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Energetics of stepped Cu surfaces
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We report here a systematic, computer simulation study of the energetics of stepped Cu(100) surfaces.
With interatomic potentials described by the embedded-atom method we calculate multilayer relaxa-
tions, step-step interaction, step-kink formation energy, and the activation energies of adatoms diffusing
on a series of stepped Cu(100) surfaces. The results aSrm the existence of oscillatory and exponentially
damped multilayer relaxations on (1,1,n) vicinal surfaces. Furthermore, long-ranged step-step interac-
tion is found to be present even for the short spacing of steps on the (1,1,3) surface. For the lower-index
stepped surfaces the isolated step-pair interaction is found to be different from the ledge-ledge interac-
tion. Comparisons are made of the kink-formation energy, step-step repulsion energy, and the activation
energies with available experimental results and other calculations.

I. INTRODUCTION

An intriguing question in determining the equilibrium
crystal surface structures' concerns the role that steps,
kinks, and other defects play. These irregularities of vici-
nal surfaces impact a number of surface phenomena.
Stepped surfaces are also prone to roughening transitions
and participate in the processes of evaporation, condensa-
tion, and melting. The proliferation of steps, their ener-
getics, spacing, and the degree to which they meander on
the surface are long-standing issues in statistical phys-
ics. In recent years, there has been a resurgence of in-
terest in the energetics and dynamics of vicinal (higher
Miller index) surfaces due mainly to the availability of
real-space imaging with the scanning tunneling micro-
scope (STM), with which structural features of extended
steps can be monitored and quantities like step energies,
kink-formation energies, kink concentrations, " and
the activation energies of adatoms near the step edge'
could be evaluated. These STM studies nicely comple-
ment the more traditional diffraction experiments with x
rays or electrons of He beams, and have motivated
several theoretical thermodynamical studies. '

The knowledge of the structure of the stepped surfaces
is the fI.rst step toward the understanding of its charac-
teristics. From a theoretical point of view, this structural
information could be obtained by the crystal total-energy
minimization procedures. For example, the stress relaxa-
tion on a Si(100) stepped surface was studied by atomistic
calculations to identify the different types of elastic in-
teractions, ' while the magic faceting" reconstruction
on the Au(1, l,n) surfaces' has been examined from con-
siderations of surface energies based on a many-body
force model (glue model). Similarly, for Cu(113) and
(115), an N-body, semiempirical potential was adopted to
calculate multilayer relaxations, kink-formation energy,
and step-step interactions. ' Although good agreement
with experiments was found for interlayer relaxations and

kink-formation energy, the model potentials used in Ref.
15 failed to reproduce the observed value of the elastic
repulsive interactions between steps.

It is the purpose of this paper to apply a well-tested
atomic interaction potential, i.e., that obtained by the
embedded-atom method (EAM), ' to examine the static
properties and atomic mobilities of metallic vicinal sur-
faces, which to the best of our knowledge' have not as
yet been explored. To this end we have carried out a sys-
tematic investigation of stepped surfaces Cu( 1, l, n), with
n varying from 3 to 99, which are all vicinal to Cu(100),
and tabulated their surface energies, kink-formation ener-
gies, step-step interaction energy, multilayer relaxations,
and the diffusional properties of adatoms along step edges
and on terraces. It will be seen that the EAM potential is
capable of reproducing the step-step elastic interaction,
and that the activation energies of adatoms are also in
reasonable agreement with experimental results. An in-
teresting conclusion in the STM studies " of vicinal
Cu(100) surfaces is the presence of attractive step-step in-
teractions for intermediate distances of 3—5 atoms. We
will comment on this in Sec. IV.

We will give a description of the model system in Sec.
II, present the calculated results in Sec. III, and discus-
sions in Sec. IV.

II. MODEL SYSTEM

The ( 1, 1,n ) vicinal surface is realized by constructing a
series of descending Hat terraces of equal sizes along the x
axis ([110]),with the normal along the z axis ([001]), as
shown in Fig. 1. Note the n =2m +1, where m is an in-
teger. For convenience, we take the nearest-neighbor dis-
tance between atoms ao/&2 (ao being the lattice con-
stant) as a unit length in this paper. The tilt angle be-
tween z ', the normal of the ( 1, 1,n ) surface, and z, the
normal of the lower-index surface [001], is
8=are tan(&2/2m +1). Similarly, the step-step separa-
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FIG. 1. The schematic of a (1,1,n) stepped surface of a fcc
metal. The step height is one monatomic layer thick.

tion t =(&2sin8) ', while the terrace width d along
[110] is m + 1/2. The monolayer step height is
h =+2/2. As is obvious, the size of the terrace and,
hence, m is controlled by the tilt angle 0.

The calculations of interest to us may be put in five
categories involving (1) surface energy, (2) step-pair in-
teraction, (3) kink-formation energy, (4) activation ener-
gies for adatom diffusion, and (5) surface relaxations.
The calculation of the surface energy in turn also yields
the step energy and the multilayer relaxation. In the
simulations, the size of the supercell and the number of
free surfaces to be modeled for the slab depend on several
considerations —the guiding principle being that the sys-
tern should be large enough to maintain the individuality
of the steps, kinks, and adatoms, and yet be small enough
to be tractable. Here the surface supercell of dimensions
N„XN„., where N ~ is the number of terraces and N ~ is
the number of atoms along the step direction (y') chosen
as follows. For the evaluation of the surface energy, the
supercell is (4X4) in the case of the intermediate Miller
index surface (1,1,3) to (1,1,9), i.e., those with m =1—4,
while it is a (2 X 4) supercell for m = 5 —49. In the calcu-
lation of the kink-formation energy, N ~ is increased to 12
while N ~ remains the same as before. This assumes that
the interaction between kinks along the step direction is
negligible. The slab thickness N„was taken to be 20 lay-
ers along [001], assuming that bulk behavior is obtained
away from the surface. This slab has two identical free
surfaces.

For calculations of the activation energies of adatoms
on stepped surfaces, we found it more efficient to use a
slab consisting of several dynamic layers placed on top of
several static layers. Specifically, we used six dynamic
and four static layers along [001]. The assignment of N„
and N ~ was the same as that discussed above for the
kink-formation energy.

Periodic-boundary conditions are applied along the
surface plane (in the x' and y' directions), and the
stepped structures are relaxed through energy minimiza-
tion by the conjugate gradient method based on
embedded-atom potentials. The EAM code used for this
molecular-static (MS) technique is very similar to that ap-
plied earlier to study self-diffusion on Ag(111).' Results
for energetics and the structure of these surfaces with de-
fects are thus obtained and analyzed.

III. ENERGETICS OF (1,1,2m + 1) SURFACES

The characteristic energies of these vicinal surfaces
may be put in four categories: surface/step energy, step-
step interaction energy, kink-formation energy, and the
activation energies of adatoms. By surface energy we
mean the excess energy per unit area that the atom at the
surface possesses, due to its lower coordination number,
with respect to those in the bulk crystal. A related quan-
tity, i.e., the step energy, is the difference in surface ener-

gy between the particular stepped surface and the Aat
(100) surface, and is so calculated. The step-step pair in-
teraction, on the other hand, is the interaction energy be-
tween two isolated steps. The variation of this interac-
tion energy is deduced from total-energy calculations us-
ing different microfacets on a (2X4) surface unit cell of
(1,1,99). Similarly, the kink-formation energy is the
step-energy difference between a step with one kink and a
straight step. Finally, the activation energy of adatoms is
the potential barrier of an adatom jumping from one site
to its neighbor site. Below, we present some details of
these definitions.

A. Surface energies and ledge energies

The surface energy at T =0 K stated above can be
written as

y(8) = E —Nab

2L L„.

where E is the total energy of the structure consisting of
atoms obtained from the energy minimization, eb is the
energy of a bulk atom, 0 is the tilt angle as defined above,
and L ~ and L ~ are the total lengths of the supercell along
the x' and y' directions, respectively. The factor of 2 ac-
counts for the two free surfaces of the slab used in the
calculation. Thus E-Nab is the excess energy of the sur-
face supercell.

The excess energy associated with a ledge (the step en-
ergy) is calculated similarly using the following expres-
sion:

A, (8)=
E —Nab —2A, e„

2N L ~

(2)

where A, =L L .cosO is the stepped surface area as pro-
jected onto the fiat surface, and e„ is the liat (100) surface
energy. N„. is the number of terraces in the supercell.
The factor of 2 takes into account the two free surfaces.
The step energy A,(8) and the surface energy y(8) thus
have a simple relationship:

y ( 8 ) =e„cos8+X( 8 )sin8/h,

where h is the step height.
The relaxed surface energies versus the tilt angle 0 ob-

tained from our simulations are shown in Fig. 2. As ex-
pected, the (111) surface is the most stable, while the
(113) is the least so. Also, at small 8, i.e., when the steps
are sufficiently rarefied and interact only weakly, the sur-
face energy y(8) behaves like e„+k8, where k is propor-
tional to the isolated step energy. For selected surfaces,
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FIG. 2. The calculated surface energy per atom area y(8)
with the step-tilt angle 8 of ( 1, 1,n) vicinal surfaces.

the surface energies are summarized in Table I, together
with the results' ' ' ' of other computations as well as

experimental data. ' Our results compare well with oth-
ers in the table. As can also be seen, the surface energies
obtained from the newer equivalent crystal theory' give
better agreement with experimental data. ' Since the ex-
perimental values are obtained for an average face, this

comparison is only of qualitative interest.
Figure 3 displays the step excess energies obtained

from Eq. (2) as a function of step spacing (the terrace
width d =n /2). A least-squares fit to the step energies of
the vicinal surface (1,1,2m + 1) for m =5—49 times

A,(d) =0.1569+0.0827/d ' (4)

thus indicating an isolated ledge energy A,o of 0.1569 eV
(1821 K) per ledge atom. The elastic repulsive step-step
interaction energy is shown in Fig. 3 to be long ranged,
and to begin even at the short range of the (1,1,3) vicinal

TABLE I. Comparison of the surface energies of the relaxed
(1,1,n} surfaces at T =0 K. Units are in erg/cm .

(100) (1 1 1) (1 13) (1 15) (1 17)

1372Present work
Loisel et al. '
Sinnott et al. b

Lin et al. '
Smith and co-workers"
Experimental

1406 1391
1455 1446
1750
1443

1288 1181
1345 1240
1640 1510
1321 1215
2380 1830

1790'

B. Step-pair interactions

In consideration of step meandering, ' or reconstruc-
tion of stepped surfaces, ' information on step-pair in-
teractions is needed. The elastic step excess energy de-
scribed in Sec. III A, calculated with periodic surface unit
cells, is automatically a sum of all step-step interaction
energies, with separation varying as integral multiples of
the terrace width. To calculate the step-pair interaction
as defined earlier, we need to isolate the step-step interac-
tion for a given separation. Of course, for higher-index

2016'

'Reference 15.
Reference 20.

'Reference 23.
Reference 19.

'Reference 21(a).
'Reference 21(b).

surface. The dependence of A, on d in Eq. (4), for large
values of d, is reasonably close to d, as expected from
the elasticity theory.

As a test of the EAM potential, we have also calculat-
ed the step-step interaction co5 for Cu(1, 1,5) following the
definition in Ref. 15, i.e., one column of atoms at the
ledge positions was removed from the upper surface of
the slab and attached to the lower one. The energy
difference between this system and the clean one gives a
repulsive cu5 of 13 K in our calculations. This value is
lower than that of 100 K, which was estimated from ex-
perimental data analyzed assuming repulsive elastic in-
teraction between steps. Our calculated value for co5 has
the same sign as that extracted from the data, in contrast
to a negative (attractive) value computed by Liosel
et aI."

It is interesting to look at the characteristic excess en-
ergies of various types of atoms on the puckered layer.
This layer is shown in Fig. 4, starting from the right at
the ledge, moving under the next ledge, and so on. Here
the side view of some (1,1,n) surfaces is given, with S
denoting atoms at step edges, T the terrace atoms, C the
corner atom representing the boundary between two ter-
races, and, finally, 8 representing bulklike atoms.

As shown in Fig. 5, an S atom at the ledge has the
highest energy of 0.67 eV, due to its lowest coordination
numbers, i.e., seven nearest neighbors (7NN). A terrace
atom with 8NN has an energy of 0.48 eV, and a corner
atom with 10NN an energy of 0.25 eV. The atoms under
the next ledge with 12NN lose only their next-nearest
neighbors, and the excess energies are less than 0.04 eV.
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ing a step-pair interaction for two steps at short separa-
tions.

We begin with a 2X4 surface cell of the (1,1,99) vici-
nal, for which the ledge energy is seen to be very close to
the isolated step energy Xo (see Fig. 3). The atoms locat-
ed on one terrace were removed column by column (along
the step direction) and attached to the opposite surface,
creating a (1, 1,2m + 1) facet, with m varying from 1 to
12 on both sides of the slab. The pair interaction energy

m +1/2) s g1ven by

k(m+)y2)=(E(1 1 2m+1) E(l 1 99) )/(2Ly ) (5)

FIG. 4. The side view of the (1,1,n) surfaces. Here S denotes
a ledge atom, T a terrace atom, C a corner atom, and B a bulk-
like atom. Note the numbering of the layers on stepped sur-
faces. The flat surface coordinates are defined such that the
[110]direction is the x axis and [001] is the z axis. The stepped
surface coordinates can be obtained by rotating the x and z axes
by a tilt angle 8.

vicinal surfaces which have large step separations, a
nearest-neighbor pair interaction between steps is
equivalent to a ledge-ledge interaction since the long-
range step interaction over two terrace widths is negligi-
ble. However, as the step separation is reduced, we are
no longer in the elastic limit and the ledge-ledge interac-
tion is no longer equivalent to a nearest-neighbor step-
pair interaction. We discuss below a method for extract-

where E(» 2 +, )
is the total energy of the system consist-

ing of the (1,1,2m +1) facets, E(t ] 99) the total energy of
the clean surface, L~ the length along the step direction
in the unit cell, and the factor of 2 taking into account
the two free surfaces.

Figure 6 shows the calculated step-pair interaction
versus the microfacet index 2m +1 for the (1, 1,2m +1)
facets, with m = 1-12. The curve converges to the
ledge-ledge interaction energy curve in Fig. 3 for m ~ 13.
On comparing, one can distinguish the step-pair interac-
tion from the ledge-ledge interactions. Again, the step-
pair interaction also has the repulsive elastic interaction,
just like the ledge-ledge interaction.

C. Kink-formation energy

The kink-formation energy was calculated on (1,1,5)
and (1,1,29) vicinals with 4 X 12 and 2 X 12 surface super-
cells, respectively, in order to make a comparison of the
effect of step spacing. The kinks were created without
changing the total number of atoms by removing six
atoms along one step ledge of the upper surface and at-
taching them to one step edge of the lower surface so that
the system contains four kinks. The calculated kink-
formation energy for (1,1,5) is 1570 K (0.1353 eV), while
that for (1,1,29) is 1587 K (0.1368 eV). The effect of in-
creasing the terrace width is thus to increase slightly the
kink-formation energy. Our calculated result can be
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FIG. 5. The excess energy distributions for atoms on stepped
surfaces where the layer number and the atom label S, T, C, and
B are as in Fig. 4.

FICx. 6. Step-pair interactions vs 2m +1 of (1,1,2m +1)
facets, with m =1—12. The curve converges to the ledge-ledge
interaction as m ~ 13. The ledge-ledge interaction (subtracting
the isolate step energy from Fig. 3) is also shown for cornpar-
ison.



ENERGETICS OF STEPPED Cu SURFACES

compared with the kink-formation energy 1412 K for
(1,1,5) by Loisel et al. ' The experimental data on
Cu(100) suggest a much lower kink-formation energy of
1165 K.'

The multiple-kink energy E(n), with a length of n
kinked atoms, was calculated on (1,1,29). The results can
be well fitted by

E(n) =nek+2e, ,

with the kink-formation energy ek of 0.159 eV (1845 K)
and a corner energy e, of —11.3 meV (

—131 K). The
corner energy introduced can be thought of as corre-
sponding to the additional attractive energy due to the
existence of two corners of a kink. The kink-formation
energy ek is seen to be close to the isolated ledge energy
A,o in Eq. (4). This is easy to understand since the ledge
and kink atoms have the same coordination numbers, ex-
cept for those atoms which are located at the corners of a
multiple-length kink.

D. Activation energies of adatoms
diffusing on stepped surfaces

Pig~

BIQI
PIQI

atoms of lower terrace

(a)

) atoms of lower terrace

atoms of upper terrace

atoms of upper terrace

II ~

PIgf~~
PIQIGI
PIQIQl
PIQIQ'
PIQIQI

TABLE II. Activation energies of adatoms diffusing on a
(1,1,7) surface. Energies are in eV.

On the terrace
Along the step edge
Away from step edge onto terrace
From terrace to step edge
From kink site along step edge
From step edge to a kink site
From kink edge onto terrace
Vacancy in a step
Jump from terrace into descending step
Exchange with an edge atom

0.49
0.26
0.83
0.46
0.53
0.23
0.56
0.49
0.79
0.50

All the calculated activation energies Ed were obtained
for the (1,1,7) surface. The results are displayed in Table
II for the different cases of adatoms or kinked atoms
diffusing on the surface. For an adatom diffusing be-
tween two adjacent terrace sites, the calculated Ed is 0.49
eV, which is to be compared with the results using the
two different sets of EAM potentials on a clean Cu(100)
surface, a value of 0.38 eV with a set developed by
Adams, Foiles, and Wolfer (AFW) (Ref. 24), and a value
of 0.53 eV obtained by Voter and Chen (VC).

The 0.26-eV diffusion barrier of an adatom along the
step direction, as shown in Fig. 7(a), can be compared
with that of 0.26 (AFW) and 0.28 eV (VC) on a Cu(1, 1,3)
surface. The evaporation of an atom incorporating at
the step edge onto a free terrace site needs to overcome a
barrier of 0.83 eV, and an inverse process meets a barrier
of only 0.46 eV. On the other hand, an adatom created
from a kink site along a step edge has an activation ener-

gy of 0.53 eV, and an inverse process meets a barrier of
0.23 eV. The two processes are schematically shown in
Fig. 7(b). In addition, a vacancy in a step diffusing along
the step direction [see Fig. 7(e)] has an energy barrier of
0.49 eV. From these values, we can conclude that an

FIG. 7. Top views of the possible adatom diffusion paths on
the (1,1,7) surface. Arrows in (a)—(f) indicate adatom jump
directions. The adatom diffusions are displayed in (a) along the
step direction; (b) away from the step edge onto the terrace and
from the kink site along the step edge; (c) and (d) from the kink
edge onto the terrace; (e) the vacancy along the step direction;
and (f) the jump from the terrace into the descending step and
the exchange with an edge atom.

adatorn near a step edge has much higher mobility along
the step direction than that of a motion normal to the
step. The relative magnitudes of the activation energies
of adatoms moving along and normal to the step direc-
tion in our calculations is in accord with those used to in-
terpret the frizzled step behavior in the recent STM ex-
perirnents. ' ' "

The evaporation barrier for an adatom from the step
edge onto the terrace sites may be lowered as the environ-
ment of the adatorn changes. As given in Table II and
shown in Fig. 7(c), an adatom at the end of a multiple-
length kink site, or, as in Fig. 7(d), one in front of a kink
site with 5NN, experiences a barrier of 0.56 eV when it
diffuses onto a terrace site indicated by the arrow in Fig.
7(c) or 7(d). It can be expected from this significant
reduction of the barriers that, as the number of kinks in-
creases with increasing substrate temperature, more
mobile adatoms along the step may be evaporated onto
the terrace from the vicinity of the outermost ends of the
kinks.

The surface adatom diffusion may be completed with
an exchange process, in which the adatom replaces a sub-
strate atom along the [100] direction, rather than a sim-
ple bridge-site jump along [110],which was recently pro-
posed by Feibelman for fcc(100) and observed in experi-
ments. For Cu self-diffusion on (100) with this mecha-
nism, activation barriers of 0.72 (AFW) and 0.79 eV (VC)
were obtained, which is much higher than that of a sim-
ple bridge-jump model. Our calculations showed that
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Ed" is even higher than 1.0 eV on the (1,1,7) terrace. It
seems unlikely from our calculations that the exchange
diffusion is favorable on these terrace sites.

The exchange process is energetically preferable, how-
ever, for an adatom jumping into a descending step, as
can be read from Table II. In a simple bridge-jurnp
diffusion, where the adatom diffusion direction is
displayed in the upper part of Fig. 7(f), the activation bar-
rier is about 0.79 eV. However, in an exchange process,
where the adatom exchanges place with an adjacent atom
in the step edge and eventually that edge atom becomes
an adatom along the step, as shown in the lower part of
Fig. 7(P, the barrier was calculated to be 0.5 eV, compa-
rable to that of an adatom diffusing on the free surface.
This result is very intriguing, as the step edge was be-
lieved to be a strong repulsive potential barrier prevent-
ing the adatom from moving down to the next terrace.
Our calculated result confirms the possible potential
curve for an adatom moving toward a step with an ex-
change process proposed by Wang and Ehrlich in a re-
cent field-ion-emission experiment.

K. Surface relaxations
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FIG. 8. Percentage relaxations of (1,1,3), (1,1,5), (1,1,7), and
(1,1,9).

We have also obtained the values of the interlayer re-
laxations on stepped surfaces. The outmost surface layer
is labeled as the first layer and, as described in Fig. 4, the
layer number increases as one goes into the bulk. Note
that for a stepped surface, interlayer spacing as defined
above is a small quantity, decreasing in magnitude with
increasing terrace width. The percentage interlayer re-
laxation d;;+, =100[(z —z,'+ &

) —zo]/zo is a measure of
the deviation of the interlayer distance (z —z,.'+, ) from
the unrelaxed bulk value of zo=sinO. Figures 8 and 9
illustrate the percentage relaxations d;;+, of
Cu(1, 1,2m +1), with m =1—8. From these figures, we
see that the maximum relaxations occur at the vicinity of
the step-edge positions. The following remarks can also
be deduced from the figures:

(a) The inward relaxation of the outermost surface
planes holds for all vicinal surfaces. This general features
has been well established by experiments and by
theoretical calculations, ' ' ' ' and it may be argued

40—
(1,1,11)

~ (1,1,13)
(1,1, 15)

, (1,1, 1V)

10—

x .
&x~x x

—10—

0',

I I I I
[

I I I I
]

I I I I
[

I I I I
[

I I I I
(

1 I I I

]
I I 1 I

)
I I I I

[
I I I I

]
1 I I I

]
I I I 1

)
I

0 5 10 15 20 25 30 35 40 45 50 55

Layer Number i

FIG. 9. Percentage relaxations of (1,1,11), (1,1,13), (1,1,15),
and (1,1,17).

qualitatively that an atom in the first layer seeks an envi-
ronrnent of higher electron densities in order to gain a
higher binding energy, and as a consequence, the distance
between the first and second layers is shortened.

(b) The magnitude and range of the oscillatory relaxa-
tions near the free surfaces appear to increase with in-
creasing size of the planar unit cell, i.e., increasing the
number m for the (1,1,2m +1) surfaces. Such a tenden-
cy has been realized both experimentally ' and theoreti-
cally. ' ' This observation does not mean that the dis-
placements of surface atoms are larger for more rough
surfaces; rather that they are an artifact of the definition
of d;, + &. This may be illustrated by the following con-
sideration. Suppose that two nearest-neighbor atoms lo-
cated along a terrace belong to two adjacent atomic lay-
ers as defined in Fig. 4. With the full relaxation of all
atoms of the system, the relative displacement of these
two atoms is measured in the Hat surface coordinates
(xyz) of Fig. 4 to be 5r, , +, =(1+Ex, , +, )i+6.z, ;+,k
(where by, ;+&=0 due to the symmetry along the step
direction). The projection of this displacement along the
( 1, 1,2m + 1 ) surface normal, as measured in the surface
coordinates (x'y'z') (see also Fig. 4), is

bz, ', +, =(I+Ex, , +, )sinO+bz, , +,cos8 . (7)

which is proportional to the number (2m +1). This sim-
ple relation is valid for all 5d;;+&, as can be seen from
Figs. 8 and 9, in which the relaxation values of each cor-
responding site (edge atoms S, terrace atoms T, corner
atoms C, and bulk atoms 8 in Fig. 4) do hold straight
lines, and each of their slopes presents a displacement of
adjacent two layers along the z-[001] direction. The per-
fect linear relation of each corresponding relaxation be-
tween (1,1,2m +1) vicinal surfaces implies that the dis-
placements of each atomic layer in one vicinal remain al-
most unchanged in the corresponding sites on an another
vicinal surface.

Then the percentage of the displacement 5d defined in the
above can be written as

(2m + 1)bz;;+,
5d;;+, =bx;;+ &+
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(c) The relaxations for a given vicinal (1, 1,2m+1)
away from the surface show an oscillatory character with
a periodicity of m + 1 layers and an exponential damping
in magnitudes. Such an asymptotic behavior was studied
theoretically some time ago, ' and was shown to be re-
lated to the bulk phonon dispersion in the complex
wave-vector plane. Our results give a quantitative
confirmation of the earlier predictions on realistic metal
surfaces. Numbers taken from Figs. 8 and 9 for inter-
layer relaxation follow the exponential law

5d&(m+ t)+; &(m+ t ~+;+,=5d;;+ iexp[ —K;(1—1)],
where l =1,2, . .. indicates the periodicity of the relaxa-
tion. For the maximum relaxations at sites l (m + 1)
(l = 1,2, . .. ), the values of X were found to be in a range
of 0.47-0.40 for m =1—8. The slight m dependence of
K on m can be understood from Eq. (8). In the Appen-
dix, a simple force-constant model is given for the
analysis of surface relaxations. The main features of the
above numerical results for the relaxations can be well
reproduced.

These m + 1 periodicity and exponential decaying
properties of the multilayer relaxations call for future ex-
perimental confirmation.

IV. DISCUSSIONS

As mentioned in the Introduction, the main motivation
of this work was to obtain information about the step-
step interaction on stepped surfaces. The results given in
Sec. III show that the static interaction between steps at
different separations corresponds to the elastic repulsion,
in agreement with the elasticity theory. It is clear that
this elastic interaction cannot explain the attractive
forces between steps at intermediate atomic distances, as
found in STM experiments. " The possible sources of
the attractive forces may be due to other types of interac-
tion, ' such as an indirect electron interaction between
steps. For adatoms on metal surfaces, these interaction
energies were evaluated to be much smaller than the elas-
tic energy. On stepped surfaces, all the above-mentioned
interactions between steps are parts of the free energy.
Another significant contribution to the lattice free energy
is the phonon energy, which has not been considered in
the existing literature on step interactions, to our
knowledge. We would like to suggest that the inclusion
of phonon energy may be very crucial to the understand-
ing of the step free energy and hence surface morphology.
This point may be inferred from the following considera-
tions: (1) the magnitude of the step-step interaction ener-

gy is several meV, which is comparable to the phonon en-
ergy of atoms. Therefore quantum correction from zero-
point motion should be included in the free energy of the
system; and (2) presence of step phonon will lower the
surface-phonon excess energies as compared to those of a
flat surface. Since the (1,1,n) vicinal surfaces with lower
n have the higher step densities, they are expected to pos-
sess lower vibrational excess energies. An explicit calcu-
lation taking into account the phonon contribution to the
stepped surface free energy is underway.

The necessity of using a many-body potential is essen-

tial in obtaining the surface excess energies. This point is
evidenced in the kink-formation energy calculation for
which an EAM value of 1570 K is comparable to the ex-
perimental' one of 1165 K, whereas the bond-breaking
model gives a value of 3400 K. With EAM potentials,
we have also obtained the step-step elastic interactions, in
contrast to a negative value calculated for Cu(1, 1,5) from
another semiempirical many-body potential. '

It should be emphasized that the ledge-ledge interac-
tion, being, in general, a sum of all pair interactions of
steps deviates from a single-step-pair interaction energy
for short ledge separations of vicinal surfaces. We have
calculated the step-pair interaction in order to identify
this difference. The step-pair interaction is very impor-
tant in obtaining the stepped surface morphology. It is
our hope that these calculated interaction functions can
be used in further thermodynamic simulations of stepped
Cu surfaces.

As a final point, we should mention that the activation
energies calculated in Table II, for adatoms diffusing on
the stepped and kinked surfaces, are in reasonable agree-
ment with other EAM-type computations. One interest-
ing result is that the exchange process may occur at the
step ledge as an adatom incorporates to the descending
step. On the other hand, the exchange diffusion is pre-
dicted to be of higher activation energy than that of a
simple bridge jump on the terrace. Our EAM result is in
disagreement with a recent effective-medium-theory
(EMT) calculation where the ordinarily used EMT po-
tential for Cu was corrected by including the one-electron
energy term. In the calculations of Ref. 39, a value of
0.22 eV for the exchange activation energy on Cu(100)
was obtained which is much lower than a bridge-jump
value 0.43 eV and is in excellent agreement with the ex-
perimental value of 0.28 eV. The discrepancy between
the corrected EMT result and the present one, as well
as other EAM results, implies that there are still some
inherent features of the present EAM version that are un-
able to reproduce some of the experimental phenomena,
such as exchange diffusion on Cu(100).

ACKNOWLEDGMENTS

We are grateful to M. S. Daw for supplying the pro-
gram code and H. Ibach for numerous helpful discus-
sions. Z.-J.T. thanks the Alexander von Humbolt Foun-
dation for financial support during his stay in the Institut
fiir Grenz' achenforschung und Vakuumphysik. The
work of T.S.R. was supported in part by the National Sci-
ence Foundation under Grant No. DMR9120440.

APPENDIX A: FORCE-CONSTANT MODEL
FOR SURFACE RELAXATIONS

It was pointed out that the multilayer relaxation is
related to the zero-frequency solution in the complex
phonon structure. It is our purpose here to extend the
discussion of the elastic vibrations of crystal surfaces to
the present system. To simplify the problem, we suppose
that the planes of atoms are displaced as a whole parallel
or perpendicular to the surface normal and that all planes
of atoms are identical. The displacement of the plane s
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TABLE III. Zero roots of photon frequencies with complex
wave vectors for (1,1,2m + 1), with m = 1—8 in a nearest-
neighbor force-constant model.

30 urface

act

(1 1 3)
(1 1 5)
(1 17)

(1 19)

(1 1 11)

(1 1 13)

(1 1 15)

(117)

3.142+ i0.603
2.172+ i0.397
1.666+ i0.241
3.142+ i0.410
1.338+i0. 153
2.585+ i0.322
1.111+i0. 104
2.187+i0.229
3.142+ i0.322
0.948+ i0.074
1.882+ i0. 164
2.751+i0.269
0.826+ i0.056
1.645+ i0. 121
2.436+ i0.206
3.142+ i0.269
0.731+i 0.044
1.459+ i0.093
2.174+i0. 156
2.840+ i0.232

del
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two atoms evaluated at their equilibrium positions is as
follows:

C, =Psin 8, (A4a)

FIG. 10. The plot of the asymptotic relaxations (model) of
(1,1,15) from a force-constant model. The numerical results (ex-
act) from the EAM calculation are also shown for comparison.

from its bulk position is described by a single coordinate
u, . The elastic energy of the system can then be written
as

C =—[1+cos 8—+2sin(28)],

C +, =—[1+cos 8+&2 sin(28) ] .

(A4b)

(A4c)

E= —QF, u, + —,
' g C, u, u

s p

(A 1) The asymptotic behavior u, corresponds to a combina-
tion of bulk zero frequencies in Eq. (Al), and is written as

where F, is the total force on plane s and C, is the planar
force constant between planes s and p. The relation be-
tween E, and C, 's is of the form of Hooke's law. '

F, = g C, (u, +„u, ) . — (A2)

The stable positions u, are thus given by the above equa-
tion. F, are nonzero in the vicinity of the surface, and
vanish away from the source, and consequently C, 's tend
to C~, the bulk planar force constants. Therefore the
asymptotic form of Eq. (A2) away from the surface is just
related to the solutions of the zero vibrational frequency,
with complex wave vectors along the surface normal
which describe the reconstruction or relaxation of the
surface.

If we make the further approximation that interactions
only among nearest-neighbor atoms are important, the
bulk phonon dispersion in the (1, 1,2m +1) surface coor-
dination system reads

M
co =C, (1—cosa) +C [1—cos(m a) ]

+C +, Ii —cos[(m+1)a]], (A3)

where M is the mass of atoms and a=(k~+iK)a„with
the perpendicular complex wave vector (ki+iK) and a,
the bulk planar distance along the surface direction. The
planar force constants C ( =C, ,+, with p ~ 1) are given
in terms of only one atomic force constant p, and the
second derivative of the two-body interaction between

u, = g C N exp[ —(s —1)K, ]cos(skia, +P ),
co,.(a) =0

(A5)

where C is the coefficient to be determined and X„ is
I

the normalization factor of an eigenvector. Solving for
the zero roots of Eq. (A3) for the (1,1,3) surface, we ob-
tain the displacements of the form of Eq. (7):

u, =uo( —1)'exp[ —(s —1)K], (A6)

where K =cosh '(1+3C, /2C2), with C, and Cz given
in Eq. (A4). The coefficient uo can be determined by
matching the value to the force acting on the first layer
through Eq. (A2). In the (1,1,3) situation, K =0.60 is
evaluated by Eq. (A6), which can be compared to the nu-
merical calculated value of 0.47.

In Table III, we present the calculated roots of the zero
solutions of a in Eq. (A3) for the vicinal surface
(1,1,2m + 1), with m = 1 —8. As an example, we give the
results of (1,1,15) with four zero roots (see Table III) in
Fig. 10. It can be seen clearly that even without the
knowledge of atomic force constant p in solving Eq. (A3),
the main features started in Sec. III E for the relaxations
cam. be reproduced by the simple model above. Of course,
a quantitative evaluation of the relaxations needs to take
into account interaction with additional neighbors and
more accurate atomic potentials for improving the above
analytical model.



47 ENERGETICS OF STEPPED Cu SURFACES 9759

'Present address: Physics Department, Brock University, St.
Catharines, Ontario, Canada L2S 3A1.

C. Herring, Phys. Rev. 82, 87 (1951).
W. K. Burton, N. Cabrera, and F. C. Frank, Philos. Trans. R.

Soc. London 243A, 299 (1951).
For a review, see J. D. Weeks, in Ordering in Strongly Fluctuat-

ing Condensed Matter Systems, edited by T. Riste (Plenum,
New York, 1980), p. 293.

4J. Villian, D. R. Grempel, and J. Lapujoulade, J. Phys. F 15,
809 (1985).

N. Bartelt, T. L. Einstein, and E. D. Williams, Surf. Sci. Lett.
240, L591 (1990).

R. Kariotis and M. G. Lagally, Surf. Sci. 248, 295 (1991).
~X. S. Wang, J. L. Goldberg, N. C. Bartelt, T. L. Einstein, and

E. D. Williams, Phys. Rev. Lett. 65, 2430 (1990).
B. S. Swartzentruber, Y.-W. Mo, R. Kariotis, M. G. Lagally,

and M. B.Webb, Phys. Rev. Lett. 65, 1913 (1990).
J. Frohn, M. Giesen, M. Poensgen, J. F. Wolf, and H. Ibach,

Phys. Rev. Lett. 67, 3543 {1991).
M. Poensgen, J. F. Wolf, J. Frohn, M. Giesen, and H. Ibach,
Surf. Sci. (to be published).

' M. Giesen, J. Frohn, M. Poengsgen, J. F. Wolf, and H. Ibach,
J. Vac. Sci. Technol. (to be published).
J. Wintterlin, R. Schuster, D. J. Coulman, G. Ertl, and R. J.
Behm, J. Vac. Sci. Technol. B 9, 902 (1991).
T. W. Poon, S. Yip, P. S. Ho, and F. F. Abraham, Phys. Rev.
Lett. 65, 2161 (1990).
A. Bartolini, F. Ercolessi, and E. Tosatti, Phys. Rev. Lett. 63,
872 (1989).

B. Loisel, D. Gorse, V. Pontikis, and J. Lapujoulade, Surf. Sci.
221, 365 (1989).
M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984); S.
M. Foiles, M. I. Baskes, and M. S. Daw, ibid. 33, 7983
(1986).
R. Nelson, Master's thesis, University of Maryland, 1991.
This work reports studies on stepped Ag(111) surfaces.
W. K. Rilling, C. M. Gilmore, T. D. Andreadis, and J. A.
Spragne, Can. J. Phys. 68, 1035 (1990).
J. R. Smith and A. Banerjea, Phys. Rev. Lett. 59, 2451 (1987).
For more detail about the equivalent crystal theory, see J. R.
Smith and A. Banerjea, Phys. Rev. B 37, 10411 (1988); J. R.

Smith, T. Perry, A. Banerjea, J. Ferrante, and G. H. Bozzollo,
ibid. 44, 6444 (1991).
S. B. Sinnott, M. S. Stave, T. J. Racker, and A. E. DePristo,
Phys. Rev. B 44, 8927 (1991).

~(a) W. R. Tyson and W. A. Miller, Surf. Sci. 62, 267 (1977); (b)
H. Wawra, Z. Metallk. 66, 395 (1975);66, 492 (1975).
F. Fabre, D. Gorse, B. Salanon, and J. Lapujoulade, J. Phys.
(Paris) 48, 1017 (1987).
C. Liu, J. M. Cohen, J. B. Adams, and A. F. Voter, Surf. Sci.
253, 334 (1991)~

~4J. B.Adams, S. M. Foiles, and W. G. Wolfer, J. Mater. Res. 4,
102 (1989).

25A. F. Voter and S. P. Chen, in Characterization of Defects in
Materials, edited by R. W. Siegel, J. R. Weertman, and R.
Sinder, MRS Symposia Proceeding No. 82 (Materials
Research Society, Pittsburgh, 1987), p. 175.
P. J. Feibelman, Phys. Rev. Lett. 65, 729 (1990).
G. L. Kellogg and P. J. Feibelman, Phys. Rev. Lett. 64, 3134
(1990); C. L. Chen and T. T. Tsong, I',bid. 64, 3147 (1990); G.
L. Kellogg, Surf. Sci. 246, 31 (1991).
S. C. Wang and G. Erlich, Phys. Rev. Lett. 67, 2509 (1991).
P. R. Watson and K. A. R. Mitchell, Surf. Sci. 203, 323 (1988).
H. L. Daries and J. R. Noonan, Surf. Sci. 126, 245 {1983).
S. A. Lindgren, J. Wallden, J. Rundgren, and P. Westrin,
Phys. Rev. B 29, 576 (1984).
M. Copel, T. Gustafsson, W. R. Graham, and S. M. Yalisove,
Phys. Rev. B 33, 8110 (1986)~

33T. Ning, Q. Yu, and Y. Ye, Surf. Sci. 206, L857 (1988).
~D. Wolf, Surf. Sci. 226, 389 (1990).

35M. A. Van Hove, in The Nature of the Surface Chemical Bond,
edited by T. W. Rhodin and G. Ertl (North-Holland, Amster-
dam, 1979).
G. Allen and M. Lannoo, Surf. Sci. 40, 375 (1973); Phys.
Status Solidi B 74, 409 (1976).
G. Allen and M. Lannoo, Phys. Rev. B 37, 2678 (1988).

8P. Knipp, Phys. Rev. B 43, 6908 (1991).
L. Hansen, P. Stoltze, K. W. Jacobsen, and J. K. Ngfrskov,

Phys. Rev. B 44, 6523 (1991).
~ See Ref. 39, Note added in proof.

C. Kittel, Introduction to Solid State Physics, 5th ed. (Wiley,
New York, 1976).


