ceperley-Alder form2e in the
Vosko-Wilk-Nusair parametrization. The k-space sam-
pling was done on an uniform mesh of 145 irreducible
k points for bcc and fcc iron and 135 for hcp iron, re-
spectively. The energy eigenvalues were broadened by 20
mRy using Gaussian smearing. Sphere radii were chosen
to be 3% smaller than touching in the unrelaxed struc-
ture to allow lattice distortions.

III. RESULTS

A. The ground state of iron

To comment on previous predictions of the ground
state of bulk iron and as a test for our method, we have
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FIG. 1. Calculated total energies of iron as a function of
the Wigner-Seitz radius rws for the paramagnetic (P) bcc,
fcc, and hcp structure as well as for the ferromagnetic (F)
bcc phase. Energies are relative to the minimum of the ferro-
magnetic bcc curve. Symbols indicate the calculated energies.
The curves are fits with fifth-order polynomials.

calculated total energies for nonmagnetic fcc and bcc and
for ferromagnetic bcc iron as a function of the atomic vol-
ume. The results are shown in Fig. l.

The minimum of the ferromagnetic bcc curve is the ref-
erence energy for the others. From our data, we obtain
the equilibrium Wigner-Seitz radii and lattice constants,
bulk moduli, cohesive energies, and magnetic moments
which are compared to other calculated values and to
experiment in Table I. We find the ferromagnetic bcc
phase energetically favored by AE = 19.5mRy/atom
compared to the paramagnetic bcc phase, but the param-
agnetic fcc phase again AE' = 5.9 mRy/atom lower than
the ferromagnetic bcc phase. The FLAPW results for
these energy difFerences are 17.6 and 7.9 mRy/atom, io

in good agreement with our results. A local-density-
approximation (LDA) calculation using the LMTO-
ASA method gave the corresponding values of 16.5 and
6.5 mRy/atom. i A calculation using the augmented-
spherical-wave (ASW) methods2 determined the non-
magnetic (NM) fcc phase to be marginally higher in en-
ergy than the ferromagnetic (FM) bcc phase, whereas the
NM hcp structure was lowest in energy by 3.6 mRy/atom
compared to the FM bcc. The fact that the FM bcc phase
becomes favored compared to other studies mentioned
above could be found in the spherical averaging used in
the ASW method; however, this should also hold for the
above-cited LMTO-ASA study. The question of the en-
ergy difference of fcc and hcp iron in our present work is
carefully addressed in Sec. III B. So far, our calculations
reproduce the previously found result, namely that the
LSDA predicts the ground state of iron incorrectly. This
is a consequence of the fact that the exchange-correlation
functional is taken from the homogeneous electron gas.
For the case of iron, it has been demonstrated that non-
local contributions to the exchange-correlation potential
in the form of gradient corrections are able to predict
the correct ground state. Because our calculations
do not apply any further noticeable numerical or techni-
cal approximations, we conclude the LDA-LSDA error in
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TABLE I. Comparison of various calculated ground-state properties of bcc Fe with exper-
imental values and with previous calculations obtained using the LMTO-ASA method, the
augmented-spherical-wave (ASW) method and the (full-potential) linear augmented-plane-wave
method. Listed are the equilibrium lattice constant a, the magnetic moment m at equilibrium,
the cohesive energy E„and the bulk modulus B for the paramagnetic and ferromagnetic phase.
All tabulated results are in the LSDA without gradient corrections. Zero point vibrations are not
included.

Case
para
ferro
para
ferro
para
ferro
para
ferro
ferro

a (A)
2.71
2.77
2.73
2.82
2.72
2.78
2.70
2.75
2.86

m (P,s)

2.02

2.15

2.08

2.23
2.21

E, (eV)
8.50
7.73
5.79

7.32

6.96
4.31

B (Mbar)
3.20
2.52
3.06
2.14

1.74

1.53
1.68

Method
FP-LMTO
(this work)

LAPW
ASW'

FLAPW'

LMTO-
ASAd

Expt.

Reference 28.
Reference 29.

'Reference 10.
Reference 11.

describing ferromagnetic states of iron to be at least 15
mRy/atom. The phases considered in Sec. III B turn out
to be nonmagnetic, so that the failure of the LSDA when
comparing energies for magnetic and nonmagnetic struc-
tures is not expected to affect our conclusions concerning
the effect of strain. However, the error must be taken
into account when transferring our results to a realistic
experimental situation of iron grown on a surface.

B. The inBuence of the in-plane lattice constant
on the structure of relaxed. Fe phases

The question to be addressed here is to what extent
the structure of close-packed metallic phases can be in-
fluenced by the lattice constant which is imposed by the
substrate. As a simple example, materials which nor-
mally crystallize in the bcc structure can be forced into
a fcc structure and vice versa by a suitable choice of the
substrate lattice constant. A more subtle question arises
when the imposed lattice constant is compatible with
the interatomic distance in the close-packed hexagonal
planes which constitute both the hcp and the fcc struc-
ture. In that case, the formation as either a fcc (111)or
hcp (0001) crystal is conceivable, depending on the stack-
ing sequence adopted by successive planes. For thick lay-
ers where surface and interface effects become negligible,
the choice between these competitive structures is infIu-
enced by three factors. As a first approximation, the
energy difference should be that between the hcp and fcc
structures when both are at their respective equilibrium
lattice constants. This matter has been thoroughly inves-
tigated in the past and it is now known that for transition
metals, it is essentially the d-band filling which deter-
mines the hcp-fcc energy difference. ~4 Secondly, the elas-
tic properties of the hcp and fcc materials determine the
energy cost when the overlayers deform to match the sub-
strate interatomic spacing, where this is not equal to the

ideal value. The sum of both energy contributions deter-
mines the overlayer structure, which could thus depend
on the imposed lattice constant via the strain energy.
Finally, energy contributions due to magnetic ordering
could change this picture in a fundamental way. In the
following, we investigate this question for the case of Fe
using accurate spin-polarized total-energy calculations.
It turns out that for all overlayer geometries considered
here, the magnetic phase lies higher in energy so that an
unrestricted LSDA calculation moves into the nonmag-
netic state. By experience, the LDA is known to pre-
dict reliable elastic properties for non-magnetic systems.
Since we are comparing structures which are more sim-
ilar in terms of the nearest-neighbor coordination than
in the fcc-bcc ground-state discussion and, more impor-
tantly, magnetic effects do not play a role in this context,
we are assuming that the local-density approximation is
appropriate to the hcp-fcc energy difference despite the
failure of the LSDA for the iron ground state (see Sec.
III A). Our results concerning the elastic effects are the
first step in a detailed description of the overlayer growth
process, which should ultimately include growth dynam-
ics as well as interface and surface effects.

First, we discuss the hcp-fcc energy difference of Fe
when each structure is at its respective equilibrium lattice
spacing. In both structures, Fe becomes nonmagnetic
in the LSDA. For transition metals, previous theoretical
considerations24 have shown the connection between the
power moments

(E —sg)"nd(E) dE

and the structural energy difference. Here, ng(E) de-
notes the density of states for the d electrons and eg the
on-site d orbital energy. It was shown quite generally
that the hcp-fcc energy difference must go through zero
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at least twice as a function of the d-band filling. From
the fact that the first nonidentical moment is p,4, a gen-
eral shape of the hcp-fcc energy difference was deduced
as shown in Fig. 2. For the d-band filling of iron of 6 d
electrons, the hcp structure is predicted lower in energy.
Ducastelle and Cyrot-Lackrnann not only derived the
overall behavior of the hcp-fcc energy difference but also
the general property that transition metals with a nega-
tive hcp-fcc energy difference will further lower their en-
ergy by a reduction of the axial ratio c/a from the ideal
value of g8/3 = 1.63. Conversely, metals with the fcc
structure lower in energy would want to have c/a larger
than ideal when forced into a hcp structure. This will be
relevant for the discussion at the end of Sec. III.

Self-consistent LDA calculations concerning this point
were presented in Ref. 25 which confirmed the results of
the moment theory, as well as of a work based on a force
theorem in the LMTO-ASA method. 2s These ab initio
calculations showed that for Fe the hcp-fcc difference is
largest compared to other 3d metals and hcp is most
stable. For hcp Fe, we have minimized the energy as a
function of both the lattice constant and the c/a ratio.
The nearest-neighbor distance for fcc and hcp comes out
almost the same, namely 4.54 and 4.53 a.u. for hcp and
fcc, respectively. The axial ratio in the hcp structure is
found to be c/a = 1.58 which equals the value calculated
in Ref. 25. Our calculations again confirm the moment
theory and the previous LDA results. For an isotropic
change in volume and a fixed axial ratio of c/a = 1.58
for the hcp structure, we find the hcp phase energetically
favored by AE = 7.9mRy/atom (Fig. 3). In conclusion,
if only isotropic distortions are taken into account, the
hcp stacking sequence is clearly favored. This picture
could well change when more general distortions are per-
mitted.

To this aim we present the results of a more thor-
ough investigation. For an accurate description, a full-
potential method is essential to obtain reliable results.
We proceed in a way analogous to that which would be
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FIG. 3. Total energy per atom for hcp and fcc Fe as a
function of the interatomic distance d„„ in the fec(111) and
hcp(0001) plane for isotropic volume change. The c/a ratio
was fixed at 1.58 for hcp and at the ideal value of 1.633 for
fcc. Only the mRy part is shown; for hcp, the total energy
is —2451.148 Ry. The hcp structure is lower in energy by
AF = 7.9mRy/atom at equilibrium.

used by an experimentalist; that is, we simulate the ex-
perimental growth of Fe on a close-packed substrate with
a prescribed lattice constant. We choose an in-plane
nearest-neighbor distance d„„. Keeping this value fixed,
we vary the axial ratio c/a to map out the total energy
as a function of the distance d, between adjacent lattice
planes. From the minimum of the total energy we obtain,
for this value of d„„,the relaxed interplanar spacing and
the total energy at the minimum. This procedure is then
repeated for several values of d„„ for both structures.
Considering both hcp and fcc structures as hexagonal
but with different stacking sequences, we are varying the
in-plane atomic distance as a parameter and determin-
ing the c/a ratio from the mimmum of the total energy.
The range of c/a and d„„ is limited by the requirement
that; the atomic spheres may not overlap when the lattice
deformation is applied. Figure 4 shows the "raw data"
obtained in this way for hcp Fe. Each curve displays the
total energy as a function of c/a for one fixed value of
d„„. In agreement with the discussion of the axial ratio
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FIG. 2. Qualitative behavior of the hcp-fcc energy differ-
ence as a function of the d-band occupation as deduced from
the moment theory (Ref. 24). Assigning a d charge of 6 to Fe,
the hcp structure is predicted to be more stable.

FIG. 4. Total energy per atom for hcp Fe as a function
of the axial c/a ratio for various values of the in-plane lat-
tice constant d . Energies are relative to the relaxed hcp
structure at d„„=4.538bohr and c/a = 1.58.
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FIG. 5. Calculated values for (a) twice the interplanar
spacing, (b) the c/a ratio, (c) the atomic volume, and (d) the
total energy per atom for the relaxed hcp and fcc structures
as a function of the in-plane nearest-neighbor distance d„.
At equilibrium, the hcp phase is found to be energetically
favored, whereas the fcc phase would be lower in energy when
d„„ is larger or smaller by roughly +10Fo or more.

TABLE II. Calculated values for the lattice stiffness
B E/Bs for hcp and fce Fe in mRy. The third column shows
the results from LDA calculations, the fourth the results using
the bond-strength model with the bond stiRness taken from
the isotropic volume change of fcc Fe. For both strain modes,
the hcp structure is stiR'er than the fcc structure.

Strain mode
(a) big = 0

(b) IV=0

Structure
hcp
fcc
hcp
fcc

FP-LMTO
6499
2710
6040
3308

Model
6167
3256
5518
3583

of hcp Fe above, the absolute minimum of the energy is
attained for a lattice constant d„„=4.538bohr and a
c/a ratio of 1.58. The corresponding fcc curves are very
similar except that, because of the cubic symmetry, the
absolute energy minimum lies at the ideal c/a ratio of
1.633 with d„„=4.510 bohr.

To obtain a clearer picture we plot a number of quan-
tities extracted from Fig. 4 as a function of d„„ in Figs.
5(a)—5(d): the interplanar spacing d„ the c/a ratio
2 d, /d„„, the atomic volume V, and the total energy per
atom E of the relaxed structure. For both structures, d,
and c/a decrease approximately linearly as d„„ increases.
This shows that the crystal tries to maintain the atomic
volume close to the equilibrium value by compensating
the in-plane expansion with a compression in z direction.
Here, one observes a relevant difference between the two
structures, which is also evident from the behavior of the
atomic volume shown in Fig. 5(c). For the fcc structure,
the volume increases only slightly with the in-plane lat-
tice constant, while the increase for hcp is twice as large.
This shows that the hcp structure is "stiffer" than fcc re-
spective to a tetragonal c/a distortion. The effect on the
total energy can be seen in Fig. 5(d) which can be con-
sidered as the main result of these calculations. For d„„
close to the equilibrium interatomic distances in hcp and
fcc Fe (about 4.54 bohr), the hcp structure is lower in en-
ergy by the previously discussed value of 7.9 mRy/atom.
When d„„ is varied to smaller or larger values, the in-
crease of energy in the hcp case is larger than in fcc
as a consequence of the higher stiffness of the hcp lat-
tice. Thus, for extreme values of d„„ the fcc structure
becomes more favorable and fcc growth should be ob-
served. However, Fig. 5(d) shows that the mismatch to
the equilibrium lattice constant must be approximately
+10% before this happens. However, growth at the mis-
matches for which we find the hcp-fcc crossover is hardly
possible without introducing defects such as dislocations,
steps, kinks, and islands. Therefore, the result of our
calculation is that the hcp phase is clearly favored over
fcc for all feasible lattice constants, but we also find the
theoretically interesting result that a transition to fcc is
in principle possible. Also, similar behavior is plausible
for other materials for which the hcp-fcc energy differ-
ence could be smaller, thus making a transition between
structures possible at more reasonable mismatches. We
return to this question at the end of Sec. III C.

To compare our results to an experimental situation,
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we recall again that the LSDA obtains nonmagnetic
phases too low by at least 15mRy/atom. It is rea-
sonable to assume that a ferromagnetic structure should
in fact be favored when the substrate interatomic spacing
is large since this phase has a larger equilibrium lattice
constant than the NM phase. The elastic energy penalty
to match to the substrate lattice would therefore be less.
This is compatible with experimental indications of mag-
netic Fe overlayer phases.

C. Origin of the enhanced stifFness
in the hcp structure

In the previous section we found the Fe hcp and fcc
structures to exhibit diff'erent behavior with respect to a
tetragonal c/a distortion, with the result that the tran-
sition from hcp to fcc is in principle possible for extreme
cases of the lattice constant mismatch. In the follow-
ing we trace the origin of the different elastic behavior
to the reduced c/a ratio in the hcp structure. To gain
more insight, we consider two distinct distortions. First,
as case (a), strain is applied in the direction orthogo-
nal to the close-packed plane without changing the in-
plane interatomic distance. This distortion changes the
unit-cell volume and is the one which was investigated in
Sec. III B. Second, we also examine the related volume-
conserving shear as case (b), in which the expansion of
the interplanar spacing is accompanied by a contraction
of the in-plane interatomic distance. In both cases, we
parametrize the distortion in such a way that the c axis
is multiplied by (1+ s). The in-plane atomic distance
remains unchanged in case (a) and scales with 1/v'1+ s
in case (b). In the following we wi11 also abbreviate these
distortions by "bl~ ——0" and "bV = 0," respectively,
where tq denotes the in-plane bond length.

To leading order, the crystal energy is a quadratic func-
tion of the strain parameter e. Of interest is the lattice
stiffness, which is the second derivative 8 E/%2 at s = 0.
This quantity is proportional to a certain combination of
the second-order elastic constants. 7 Our calculated val-
ues for the second derivative are shown in the second-to-
last column of Table II. For case (a), hcp is found stifFer
by a factor of more than 2. This quantifies the behav-
ior already discussed in connection with Fig. 5(d). Dis-
tortion (a) changes the lengths of only the out-of-plane
bonds (which are tilted by 35.3' to the c axis). These
are shorter in the hcp structure due to the nonideal c/a
ratio. Therefore, a possible explanation for the increased
hcp stiffness is that the shortened bonds have become
harder. For the volume-conserving case (b), the situa-
tion is more complicated because the distortion changes
the length of the in-plane as well as of the out-of-plane
bonds. For hcp compared to fcc, the former are longer
and therefore could be expected to be softer. It is not
clear a priori whether the bond hardening overcomes the
bond softening. Our calculations obtain hcp harder for
this distortion too, but by a smaller amount than in case
(a).

In such a model, the relevant ingredient is the depen-
dence of the bond stifFness (that is, 8 B/812 where B
is the bond strength) on the bond length l. Assuming
that this is a well-defined and transferable property for a
given material, we can obtain otzB/012 as ii202E/812 at
any desired bond length l from the calculated isotropic
energy-volume curve for bulk fcc Fe. The bond strength
and stifFness which were obtained in this way are shown
in Figs. 6(a) and 6(b). Note that the B(l) curve is asym-
metric around its minimum. For lengths larger than the
equilibrium distance, the increase of the energy is smaller
than in the case when l is shortened by the same amount;
that is, it costs more energy to compress a bond than to
expand it.

If we now shear the fcc or the hcp lattice, we have to
take two different lengths into account. These are the
in-plane length li and the out-of-plane length l2. The
overall stiffness of the lattice is given by

0 E 8 B(li) 8 B(l2)
(2)

where Ni and N2 denote the number of in-plane and out-
of-plane bonds, respectively. Note that in these cases, li
is identical to the nearest-neighbor distance in the close-
packed hexagonal plane, d„„.

The fcc and hcp structures have N~ ——Ng = 6. Because
we consider strains around the equilibrium geometry, the
first derivative cIB/Ol, is zero, and by chain differentia-
tion we obtain
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FIG. 6. (a) Bond strength B(l) and (b) stifFness 8 B/Dl
as deduced from an isotropic volume change of the fcc struc-
ture. Note that the bond stifFness increases strongly as the
bond length l is decreased.
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B2E / Btg B2B
Bt2 l =t

6 Btq B2B

B Bl = 2

(3)

This expression is built up out of purely geometric factors
[the quadratic terms (Bl,/Bs) ] and the bond stiffnesses
B2B/R~ at the lengths tq and t2.

The out-of-plane and in-plane lengths involved in the
two distortion cases are

ap,
ap/v'1+ e,

big = 0
6V= 0, (4)

] + ~g (1+x)~
ap 4

+ ~c (~+~)'

big =0

bV =0,

Bl2 ap

BE ~ o 2

and for the distortion with bV = 0 by

Btq ap

0' =0

(7)

Bt2 Qp

BE' ~ o 2

For hcp at the calculated equilibrium axial ratio of 1.58,
Bl,/K shows only slight and irrelevant deviations from
these values. The important ingredient is that the bond
stiffnesses are substantially different for the various bond
lengths, namely

l q (fcc) = l2 (fcc) = 4.510 bohr:
g2jg = 68.0 mRy,

lq(hcp) = 4.538 bohr:

l2(hcp) = 4.439 bohr:

2' = 61.2mRy,

(10)
g2Q = 116.8mRy .

Inserting the values from Eqs. (6)—(10) in Eq. (3), we
are now able to compare these results from the model
with those of the accurate LDA calculation. For the lat-
tice stiffnesses in the hcp and fcc structures, we obtain
the values in the last column of Table II. For the dis-
tortion with bli ——0, the model correctly exhibits the

where ap denotes the in-plane interatomic distance at
s = 0 and cp/ap the corresponding axial ratio. In the
fcc case or for hcp at the ideal axial ratio, the geometric
factors are given for the distortion with bli ——0 by

Bli
BE' ~ 0

much larger stifFness of the hcp structure. From Eq. (4)
and the fact that Btq/Bs is zero for this distortion, it is
clear that the origin of the effect is that B2B/Bl2 for the
out-of-plane bonds is twice as large for the shorter bonds
in the hcp structure. Thus, as suggested above, the re-
duced hcp c/n ratio is the underlying reason for the in-
creased hcp stiffness in this distortion. Moreover, it is
interesting that not only the trend but also the absolute
values of B2E/Bs~ are rather well reproduced. Having
thus gained confidence, one can inspect the more com-
plicated case of the volume-conserving distortion. From
Eqs. (6) and (7) it follows that the softening of the in-
plane bonds and the hardening of the out-of-plane bonds
when the nonideal hcp c/a ratio is adopted cancel to a
large extent, since the changes of the in-plane and out-of-
plane bond lengths have opposite signs. It is less obvious
that the cancellation would be complete if the relation
between bond length and stifFness were to be a linear
function. This follows from Eq. (7) which shows that the
bond length changes are exactly equal but opposite for
the volume-conserving shear. Consequently, the overalL
bond stiffness for the hcp lattice would be equal to that
of fcc if the relation were linear. The increase in stiffness
in our calculations for hcp is therefore a consequence of
the rapidly increasing stifFening of the bond as its length
is reduced. In terms of the fcc-energy volume curve, it is
the third-order term in the expansion of the bulk energy
around the equilibrium lattice constant which is finally
responsible for the effect.

Can these conclusions be transferred to other materi-
als, or are they only valid for the special case of iron? In
fact, it is easy to see that the basic pattern of Fig. 5(d)
should be the same for the other transition metals. That
is, whichever phase (fcc or hcp) has the lower energy at
equilibrium not only has a c/a ratio lower than the ideal
value but is also the one which is stiffer relative to the
c/a distortion. This follows from the general behavior of
the axial ratios, as deduced from the moment description.
For those metals which have hcp as the most favorable
phase, the c/a ratio is smaller than ideal and the whole
argument holds as above. Conversely, in those cases for
which fcc is the more stable phase at equilibrium, the
hcp c/a ratio is larger than the ideal value2s and hcp will
then be softer with respect to the c/a shear. In either
case, the fcc and hcp energies must cross when the distor-
tion becomes large enough. Thus, the transition between
the two structures is in principle always possible by vary-
ing the substrate lattice constant. However, whether this
is possible for a distortion which can be actually realized
without inducing defects ean only be answered by a more
detailed investigation in each case.

IV. CONCLUSIQNS

In this paper we have used accurate local-density cal-
culations to analyze the effects of overlayer strain on the
stacking sequence when iron can grow in either the fcc
(111)or the hcp (0001) structure. The two relevant ingre-
dients are the hcp-to-fcc energy difference at equilibrium
and the elastic shear energy which is required to match
the crystal to a nonideal lattice constant. For iron, the
energetically more favorable structure at the equilibrium
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lattice constant was calculated to be nonmagnetic hcp.
This is in agreement with earlier theories, based on the
moments of the d-band density of states, which trace the
hcp stability to the number of d electrons. With respect
to the tetragonal c/a distortion which would be needed
to match the iron overlayers to a nonideal substrate lat-
tice constant, we find nonmagnetic hcp Fe approximately
twice as stiff as nonmagnetic fcc Fe. This implies a cross-
ing of the hcp and fcc total energies at large lattice mis-
matches. The larger stiffness of the hcp structure was
explained in a simple model which obtains the stiffness
of the nearest-neighbor Fe—Fe bond as a function of the
bond length from the fcc energy-volume curve. The cen-
tral effect was identified as to be the hardening of the
hcp out-of-plane bonds due to the bond shortening by
the decreased axial c/a ratio. From general considera-
tions, it follows that all transition metals should exhibit
a similar transition between the hcp and fcc structures

at some substrate lattice constant. However, whether the
transition is feasible for realistic strains will depend on
the material in question. Unfortunately, the transfer of
our results to the real experimental situation is restricted
by the fact that surface and interface effects were not
considered and also by the LSDA error when compar-
ing magnetic and nonmagnetic phases. Nevertheless, our
careful analysis of the strain effects is a necessary first
step for an accurate description of the overlayer growth
process.
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