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Effect of reservoir-electron motion on the frequency response of double-barrier resonant tunne&ing
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The frequency response of the double-barrier resonant-tunneling current to the bias-voltage modula-
tion is studied theoretically taking into account the effect of the dynamic motion of reservoir electrons in
the contacts. A density-matrix approach with a transfer Hamiltonian is used and the incoherent scatter-
ings in the contacts are modeled with damping constants. It is shown that the bandwidth of the device is
determined not only by the electron-transfer rates through the barriers but also by the phase-smearing
rates for the tunneling electrons. It is also shown that the frequency response of the tunneling current
exhibits resonance enhancements in the high-frequency region. The enhancements are attributed to the
quantum oscillations of the electrons between the quantum well and contact regions.

I. INTRODUCTION

The double-barrier resonant-tunneling structure has
been extensively studied since its proposal by Tsu, Esaki,
and Chang. ' The interest in this system was increased
by experiments showing a high-speed frequency response
up to several THz. Although there are many important
aspects to be clarified in this device, such as phonon-
assisted tunneling, the effect of electron-electron in-
teraction, and noise characteristics, the dynamic prop-
erties of the device would have to be considered one of
the most important.

The frequency response has been discussed theoretical-
ly using various formalisms such as Wigner function for-
mulas " and nonequilibrium Green functions. ' '
These enable us to treat the resonant tunneling as a quan-
tum transport phenomenon based on quantum statistical
mechanics. According to these results, linear frequency
response is basically a decreasing function with respect to
the modulation frequency u, when co is higher than the
inverse of the characteristic tunneling time through a
barrier. Therefore, when the barriers are thick, the de-
vice will not respond to a very high-frequency modula-
tion. On the other hand, the calculation in Ref. 11 shows
a resonance peak for the nonlinear frequency response,
which, the author suggested, is responsible for the experi-
mental data reported in Ref. 3.

The double-barrier tunneling-device structure can be
separated into three parts: a ballistic region and two con-
tact regions which are subjected to the reservoirs. Be-
cause we may assume, in the ideal device, that the motion
of the electrons in the ballistic region is not directly
affected by any scatterings, electron waves in the ballistic
region are considered to be coherently continuous. In the
contacts, the electron wave will suffer from the scatter-
ings by other electrons or phonons, so that it is no longer
completely coherent. However, since the scattering pro-
cess is stochastic, the electron wave must be partially
coherent to show the wave nature near the boundary in
the contact region. The importance of the scattering
effect in this region was pointed out in Refs. 14 and 15,
where the static behavior of the tunneling was studied.

This effect will be much more important when we discuss
the dynamic motion of the resonant tunneling.

In the present paper, we discuss the dynamic property
of double-barrier resonant tunneling. We use a transfer-
Hamiltonian, density-matrix approach and a boundary
condition that does not reject the effects of the wave na-
ture in the electrodes. ' We use this approach to discuss
the sma11-signal frequency response. It will be shown
that the linear response exhibits resonance enhancements
in the high-frequency region due to the quantum oscilla-
tions of the electrons between the quantum-well and con-
tact regions.

II. RESPONSE FREQUENCY
UNDER SMALL-SIGNAL MODULATION

H„„=—g [tI ai, az k+Hc. ]—g [tRa2ka3~+H. c. ]
j, k k, m

+ X Elj 1j 1j+ X E2ka2k 2k+ X ~3 3 3
Pl

Here c;~ is the total energy of the one-electron state a,",
and H.c. indicates the Hermitian conjugate. The transfer
energies tI and tz through the left and right barriers are

The schematic potential profile of the resonant-
tunneling structure is shown in Fig. 1. The electronic
densities at the contacts I and III are assumed to be high
enough to maintain the Aat potential, so that the voltage
drop across the device is concentrated at the double bar-
riers.

The starting equations for the present analysis are the
same as those in Ref. 14, where the density-matrix ap-
proach was used. We use the electron wave functions lo-
calized in each region I, II, and III, as basis functions to
expand the tunneling system. The annihilation and
creation operators are defined as a; and a, for the quan-
tum state j in the region i, where i = 1, 2, and 3, respec-
tively, correspond to the left contact, the quantum well,
and the right contact. The transfer Hamiltonian used to
describe the coherent interaction is
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pendicular to the tunneling direction, are conserved. We
can then integrate Eq. (2) with respect to x and y coordi-
nates, resulting in

d

dt
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D1(EII')J12+ g Dl( sll )J21
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FIG. 1. The schematic potential profile for a double-barrier
resonant-tunneling structure. Regions I and III are contact re-

gions that extend a distance of L. Region II is a quantum well

with a well width of w and a barrier width of d. A dc bias volt-

age I' with a small-signal modulation is externally applied to
this structure.

F3
dt

ltR it& l
D3( E3l )J23 g D 3 ( E3l' )~32 ( E3l s3!')N3

(5)33[D3(E3l )F3(E31)5, , —N ]
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J12 y 12J12

defined by the overlap integrals of basis wave functions,
as given in Ref. 14.

Each contact region is considered to be locally in
thermal equilibrium with a differently fixed chemical po-
tential, because only a small part of the electrons in the
contact are involved in the tunneling process. The
thermalization is achieved by the electron-electron or
electron-phonon interactions inside each contact. This is
expressed by the interaction Hamiltonian H, or 03,
which includes only the variables of each contact and is
independent of the position operators. These Hamiltoni-
ans cause the fluctuation and dissipation for the system
operators. ' This dissipation gives rise to the damping of
the density operator matrix elements to their local equi-
librium values with corresponding damping constants. '

Thus the electrons in each contact, as a reservoir, cause
the incoherent damping of the density operator p; to its
equilibrium state with the damping constant y; . Here i
and j range from 1 to 3, corresponding to the regions
I—III. Although the quantitative dependence of the
damping constants on quantum states can be obtained'
by using the second-order perturbation theory and in-
tegrating out the reservoir variables, here we treat them
as constant parameters.

The total motion of p; is thus given by adding the in-
coherent damping motion caused by the reservoir to the
coherent motion caused by H„h as expressed by

dJ23 itI it~ it~
J13+ g N3 — D3(s31 )N2

1/ 1I'

i(s31 —e2)+
g J23 y23J23

dJ13
dt

—it+ ltJ
~12D3(s31)+ g ~23D1(Ell )

Here D, (E,l ) and D3(s31 ) are, respectively, the densities
of states for the two-dimensional electrons in the elec-
trodes I and III. E1 (E11) and F3(E,31 ) are the Fermi distri-
bution functions integrated two dimensionally with
respect to k and k~. The variables X» X2y X3y Jj[2y J23y
and J13 are similarly defined by the respective two-
dimensional integrations of the matrix elements of the
density operators p1j», p2k 2k, p3~ 3~ y p1j 2k y p2k 3~ p and

p1j3 Diagonal damping constants y» and y33 corre-
spond to the longitudinal damping rates at which elec-
trons relax to the thermal equilibrium distribution. The
assumption y22=0 guarantees conservation of the elec-
tron number in the tunneling process. Off-diagonal ma-
trix elements of the density operators include the infor-
mation about the electron phase. So the off-diagonal
damping constants y, 2, y23, and y, 3 correspond to the
phase-smearing rates for electrons.

When the static bias voltage Vo is applied to the sys-
tem, the quantum-well energy level for E.2 as well as the
quasi-Fermi-level of the electrons in the right contact de-
crease, giving rise to the resonant tunneling. When the
bias voltage V is changed such that

where f; are quasi-Fermi-distribution functions of the
electrons in each region and 5, is the Kronecker delta.

We now specify the system with only one quantum
sublevel, which has energy c2, in II. We assume that
there are no scattering processes for electrons in II,
which is equivalent to the condition that y22 is zero.
Then electron momenta k and k~, in the x-y plane per-

V= Vo+U exp(icut),

the energy 'evel c.2 is modulated, which will cause the

dpij i
d, =&[H,h p);,, +x;,,(f;&;,, s;,,»—



9678 AKIRA SUGIMURA 47

modulation of the tunneling current with the angular fre-
quency co. For simplicity, we assume that c.2 is modulated
as

p UE=e ——exp(icot) .2 2
(10)

Here c.z is the quantum-well energy level under the dc
bias voltage Vp.

Here we discuss the case where U is small enough for
use to consider only the linear response. The integrated
matrix elements are then expressed as

N, =N, 2+n, exp(icot),

N2=N2, +n2 exp(idiot),

N3 N3 + n 3 exp(icot)

J(2 =J(2, +ji2 exp((~t)

J23 J23 +j23 exp((~t)

J i3 Ji 3 +j» exp(

idiot

)

Here the variables suKxed with s on the right indicate the
mean values of the corresponding integrated matrix ele-

ments, and those expressed by small letters are their
linear responses to the bias-voltage modulation. It
should be noted that these linear-response functions are
also functions of electron energy levels, which means that
Eq. (11)expresses the infinite number of equations.

Substituting Eqs. (10) and (11) into Eqs. (3)—(g) and
taking the terms having exp(icot), we get the equations
for the linear responses. The obtained equations include
the information about the mixing of an infinite number of
damped quantum oscillators. To solve these equations,
we assume that the range of energies of the electrons in
the contact is greater than the energies corresponding to
the damping constants. It is also assumed that the inelas-
tic tunneling processes gaining or losing modulation
quanta' can be neglected. The latter assumption may be
used when we discuss the case where the modulation fre-
quency is within the order of the damping rates. The
summation of the response functions can then be
simplified as in the following example:

tLD1(ell') j12
=i irtLD i(E i()j(2 . (12)

We thus obtained the following system of equations:

[Ei(—E2+Aco ifir» iver—tRD3(e—i() imtLD—((ei()]j(2+(irtLD, (ei()j2(+(m'tRtLD((ei()j23 tLDi(Ei(—)n2+ —J(2, =0

(13)

[E2 E3 +A~ ikr23 (irtLD((E3 ) (rctRD3(E3 )]j23+(irtRD3(e3 )j32+(irtRtLD3(e3 )j»
—tRD3(E3 )n2 ——J23 0

2

gt (j, —j, ) —gt (j —j ) ficon =0. —
3m

(15)

The procedure to solve this linear equation system is straightforward. n2 is explicitly solved as

—jdEg'(e)[A (E)+B(E)]

fd g'e( )2e[T p'L(e) —TRq'(e)]+i%co 2

A(e) = —2p'(e)tL J i2, +2TLr'(E)tR J23,

+ I 2p'(e)(E e2+AM) [TL tR J23~ ( TL +Ay 33)tL J~12~ ]

—2TLr'(&)( —&+&2+&~)[TRtLJi2, —(TR+&ri2)tR J23. ]]~l &r»&r23+&r»TL+&r23TR]

B(e)=2q'(E)tR J23~ 2TR r'(E)tL J",2,

+ [
—2q'(e)( 8+E2+ —Itch)[TRtL Ji2~ —(TR+Ar, 2)tR J23, ]

+2TRr (e)(E E2+~~)[TLtR J23g (TL+~r23)tLJ(2 ]]~[~r(2~r23+~ri2TL+~r23TR ]

1g'(E) =
p'(e)q'(e) —r'(E) TL TR

(19)
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where

p '( e )= TL +2' +irty 23

(fiy, i+ T„)(8 —Ei —irido )

~F12~F23+~7 12TL +~723 TR

q '( e ) =2TL + TR + fiy ii

(iriyz3+ TL )(c. E—&+A'co)
+

~V 12~V 23 +~V 12TL +~7 23 Tg

( e —Ei) —i}iso
r'(e) = 1+

~y 12~y23+ ~y 12TI +~y23 Tg

(2O)

The normalized coupling constants TL and Tz are
defined by irtl D, (E) and irttt D3(e), respectively, in ener-

gy units. J;z, and Jz3, are the real parts of J,z, and J23„
and J', z, and J23g are the imaginary parts. The modulat-
ed component of the tunneling current from regions I to
II is given by

Resonant-tunneling diodes thus respond to external
modulation of the voltage up to the frequency of yd.
There have been many discussions about the tunneling
time, which is considered to be a measure of the modula-
tion frequency limit in the double-barrier tunneling de-
vices. Most of them show that the tunneling time de-
pends only on the structure of the scatterers. The present
result, however, indicates that the tunneling rate is deter-
mined not only by the structure-dependent term
[ itrID, ( e2)+mt iDi3( E2)]/iribut also by the damping con-
stant yiz, which is the phase-smearing rate caused by the
perturbation from the contact electrons. Such a
difference comes from the assumption in the present ap-
proach that the contact regions are so near to the barrier
region that the electron wave in one contact is coherently
connected to the wave in the other contact. The motion
of the electron wave is thus affected by the perturbation
from the reservoir electrons in the contacts.

iebI, i =— ds tL [Jii J21] (21)
III. RESGNANCE ENHANCEMENT
OF THE FREQUENCY RESPONSE

which can also be expressed explicitly as

BI,i = ———f de g'(c)A (E, )

+n2 fdEg'(c, )2TL [p'(E) —Tzr'(e)]!ir

(22)

The modulated-current component between regions II
and III is defined in the same manner:

AI23= ——— de. g' C. 8 C.

+n2 fdog'(e)2Ttt [q, '(e —TL r'(E]/ir

y. =y12+ [~tLD1(E2)+~tRD3(s2))/~ (24)

(23)

According to Ref. 13, the modulated component of the
terminal current EI is given by AI=(KI,2+XI&3)/2.

In this approach, the tunneling currents from regions I
to II and from II to III are described by the imaginary
parts of the complex variables j1z and jz3, which corre-
spond to the dipole moments between the electronic
states in the contacts and the quantum well. The fre-
quency responses of the tunneling currents are given by
Eqs. (13)—(15), which are nothing but the equations for
damped oscillators j,z and jz3 coupled to each other.
The energies corresponding to the damping of the
os«liat«s are Ay iz+mtt't Di(s» )+ ir I D i(e» ) and
Ay23 + stan D3 ( e3 ) +ntl.D, ( ei ). Sin.ce the electrons in
the contacts with energies around cz contribute dom-
inantly to the tunneling process, and the y1z and y23
values are comparable to each other, the damping con-
stant for the resonant-tunneling system is estimated to be

We now give some examples of the tunneling current
calculated for the Al Ga, As/GaAs double-barrier
structure, which can be compared with the reported ex-
perimental results. In the calculations, the rectangular
potential profile shown by the broken lines in Fig. 1 is
used, for simplicity, as a potential under the high electric
field. The barrier height is assumed to be 230 meV. Both
the quantum-well width w and the barrier width d are 5
nm. The electron density n in each contact is assumed to
be 1X10' cm, and the ambient temperature is 25 K.

Uncertain parameters in the present formula are the
damping constants caused by the perturbation from
high-density electrons in the contacts. These parameters
may be estimated in a manner similar to that used in Ref.
19, that is, by using the electron-electron interaction
Hamiltonian with a screened Coulomb potential.
Second-order perturbation theory gives damping-
constant values around 10' s ' at room temperature
when the electron density is 10' cm . The damping
constants will be smaller when the ambient temperature
is reduced. The interaction between electrons and po-
lar optical phonons in the GaAs material makes a minor
contribution to the total damping rates for tunneling
electrons. In the actual calculation below, we assume for
convenience that y11 =y 33

=
@13

=y and &12
=p z3

=y /2
and use a value around 1 X 10' s ' for y. Figure 2 shows
the dc characteristics of the tunneling current, when the
damping constant y is varied as a parameter. Clear reso-
nance curves are obtained for the structure with
y(1X10' s ', while the resonance becomes broader
when the value of y is larger.

Figure 3 shows the frequency response function of the
tunneling current to the bias voltage modulation, which
is calculated by using Eqs. (22) and (23) for difFerent bias-
voltage values. The device structure and the conditions
are the same as those used for calculating the curves
shown in Fig. 2. y is fixed to 1X10' s '. According to
this figure, a device with this structure responds to exter-
nal modulation up to several tens of THz due to the
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FIG. 2. The dc characteristics of the tunneling current
through the GaAs/Al Ga& As double-barrier structure calcu-
lated for different damping constants. The electron density n in
each contact is 1 X 10' cm, the ambient temperature is 25 K,
and the quantum-well width w and the barrier width d are fixed
to 5 nm.

enhancements of the response function in the THz re-
gion. The y values at 25 K in the real system may be
smaller than the presently assumed values by about an or-
der of magnitude. Even in such a case, we may expect
the current response up to the modulation frequency of
several THz. The damping constant yd of the system is
defined by Eq. (24). The yi2 value used in the calculation
is 0.5 X 10' s '. The structure-dependent term
[~tl D, (ez)+~tzD3(ez) j/fi is calculated to be less than
1X10' s ', although it depends on the bias voltage. yd
is thus estimated to be several THz. In a device with the
present specific parameters, since the main contribution
to yd is from the y, 2 term, the frequency response of the
device is more strongly dependent on the phase-smearing
rate than on the barrier structure.

The most prominent feature seen in Fig. 3 is the strong
enhancement of the response function at a modulation
frequency of several THz. In the enhanced region, the
response function shows two peaks, as seen in the curve
where F = 150 mV, or one peak and one bottom as in the

F =140 mV curve. Similar results were obtained for the
structures having different parameters. These results sug-
gest that there exist two types of resonances, one around
several THz and the other slightly less than 1 THz, and
that the phases of the resonances are the same or oppo-
site depending on the bias voltage. The origin of the
enhancements is discussed in the following.

The phase shift between the modulated current signal
and the voltage modulation signal is calculated as shown
in Fig. 4, for the same structure as in Fig. 3. The intense
change of the phase shift is seen at a frequency region
around THz where the enhancement of the current
response is obtained. This implies that the enhancements
are originated from some resonance oscillations of the
tunneling electrons.

In order to identify the oscillating electrons, we sepa-
rately calculated the current components AI, 2 and AI23
through the left and right barriers and the number of
modulated electrons n2 in the quantum well, as shown in
Fig. 5 for the response function corresponding to F = 150
mV in Fig. 3. The components EI,2 and AI23 coincide
with each other at low frequencies, but they differ at fre-
quencies near the resonance enhancement of the response
function. When the modulation frequency is several
THz, for example, only the current component AI, 2 os-
cillates strongly while the other does not. Each reso-
nance frequency thus corresponds to the resonance state
of the current component oscillating almost independent-
ly through each barrier. Since the peaks in Fig. 3 corre-
spond to these resonance peaks of EI,2 and AI23 in Fig.
5, the enhancements can be attributed to these resonance
oscillations of tunneling electronic through the barriers.
Although AI&2 and AI&3 are not the same in this region,
the total number of electrons in the ballistic region is
conserved, because the electron number n2 in the quan-
tum well compensates for the difference between AI&2
and AI23', that is, the equation EIU —AI23=n2 holds.
When the bias voltage is larger than around 150 mV, or
in the negative resistance region, as in Fig. 5, AI, 2 indi-
cates the same phase as AI23. Therefore, the n2 curve in
Fig. 5 shows two peaks, and it becomes zero when

3
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Frequency (THz)

]QQ
0.0] Q1 1 1Q

Frequency (THz )
FIG. 3. The frequency response of the tunneling current

through the GaAs/Al„Ga& As double-barrier structure to the
bias-voltage modulation. The mean bias voltage F is varied as a
parameter, while the damping constant y is fixed to 1 X 10' s
Other parameters are the same as in Fig. 2.

FIG. 4. The phase shift between the modulated current sig-
nal and the voltage modulation signal calculated for the
double-barrier resonant-tunneling diode having the same struc-
ture as in Fig. 3.
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the imaginary parts of j&z and jz3 with respect to the
electron energy gives us the modulated components of
the total currents AIIz and AIz3. If we note that J,z, and
Jz3 are energy-dependent Lorentzian-like functions'
with resonance energy cz, it is easy to see that the in-
dependent motion of the total currents AI&z and AIz3 ex-
hibit resonance characteristics as a function of the modu-
lation frequency co. This resonance thus corresponds to
the quantum oscillation of the electrons between the
quantum-well and contact regions. The resonance fre-
quency is determined by the width of oscillators j&z and

jz3, which can be estimated by using the damping con-
stant yd defined by Eq. (24). Therefore, at the high-
frequency region around the cutoff frequency, the reso-
nance enhancement is seen as in Fig. 5. The difference
between the resonance frequencies of lD)z and l&z3 is at-
tributed to the deviation of the J&z, and Jz3, functions
from the Lorentzian functions.

Figure 6 shows the calculated frequency response of
the Al„Ga, ~As/GaAs resonant-tunneling diode with
the fixed bias-voltage value of 150 mV for different bar-
rier widths. Other parameters are the same as those used
in Fig. 3. The calculated resonance frequency does not
depend strongly on the barrier width d. The bandwidth
of the frequency response increases slightly when the d
value is reduced to smaller than 3 nm. This result can be
understood by referring to Eq. (24), which shows that the
damping constant for the whole system is the summation
of the phase smearing rate y, z and the structure-
dependent term. In the present parameter region, the y, z
value is dominant in determining yd, resulting in the
smaller dependence on the barrier structure. The
response function for the same parameters with the fixed
barrier width of 5 nm is calculated, as shown in Fig. 7,
for different damping-constant values. The bias voltage is
150 mV. It turns out that the resonant enhancement is
always seen even if the damping constant is changed, al-
though the quantitative values of the frequency band-
width and the resonance frequency depend on the value
of the damping constant. These features are consistent
with the above discussion in that the phase-smearing rate

U 4—
N

3
O
C

C
L
L

100.10.01

Frequency ( T H z )

FIG. 5. Frequency response functions of the tunneling
currents through the left barrier AI» and the right barrier AI23,
which are compared with that of the number of the electrons in
the quantum well n2. The bias voltage is fixed to 150 mV. Oth-
er parameters are the same as those in Fig. 3.

AI )z
=AIz3 The corresponding curve for

b,I=(AI, +zb,Iz3)/2 in Fig. 3 also shows two peaks due
to the constructive contributions from AI&z and AIz3.
On the contrary, the phase of the modulated-current
component AI&z in the positive resistance region, as with
the curve for F =140 mV, is opposite to that in the nega-
tive resistance region. Thus AI&z and EIz3 contribute
destructively to AI. Therefore, the response function for
I' =140 mV in Fig. 3 indicates a peak and a bottom.

Equations (13)—(15) show that j,z and jz3 are damPed
oscillators coupled to each other. Since AI, z or AIz3 is a
linear combination of the oscillators j&z or jz3 having
different energies, they too are basically damped oscilla-
tors. The electron motion is determined on one hand by
the coupling between the oscillators that give rise to the
electron How from contacts I to II. On the other hand,
each oscillator has its own resonance frequency, which
causes the resonance enhancement of the frequency
response. This enhancement is well understood by as-
suming that the coupling between the oscillators is
small —that is, that the normalized electron-transfer
rates through barriers vrtLD, (e»)/I, etc. are less than
the damping constants y, z and yz3. Equations (13) and
(14) then give the formula for the independent motions of
j )z and jz3 as

O

N 4
~ ~
CQ

E 3
0
C

2—
(25)

(f /2) Jiz.
j&z

EiI —Ez+Aco —iAy iz to't~D3(sii ) E'm't—
L D i(sit )—

(f/2) Jz3,
o . z . z

ez E3~ +Pic—o i Ayz3 i ~tL, D, (—E3~ ) —to t„D3(e3~)—
(26)

C
1

L

o 0

Frequency (THz )

100

Here j,z and jz3 are Lorentzian functions that corre-
spond to Rabi oscillations between the quantum levels of
electrons in contacts and the quantum well. Integrating

FIG. 6. The frequency response of the Al Ga& As/GaAs
resonant-tunneling current with the fixed bias-voltage value of
150 mV for different barrier widths. Other parameters are the
same as those used in Fig. 3.
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FIG. 7. The frequency response of the Al, Ga& „As/GaAs
resonant-tunneling current with the fixed barrier width of 5 nm
for difFerent damping constants y. The bias voltage is 150 mV.
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y&2 plays a crucial role in determining the frequency
response of the resonant-tunneling devices.

The enhancement of the current response differs with
bias voltage. The calculated bias-voltage dependence of
the high-frequency response is shown in Fig. 8 for a
modulation frequency of 2.5 THz, which is compared
with the dc result. In the region around 145 mV, the dc
response is very small, while the high-frequency response
is larger. This is derived from the existence of the reso-
nance enhancement of the response function. The posi-
tion of the minimum and maximum differ between the
2.5-THz curve and the dc curve, and this difference is due
to the bias-voltage-dependent resonance enhancement.
The bias-voltage dependence of the response is experi-
mentally obtained in Ref. 3. Those experimental data are
much more complicated than the curves calculated here
but qualitatively consistent with the present calculations.

Numerical examples shown in Figs. 2 —8 are calculated
only for the ambient temperature of 25 K, in order to
compare the results with the reported experiments. The
response function for the room-temperature case with the
y value of 1X10' s ' is calculated as shown in Fig. 9.

FIG. 9. The room-temperature frequency response of the
tunneling current through the GaAs/Al„Ga& „As double-
barrier structure to the small-signal voltage modulation. The
damping constant value of I X 10' s ' was used. Other param-
eters are the same as those in Fig. 2.

This result also shows resonance enhancements. In the
present treatment, temperature is explicitly included in
the equilibrium distribution function for the contact elec-
trons, which dominantly affects static current-voltage
characteristics. Dynamic properties are determined pri-
marily by the phase-smearing rates for the tunneling elec-
trons in the contacts. The room-temperature result in
this figure is thus similar to the previous figures, because
we assumed the same value for y, 2 in the calculation.
However, the y&z value is implicitly dependent on the
temperature. If we take into account this effect, the
response function shows such temperature dependence
that the resonance frequency increases as the temperature
increases.

IV. CONCLUSION

The frequency response of the double-barrier
resonant-tunneling current was studied theoretically tak-
ing into account the effect of the dynamic motion of the
contact electrons. The density-matrix approach with a
transfer Hamiltonian was used and the effect of the in-
coherent scatterings in the contacts was modeled with
darn. ping constants. We used the boundary condition
which does not reject the effects of wave nature in the
contacts. Using this approach, the formula for the
small-signal frequency response of the device was ex-
pressed explicitly. It was shown that the frequency
response is determined not only by the structure of the
barriers but also by the damping constant y, 2, which is
the phase-smearing rate for tunneling electrons caused by
the perturbation from the contact electrons. The fre-
quency response of the tunneling current exhibits reso-
nance enhancements in the high-frequency region. These
are attributed to the quantum oscillations of the electrons
between the quantum-well and contact regions.

FIG. 8. The bias-voltage dependence of the modulated tun-

neling current in response to the small-signal voltage modula-
tion of 2.5 THz (solid line) compared with the dc result (broken
line). Device parameters are the same as those in Fig. 3.
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