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Face-dependent Hamaker constants and surface melting or nonmelting of noncubic crystals
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Surface melting is strongly inAuenced by long-range dispersion forces which crucially control the
thickness l of the liquid layer that forms at the crystal surface, through a free-energy term of asymptotic
form V(I) =H/l . In isotropic crystals, the face-independent Hamaker constant H is usually calculated
by a well-known formula by Lifshitz et al. that relates dispersion forces to the optical conductivity of the
solid and the liquid. In this paper we generalize this result to anisotropic crystals specializing in uniaxial
crystal surfaces normal or parallel to the optical c axis, and to surfaces of orthorhombic biaxial crystals
normal to one principal axis. The main result is that the Hamaker constant becomes face dependent,
and may, in principle, even change sign from one face to another. Using experimental data for
frequency-dependent dielectric constants we have calculated Hamaker constants of the main faces for
some low-melting-point anisotropic metals, namely, a-Ga, P-Sn, and Cd. It is found that H is negative
and large for all faces of a-Ga, implying surface nonmelting. Values found for different faces of P-Sn are
moderately negative, and those for Cd are marginally positive. The search for surface nonmelting or
melting on these metals should be interesting in light of these results.

I. INTRODUCTION

Melting and freezing of crystals is an area of continu-
ing interest in condensed-matter physics. One particular-
ly interesting topic concerns the beginning of the melting
process at the crystal surface. It is well known that an
extremely thin liquid layer appears on many crystals
when the temperature is still a few degrees or tenths of a
degree below the melting point (TM ). In most cases the
thickness I of this layer grows sharply with increasing
temperature, and extrapolates to an infinite value l ~ ~
at T=TM (surface melting). In other cases, l remains
finite at T~ (blocked or incomplete surface melting), and
in still other cases no liquid layer appears at all and the
surface remains crystalline (surface nonmelting). Since
the liquid layer is bounded by two interfaces, the solid-
liquid interface and the liquid-vapor interface, one can at-
tribute nonmelting and blocked melting to binding, and
surface melting to unbinding, of the two interfaces. The
thermodynamical forces which the two interfaces exert
on one another act as an effective interface-interface po-
tential V(l). This effective potential consists of two con-
ceptually distinct parts. One is a short-range part VsR,
which is generally oscillatory, with minima correspond-
ing to "monatomic layers, " and which decays exponen-
tially to zero for large l. This short-range effective in-
teraction between the interfaces is related directly to
short-range interatomic potentials (which have a hard
core as well as an attractive well) plus additional thermal
effects. The other part is a long-range interface-interface
potential, which in the nonretarded limit has the asymp-
totic form VLR=H/l, and is due to dispersion elec-
tromagnetic forces. The constant H is the so-called

Hamaker constant (sometimes also defined as
H'=12mH), ' and will .form the main concern of this pa-
per.

Surface melting, i.e., interface unbinding, takes place
whenever the minima of VsR(l) are not too deep, and, at
the same time, long-range forces are repulsive, i.e., H )0.
Conversely, interface binding, resulting in incomplete
melting or nonmelting, may be due either to (a) trapping
in the deep minima of VsR(l) or to (b) attractive long-
range forces H & 0.

The Hamaker constant H tends to be generally posi-
tive, so that the nonmelting observed on ~ special close-
packed surfaces of metals such as Pb, Au, or Al (whose
less packed surfaces are observed instead to melt), is due
strictly to short-range forces. On the other hand, the
Hamaker constant can occasionally be negative, typically
when the liquid is denser than the solid, or a better con-
ductor than the solid. If that happens for a cubic crystal,
it necessarily implies nonmelting or blocked melting for
all faces of that crystal. This was predicted in Ref. 2 for
semiconductors such as Cxe which contract and turn me-
tallic upon melting.

However, many interesting systems in nature are non-
cubic, including some low-melting-point metals such as
Hg, a-Ga, P-Sn, and Cd as well as vast classes of molecu-
lar crystals. What about them? Can one generalize the
existing formulas for cubic crystals? Will the Hamaker
constant remain a scalar property, as it is in the cubic
case, or will it become face dependent? And, in that case,
could we find a situation where H )0 for one face and
H &0 for another face of the same crystal'? It would be
interesting to find a case where that occurs, since then
one face would melt away but the other would not, creat-
ing unexpected geometries.
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The purpose of this paper is precisely to present an
answer to these questions. In addition, we shall attempt
to estimate H for the main faces of a-Ga, P-Sn, and Cd
based on the optical data found in the literature. The
bottom line is that, while H does vary from face to face, it
does not change sufficiently to imply a reversal of
behavior among different faces of these few crystals. This
leaves open the possibility that this could happen else-
where. One of the aims of this paper is to suggest looking
experimentally for this kind of situation.

Dispersion forces arise from a modification of
quantum-mechanical zero-point electromagnetic Auctua-
tions caused by the presence of two or more different
media. A simple calculation of these forces can be done
using the well-known theory of Lifshitz and co-
workers, ' whose input is the frequency-dependent
dielectric functions e(co) of the solid and liquid, both as-
sumed to be isotropic. Based on existing optical data,
this calculation was carried out, for example, by Chen,
Levi, and Tosatti for some cubic crystals (Pb, Al, Au,
Ge). We shall extend the Lifshitz theory to treat a liquid
layer on top of a crystal which has different dielectric
constants [i.e., components of the dielectric tensor e,j(co) ]
along different principal axes. We will suppose the solid
surface to be normal or parallel to the optical axis for
uniaxial crystals, and to contain two principal axes in the
case of biaxial orthorhombic crystals (such as a-Ga)
whose principal axes remain fixed in space as the frequen-
cy varies. More complicated geometries are not amen-
able to so simple a solution, and will not be discussed
here.

This paper is organized as follows. In Sec. II, we gen-
eralize the Lifshitz formula using the formalism of
thermal Green functions to treat electromagnetic Auctua-
tions in anisotropic media. Equation (32) in this section
is our main result. In Sec. III, we describe a crude inter-
polation procedure (the same as in Ref. 2) used to fit ex-
perimental data of dielectric constants for cz-Ga, Cd, and
P-Sn, and in Sec. IV we discuss the results obtained for
the Hamaker constant of different faces of these crystals,
using these dielectric functions and Eq. (36). A short dis-
cussion in Sec. V concludes the paper.

II. DISPERSION FORCES IN ANISOTROPIC SOLIDS

We consider two media 2 and B occupying the half-
spaces x & 0 and x ) /. Between 3 and B there is a third
medium C (0(x (l). When the thickness l is much
greater than the interatomic distances, macroscopic elec-
trodynamics can be used to calculate the force between
the two interfaces. The origin of this force is the same as
that giving rise to the Van der Waals force between two
noble-gas atoms. Fluctuations in the electromagnetic
field of long wavelength give rise to a nonzero Maxwell
stress tensor in all points of the interface among media B
and C. We will compute the Maxwell stress tensor, re-
stricting ourselves to the case where the thickness / is
much smaller than the wavelength of the electromagnetic
radiation which characterizes absorption spectra of the
media. The electromagnetic properties of different media
are described by their dielectric tensor, and we suppose

that A is an anisotropic solid, B is a vapor (taken to have
e = I-like vacuum), and C is an isotropic liquid.

Electromagnetic fluctuations in the media can be de-
scribed in terms of thermal Green functions:

D,"(r„7„r2,~2) = —( T,( A,.(r„r, ) AJ(r2, r2)) ),
where ( ) is the quantum thermal average in a canonical
ensemble with temperature I/P, A;(r, r) is the ith com-
ponent of the vector potential, and dependence on the
imaginary time ~ is obtained in the usual way from the
corresponding Schrodinger operator:

A;(r, r)=e ' "A.(r)e (2)

where H is the Hamiltonian of the medium plus elec-
tromagnetic field. We choose a radiation gauge where
the scalar potential is zero, as appropriate for a charge-
free problem. D; depends only on the difference ~2 —

~&,

and in the range fiP r&
—r, fiP ca—n be expanded in a

Fourier series over the Matsubara frequencies:

1 + ig (Tl T2)
D~J(r) r2 &2 &r )= y DJ.(g„,r], rp)e

n = —ao

(3)

where $„=2mn/fil3. . In terms of these Fourier corn-
ponents of D;, we can write the xx component of
Maxwell's stress tensor at an arbitrary point r = (l,y, z) of
the interface between media B and C: '

+DH+DH DH ] (4)

H
ik ~isl ~ktm

~ p lm
ax, a

where c; k is the completely antisymrnetric Ricci tensor.
Thermal Green functions obey a set of differential

equations that can be obtained using the relationship be-
tween the thermal Green function and the corresponding
retarded function

D;r, (g„r),r, ) =Dg(r lg, l, r), r, ), (6)

plus the fact that the retarded Green function is propor-
tional to the generalized susceptibility which relates, in
linear theory, the current to the induced potential field.
We obtain

1
2;(co,r) = — D r, (co, r, r')j &(co,r')d r' .

Ac

Writing Maxwell equations for A;, we obtain a set of
equations for D;k and an equivalent set for D;k ..

where all D are calculated at r, =r2=(l, y, z) and at the
frequency g„; the quantities D and D can be obtained
from D,-k by

Di~r = —O'D r
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a ~jl~+ ", 8;~(~ lg„ l, r ) D&& (g„,r, r, )

= —4M5;& 5( r —r, ) . (8)

use boundary conditions to match solutions at the inter-
faces. In order to solve Eq. (8), we use Fourier trans-
forms of D,.I, in the y and z directions, where the system is
homogeneous, and calculate the functions which enter in
the Maxwell stress tensor as

0

0

0

s»(~)
0

0

The dielectric tensor depends on r7 but is constant inside
media 3, B, and C. We suppose that the surface of medi-
um 3 is perpendicular to a principal axis so we can write

E„„(co) 0

d k
D/, (g„,r, r)= J D7, (g„,k, k„x,x) .

(2~)
(10)

It is convenient to transform to a new reference system
chosen such that the y axis is parallel to the k direction.
The dielectric tensor c obtained by rotating around the x
axis by an angle 8,

while in the isotropic media B and C, c is proportional to
the unit tensor. This choice of c fixes Cartesian axes to
coincide with the principal axes of crystal A. We have to
solve problem (8) separately in the three regions and then

k k,cosB=, sin6=, =Qk +k

is of the form

0

0 E cos 8+E„sin 8 (E„—e» )sin8 cos8

0 (c,„—e )sin8cos8 E ~sin 8+E„cos 8

cx 0 0
t0 Cyy Cyz

~yz ~zz

(12)

and k=(q, 0). Using this expression, we can write explic-
itly Eq. (8) in medium A:

4ie

e, Dy ~4e
(15)

Wxx

d
yX

lg
~ dWxx

lg
xz 2 d yz

Wxx

2
4 2» 2 2» 2 2

WA WA Wxx +Wzz + Wxx Wzz
~xx XX c

f2

w =0

(16)

Substituting in Eq. (13), we obtain a linear homogeneous
problem, and the condition of the nonzero solution pro-
duces the relation

g2

2 yz yyc
d 2+Wzz Dzy 0

dX

The solutions of this biquadratic equation are both posi-
tive:

' w'+w'1 ~y
+ 2 xx zz

XX

u'xx d
Dyz +

2 Cyy Dyz +
2 Eryz Dzz 0 7

Wxx dX c c
+—1

2 ~xx

~t
~v)' 2 2 4k 3'~ 2

Wxx Wzz +
2 Wxx

&XX

1/2

(17)

2
2 ~yzDyz+ 2

+ zz zz
C dX

where we have defined

yielding two positive values w and w+. The general
solution for A can be written in the form

W+ X W X
D =A&e +A2e

2 = 2
Wxx & + 2&xx 7

c
p2

W2 q2+ & t

C

(14)

D =A3e + +A4e

D-=~se + +~6e

Dy, = A7e + + A8e

(18)

This is now a linear set of di6'erential equations with con-
stant coefficients. We look for a solution with exponen-
tial decay in the region x & 0, that is,

Clearly, only four of the coe%cients are independent be-
cause they are the solutions of the homogeneous problem.
The relationship between them is
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c,235= XX

+ yy 17
Wxx

(19)

of (g /c )E„we can write

g p where p QQ1,
C

(24)

cx 27' tt)c Ix X1
zz 1

C

2
M X 27Tflc Wc

Dyy C3 e ' + C4 e ' —
2

e

(20)

where, in analogy with Eqs. (14), w, =q +g /c E, . In
medium B there is no inhomogeneous term, and we have
to consider only solutions of the homogeneous system
which decay exponentially for x ~+ ~:

—
tv& (x —l )

D» =B1e
wg (x —I)

vy

(21)

E', Az 8=(w —w„)A46 .
C

The linear problem (13) is also valid in media 8 and C,
with cyz 0 and cxx cyy czz Eg or Ec, which in our
case is 1. In medium C, we have to consider a1so the in-
homogeneous term on the right side of Eq. (8), because
we want to calculate the Maxwell tensor in that region.
In this case, equations containing Dyy and D» do not de-
pend on Dy, and D,y, and we can look for a solution
which is the sum of solutions of the homogeneous system
and of a particular solution of the complete problem:

an analogous relation for w x and w„. If we solve this
equation for q (which is contained in w, ), and we insert
the resulting expression into Eq. (19), we obtain, in the
limit ofp &&1,

' 1/2

(25)

and A2= 33=A5= 38=0. This shows that in this lim-
it Dzz and Dyy are independent from Dy, and Dzy . In this
way we can solve the set for the coefficient exactly as in
the isotropic case. Inserting the values of the coefficients
into Eq. (20), we obtain an expression of D;J which
diverges for x =x1. This divergence takes place at short
wavelengths and is due to the fact that the present mac-
roscopic theory cannot be applied to wavelengths compa-
rable with atomic dimensions. The divergent term is
therefore naturally cut off at atomic scale. However, this
term gives no contribution to the Maxwell stress tensor,
and for this reason we can eliminate it simply by sub-
tracting from D;J the divergent part D;z, which is also
present in vacuum and can be calculated in the limit
cz =cz =1. The final solution is for Dyy..

In order to evaluate the unknown coefficients, we use
boundary conditions at the interfaces between the three
media. These matching conditions can be obtained from
the differential set (8) by integrating over a small volume
around the surface. They are analogous to the usual con-
ditions for continuity of the tangential component of the
electric field, and for the normal component of electric
induction. We have to require continuity of

2(x 1

Dyy coshwc(x x I )
1

where

2mhw, c
CX1

=
$2s

(26)

(27)

zz~ yy~

~xx d
2 dZ yy

XX

(22) 2N l6,=1—e

~c . XX+
2 LD+

Wxx

Ec 1

W

(28)

q &) c.
C

(23)

for all frequencies of interest. If we measure w, in units

In this general form we consider also the conditions for
Dyz and Dzy and we obtain two 8 X 8 sets where the two
off-diagonal 4X4 matrices have almost all zero elements.
However, here we are interested only in the solutions for
the case in which the wavelength of the fluctuations
which give rise to a nonzero Maxwell stress tensor are
much longer than the distance between the two surfaces.
In this case, we can simplify the set to obtain two 4X4
subsets that are completely separated. A typical case for
the validity of this approximation is the surface of a met-
al whose absorption peaks are in the infrared or visible
range of the spectrum, while the thickness of the liquid
layer can be in the range between 10 and 100 A. In this
particular limit, we can approximate w„w x, w» using
the fact that

&c &XX
W+

Wxx Wg

and, for D„,

2(xD„= coshw, (x —x
& ), (29)

where

(30)

z~ ~(w„+wc)(w~+wc)5=1—e
( wzz wc )( wg —wc )

(31)

Using these expressions we can calculate D;k and D;k,
to be inserted into the Maxwell stress tensor. In the limit
of long wavelengths, the term arising from D„provides
no contribution. We finally obtain the force acting be-
tween the two interfaces AC and CB bounding the liquid
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layer in the form

F(1)= dg
dy [QE„„E~~(8)—e, ](1—c,, )

8~ 1 o —"~ [QE E' (8)+e, ](l+e, )

dy [Qe„E'~(8)—E, ](1—c., )H= dg
16 0 2m [Q r (y)+ ](1+ )

(36)

(32)

The dependence of E' (8) is derived from Eq. (12),
which defines this quantity. Of course this final result is
similar to the Lifshitz formula, which is generalized in a
simple way to include the angular dependence of the ex-
traordinary ray dielectric function cyy.

In the case of a uniaxial solid with an optical c axis
perpendicular to the surface, c,„'„does not depend on the
angle 8, and the angular integration can be done immedi-
ately. The result in that case is that the isotropic dielec-
tric constant of the solid in the Lifshitz formula must
now be replaced by the geometric average of the dielectric
constants in the directions parallel and perpendicular to
the c axis. In a more general case, the effective solid
dielectric constant is an approximate average of the vari-
ous effective solid dielectric constants seen by each wave
contributing to the force and propagating at a given angle
with respect to the principal axes.

The physics of the above result can be interpreted easi-
ly in the case of a uniaxial crystal with the surface per-
pendicular to the optical axis. In this case, electromag-
netic waves propagating in the medium factorized in an
ordinary ray whose dispersion relation is E(co)= 1+tie& g (37)

we need analytical expressions for the principal dielectric
functions of the solid and the liquid, to be continued for
imaginary values of the frequency. However, what is
available in practice is, in the best case, a limited set of
numerical data, usually optical studies of the dielectric
functions. There are several published measurements of
these quantities in the range between 0 and 5 eV, which is
the range of frequency which gives the most important
contribution to Eq. (32). The numerical accuracy of the
result will surely be influenced by the lack of information
about the higher frequencies. However, in this work we
intend principally to explore sign, and to obtain an idea
of the difference of the Hamaker constant in different sur-
faces of the same solid. For this limited purpose, an in-
terpolation procedure is probably sufficient to account for
the high-frequency contribution. We have interpolated
these data with a Drude model. The details of the inter-
polation procedure are the same as in Ref. 2. Here we
summarize only the most important formulas. Each
component of the dielectric tensor of the solid is written
as a sum of oscillators:

2 2 CO

g~+gy 2 Eyy
—0

c

and an extraordinary ray,

2 2 CO

xx ~x + ~yy gy 2 ~xx ~yy
=0 .

c

(33)

(34)

Here co is the plasma frequency of the medium, co are
the frequencies of the interband transitions, each of oscil-
lator strength f fulfilling the f-sum rule

(38)

The ordinary ray turns out not to contribute to the
dispersion forces between the two interfaces. The only
contribution comes from the extraordinary ray, whose
effective dielectric function is precisely c c„, which
enters into Eq. (32).

Using Eq. (32) for the force between the two surfaces,
we readily obtain the Hamaker constant from the relation

F(I)= 3
(35)

It is clear from the above that, in general, the Hamaker
constant is now face dependent, unlike the cubic case.
We stress again that this simple result is possible only for
the simple geometry that is assumed. In particular, we
have not been able to obtain a simple result for a general
face orientation and an arbitrary low crystal symmetry.
In that case, the set Eq. (8) cannot be simply factorized in
4X4 independent subsets, and the solution for D," is
much more involved.

III. PROCEDURE FOR PRACTICAL CALCULATIONS

In order to compute numerically the Hamaker con-
stant

For a metal, there is a pole at co=0, and from the sum
over the poles we can extract the intraband absorption
Drude term

fintra 2

intra(
)

~P

CO 7 +LCD
(39)

From experimental optical data, we obtain the values of
the resonance frequencies cu, of their linewidths I
and of the oscillator strengths f . The value of the intra-
band relaxation time ~ can be obtained by fitting the stat-
ic conductivity in the form

Op
o (co) =

(1+co r )
(40)

We can then fix f'"'" from the relation

f intraite 2&pm (41)

We shall apply this procedure to orthorhombic a-Ga, to
tetragonal P-Sn, and to hexagonal Cd. Experimental data
for gallium are given near the melting point, so that they
can be used without modification. For cadmium and tin,
we have to extrapolate the room-temperature data to the
melting point. We do this by correcting only the value of
~ to fit the conductibility at the melting point. Liquid
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dielectric constants are also available, and are generally
fitted by a Drude formula with reasonable accuracy. We
therefore assume that in the liquid there is no strong in-
terband transition, and we estimate the plasma frequency
from the valence electron density, and the value of ~ from
the static conductivity.

100—

I I
I

I I I I
i

I I I I
/

I I I I

IV. HAMAKER CONSTANTS

A. Hamaker constants of gallium surfaces

a-Ga is an orthorhombic, biaxial crystal. ' Its princi-
pal axes are perpendicular to the faces of the elementary
cell. Dielectric functions of solid gallium have been mea-
sured in the range 0.5 —3 eV and are reported in Fig. 1

11

as points. Solid curves represent our interpolations.
There are three valence electrons, giving both a Drude-
like metallic contribution at low frequencies and covalent
interband peaks near 1.0 and (more importantly) 2 eV.
At room temperature, a-Ga has a density p =5.91
g/cm, corresponding to r, =2. 19 and to a bulk plasma3

frequency Rco =14.5 eV. Static resistivities of gallium
are p, =17.5 pQ cm (a axis), pz=8. 1 pQ cm (b axis),12

and p3=53. 3 pQcm (c axis). The great difFerences in
static resistivity along different directions reAect an even
greater diff'erence in the Drude oscillator strength f'"'"
in three directions. Fitting the optical data for co~0, we
obtained r, /Pi=12. 1 eV ', f'P'" =0.16 (a axis),
rz/A'=12. 7 eV ', f'2"""=0.33 (b axis), r3/6=13. 6 eV
and f3"'"=0.05 (c axis). This is in agreement with co-
valent bonds, making a-Ga nearly insulating in the c
direction.

In Table I, we report all the fitting parameters used to
interpolate experimental results. We have added small
fictitious absorption peaks at Rco =5.0—7.0—9.0 eV, not
really present in experimental data. These peaks are used
to fulfill the sum rule (38), otherwise violated. The exper-
imental data contain a certain margin of error, for which
we attempt to compensate with these terms. On the oth-
er hand, they clearly introduce a source of error in our
own calculation which we estimate to be of the order of

50—

0
0

hu(ev)
FIG. 1. A comparison between the imaginary part of the

dielectric functions of Ga from experimental data at room tem-
perature (triangles) and our fitted results (solid line), for the a, b,
and c axes. The dielectric function is composed of a Drude
peak at low frequencies and several peaks due to interband tran-
sition. The position of the peaks, their height and width are ob-
tained with the procedure described in the text. Frequencies are
expressed in eV.

10%. Liquid gallium has a density p I =6. 1 g/cm, 3%
larger than that of e-Ga. If we suppose that there remain
three electrons per atom which participate in optical
properties, this corresponds to a plasma frequency of
AQ = 14.7 eV. This hypothesis is experimentally
checked in Ref. 9, where in addition it is shown that the
optical properties of liquid gallium are entirely Drude-
like. Thus we assume f'"'"=1 and use static resistivity
pl=26 pQcm to estimate ~/%=1. 31 eV '. With these
data, we obtain three values of the Hamaker constant for
the three surfaces perpendicular to each principal axis:

TABLE I. Parameters used to fit a-, b , and c-axis dielec-tric constants of gallium. g, 1,and f
are defined in Eq. {37).

a axis
fin) (eV)
A'I (eV)

f

m=1

0.9
0.3
0.02

m =2

1.1
0.35
0.01

m =3

1.5
1.1
0.08

2.0
1.2
0.05

m=5

6.0
4.0
0.22

7.0
4.0
0.24

m =7

9.0
4.0
0.24

b axis
A'co (eV)
A'I (eV)

f
0.8
1.2
0.05

2.0
1.5
0.07

2.6
2.0
0.01

6.0
2.5
0.1

7.0
3.0
0.12

9.0
4.0
0.32

c axis
(eV)

fiI (eV)
f

0.4
2.5
0.02

0.6
1.3
0.01

1 ' 1

1.25
0.02

2.0
1.1
0.05

6.0
5.0
0.2

7.0
5.0
0.27

9.0
4.0
0.28
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(100)) face (a axis):H= —2.7+0.2X10 ' J

(010)) face (b axis):H= —2. 5+0.2X10 ' J

(001) f) face (c axis):H= —3.0+0.2X10 ' J

In all directions we be obtain a negative value o
Hamaker constant and h', an t is requires nonmeltin or at
most blocked melting for (100), (010' an

a y a other faces) of a-Ga.

100—

B. Hamaker constants of tin surfaces
50—

0 I I I I I & & & I I

0 2

h~(ev)

FIG. 2. AA comparison between the imaginar ar
dielectric functions of Sn f '

a at r
'

ns o n rom experimental data at r
perature (triangles) and

a at room tem-
es an our fitted results (solid line), in direc-

tions parallel and perpendicular to the c axis.o e c axis. Frequencies are

(100),(010)faces:H = —0.38+0. 1 X 10 ~' J

(001) face:H= —0.45+0. 1X10 ' J

The difference of the two Hama
small s'

wo amaker constants is ver
, similar to our numerical error. The ne

indicates either bl k d
However th 1

r oc e surface meltin
'

g or nonmelting.
e va ue is one order of m

than that of a-Ga
of magnitude smaller

a o a-Ga and tendencies to nonm
b e k i f3 S. I h-- n. t s ould be interestin to

C. amaker constants of cad mrum surfaces

Cadmium is a uniaxial hexagonal crystal' '
h

valence electrons and
a wit two

ns and electronic structure (Kr) 4d '

Its density is p =8.64 cm
r 5s.

g cm, corresponding to r, =2.59
an to a plasma frequency of AQ =11.3 eV. The
c axis is normal to the hexa onalo e exagonal face of the elementary

e static resistivity' along th e c axis is p~~=8. 56

-Sn is a tetragonal uniaxial crystal'
'

h
electrons and

a wit four valence
s and electronic structure (Kr) 4d'

density p =7.31 /
r Ss 5p. Its

p —. gjcm corresponds to r, =2.2 and to a
plasma frequency of AQ =14 3 V. 'ca
perpendicular to the s u

e . The o tica
q are face of the element 11.

e static resistivity' at T=293 K
p 1 to the optical axis is p =14.3 0aralle

in the directionp, whe te
a irection it is p =9.85a t p~= . p~~ cm. Fitting optical

a a, or intraband arametp e ers we obtained r~~/Pi=6 0.
Dielectric constants have been re orted

th 05—55 V de and are shown in Fig. 2 alon with
our interpolation, described b the
II Cl 1 'bl ' '

portance of interband tran '-ear y visible is the im
ions at Wc' =1.3 eVeV and also in the range 3—5 eV, still

present at room tern eratur
is =505 K, and we need a dielectric constant at
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e melting point, so we leave ~'""'
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cal resistivity which at this tern e

p cm perpendicular to optical axis. At the meltin
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Pmr

and, with a resistivity p&=47 Qcman
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eV . With these parameters we finally ob-

TABLEBLE II. Parameters used to fit dielectric
11o e c axis while i is a directionion perpen icular to the c axis.

, and f are defined in Eq. (37)~ ~

m=1 m =2 m =7

//
axis

A'm (eV)
AI (eV)

f
0.6
0.5
0.01

1.13
0.55
0.09

1.6
0.7
0.09

2.2
1.5
0.12

3.0
2.0
0.1

5.0
2.0
0.08

l axis
A'co„(eV)
AI (eV)

0.9
0.4
0.02

1.0
0.4
0.01

1.2
0.43
0.05

1.6
0.6
0.07

2.2
1.5
0.08

4.0
2.0
0.14

5.5
2.0
0.17
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Thesee values are very small, and similar to our estimated
error. Therefore we cannot really predict whether sur-
face melting will be blocked or not. All we can conclude
in this case is that the effect of long-range forces is ex-
pected to be small, and Cd should constitute a good test
case for a system with essentially only short-range forces

50— V. DISCUSSION

0
0 2

h~(ev)

FIG. 3. A corncomparison between the imaginary part of the
dielectric functions of Cd from experim t l d txperimen a ata at room tem-
perature (triangles) and our 6tted results (solid line), in direc-
tions parallel and perpendicular to the c axis. Frerequencies are
expressed in eV.

p cm, while in the normal direction it is p~=6. 94Qcm
Q cm.p cm. Fitting the optical spectra reported in Ref. 15 at

low frequencies A&a=0. 5 eV, for intraband parameters we
obtained the values r /Pi=14. 4 eV ', f'"'"=0.58
r~(/iri=10. 43 eV ' f'"'"=0.65.

II

The experimental dielectric constant and the interpo-
lated curves are shown in Fig. 3 and th fitte ing parame-
ters are reported in Table III. The melting point of cad-

3
mium is TM =594 K, and at this temperature density is
p=8.4 g/cm, corresponding to fiQ =11.1 eV. Static
resistivities become p~i

= 18.37 pQ cm in the paralle1
direction and =1p~= 5.47 pQcm in the direction perpen-
dicular-to the optical axis. These parameters correspond
to r~~/iri=5. 02 eV ' and ri/Pi=6. 68 eV '. We did not
find data for the optical properties of liquid cadmium, so
we merely supposed a Drude-like form with a relaxation
time 7/%=1. 86= 1.86 eV corresponding to a measured resis-
tivity ph =34 pQ cm. Plasma frequency is A'Q =10.9 eV,
corresponding to a liquid cadmium density of ph=8. 02
g/cm, and with these parameters we obtained

f[ axis
Rco (eV)
fiI (eV)

f
1.33
0.4
0.12

2.0
1.5
0.23

l axis
Ace (eV)
AI" (eV)

f
1.13
0.25
0.08

1.33
0.3
0.04

1.5
0.5
0.1

2.0
1.5
0.2

TABLE III. Parameters used to fit dielectric constants of
cadmium. co, I', and f are defined in Eq. (37).

We have presented in Sec. II a generalizatio f
'

shitz s formulation of dispersion forces between planar
me ia is anisotropic.me ia, in the case where one of the med'

ur main result is Eq. (32) of Sec. II, showing that, in the
ong-wavelength limit, Lifshitz's result can be modified

y simply substituting the solid isotropic dielectric func-
tion with an appropriate average of the components of
the dielectric tensor.

Subsequently we have applied this result to a calcula-
tion of the long-range effective potential ViR =H/I be-
tween the solid-li- 'quid and the liquid-vapor interfaces a
distance I apart. As soon as the solid is anisotro ic th

ker constant H becomes face dependent. This has
important consequences for surface meltin, which is
controlled by this constant, being enhanced by H )0 and
suppressed by H &0.

sing dielectric functions obtained be y approximate
tting of optical data, we have estimated the Hamaker

constant for a feww low-melting-point anisotropic metals,
hoping to find one where H & 0 on one face and H & 0 on
another. Unfortunately, none of the cases studied (a-Cra,
P-Sn, and Cd) turns out to do that. All the same, the re-
su ts are of some interest, suggesting the following
separate comments.

a-Ga

For a-oa, we find all surfaces to have large and nega-
tive H. Physically this is due to the solid being largely
covalent and only partly metallic, as opposed to the more
metallic and less covalent liquid. Our prediction of
strong nonmelting is compatible with recent scanning
tunneling microscopy (STM) studies, ' indicating an ex-
ceptional tendency of most surfaces to remain stable and
avoid surface melting. However, a negative Hamaker
constant cannot really be blamed for surface stability
down to the monolayer level. Therefore, in this regime,
some kind of different mechanism involving short-range
forces must be responsible for the generalized lack of sur-
face melting, which is observed by STM and remains
somewhat mysterious.

P-Sn

In P-Sn we also find all Hamaker constants to be nega-
tive, but one order of magnitude smaller than in u-Ga. It
is therefore predicted that blocked melting is likely to
take place, at least on the poorly packed faces (the well-
packed face is likely not to melt at all, as usual, due to
s ort-range forces). There are, as far as we know, no data
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available for the surface melting habits of P-Sn, and it is
clearly desirable to have some in the future. One interest-
ing feature to check in the case of blocked melting of a
poorly packed face will be the growth of the quasiliquid
layer up to some finite maximum value I,„similar to
that reported by Elbaum and Schick on the surface of
ice. ' Since this is due to a compromise between short-
range forces, which push the solid-liquid and liquid-vapor
interfaces apart, and long-range forces, which eventually
keep them bound, it is not possible at this stage, where we
have no idea of the actual short-range forces, to estimate
~max

CEi

our very limited accuracy. The most we can say is that
Cd should represent the best example of a crystal whose
surface melting habit should be totally determined by
short-range forces. Experimentally, Cd(0001) was histor-
ically the first surface to be seen by Mutaftschiev in the
1960s (Ref. 18) to exhibit what we now call nonmelting.
If other faces do melt, as is likely, the growth of l(T)
should remain characteristically logarithmic to very large
values of I, as expected for a system with short-range
forces only.
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