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Phase transitions in Josephson-junction arrays with long-range interaction
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We theoretically investigate ordered and disordered Josephson-junction arrays with long-range in-

teraction. These arrays consist of two orthogonal sets of N parallel superconducting wires that are
Josephson coupled to each other at every point of crossing. In this configuration, all wires, regardless of
spatial separation, are nearest- or next-nearest neighbors. Using a mean-field approximation we show
that the arrays undergo a phase transition to a macroscopically phase-coherent state at a temperature

T, =NEJ/2k& in the zero-field case. When a magnetic field, corresponding to a strongly commensurate
number of flux quanta per unit cell, f =p/q, is introduced in an ordered array, we find that

T, =NEJ/2kei/q. For the disordered case, T, can be defined in four different regions of f. For
f & 1/N~, T, -NEJ/2k'. For 1/N2& f & 1/N, T, =E~/2kev f, and for 1/N &f & 1, T, rises with in-

creasing f, although the exact form is unknown at this time. For f ) 1, T, asymptotically approaches
-0.85EJ&N /k&. Our Monte Carlo simulations confirm all of our analytical calculations, except that
our simulations show that the high-field asymptote approaches -0.75EJ"t/'N /k&.

I. INTRODUCTION

Two-dimensional arrays of Josephson junctions with
short-range interaction are excellent models for exploring
two-dimensional phase transitions, ' flux pinning, and
glassy behavior. These arrays consist of superconduct-
ing islands which are arranged in a geometric lattice (usu-
ally triangular or square) and are Josephson coupled to
their nearest neighbors. In this paper we present a
theoretical and numerical investigation of a different type
of Josephson-junction array whose interesting properties
in the disordered limit have been theoretically investigat-
ed by Vinokur et al. The arrays we examine differ from
conventional Josephson-junction arrays in that they con-
sist of two orthogonal sets of X parallel superconducting
wires which are coupled to each other by a Josephson
junction at every point of crossing (see Fig. I). In the sys-

Josephson
Junction

tern discussed in the accompanying experimental paper,
the superconducting wires are lines of Nb film and the
Josephson junctions coupling them are made with A1203
barriers. Because each vertical (horizontal) wire in the
array is directly Josephson coupled to every horizontal
(vertical) wire, we describe these arrays as having long
range interaction.

For the system we have examined, it is assumed that
the Josephson inductance (fi/2ei, ) of each junction is
infinitely greater than both the kinetic and electromag-
netic inductance of the wires connecting adjacent junc-
tions. Consequently, for any circulating current flowing
through the array of Josephson junctions, one can assume
that the phase gradient along any wire in the array arises
only from the presence of an external magnetic field. (In
fact, this condition is hard to satisfy experimentally, ex-
cept in small arrays, because of the Injunctions in parallel
coupled to a single wire. ) The Hamiltonian of the sys-
tem is thus given by the sum of individual Josephson-
junction energies,

N N i( It — 11 —A )H= —ReE& g g e
/ =i J=i

Here y,". is the superconducting phase at x =0 of the ith
horizontal wire, y" is the phase at y =0 of the jth vertical
wire, X is the number of wires in each direction or set, EJ
is the Josephson-coupling energy, which we take to be
constant, and

A;. = f A(x )dy,
%0 0

Superconducting Wire

FIG. 1. Schematic drawing of an ordered 8X8 Josephson-
junction array with long-range interaction. The straight lines
are superconducting wires which are coupled together through
Josephson junctions.

where A =Hx y, x~ =aj, with a being the lattice constant,
and No is one flux quantum.

Using the Thouless-Anderson-Palmer (TAP) equation,
Vinokur et al. showed that in the presence of a strong
transverse magnetic field disordered arrays with long-
range interaction, i.e., those arrays in which the wires of
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each orthogonal set are randomly displaced, model a spin
glass, and they investigated the glassy dynamics of such
a system. They showed that these arrays undergo a phase
transition at a temperature

E,X'"
T= 2'"kB

2Hp 8Hp1+ + 1+
H H

1/2 1/2

(2)

where Hp=Cp/Na is the field required to generate a
Aux quantum through the average-sized strip between two
adjacent wires and H is the applied field. Below this tem-
perature the random phases of the individual wires, y;,
freeze into a macroscopically phase-coherent state such
that

(e' ')&O,

and, for Ho /N «H «Ho,

~ 1/2J 0

2k, H

We have further studied these arrays in both the or-
dered and disordered limit by using the more simple
mean-field approximation and Monte Carlo (MC) simula-
tions. Despite general agreement between our results for
the disordered arrays and those of Vinokur et al. , some
quantitative discrepancies do exist, the origin of which is
unknown at this time.

The body of this paper is organized as follows. In Sec.
II we describe our mean-field analysis of ordered and
disordered arrays with long-range interaction. In Sec. III
we present the results of our MC simulations of these ar-
rays. A discussion of our work follows in Sec. IV.

II. MEAN-FIELD THEORY

without any long-range periodic order in their values.
From (2) we see that, for H ))Ho, T, approaches, to
lowest order in Hp/H, the limiting form

E X'/J

(5)

Here H; " is the contribution of the ith wire to the total
mean-field (MF) Hamiltonian and is given by

H; "= EJ—g [cosy;(cos(yj. + A;, ))
j=1

+sing;(sin(y'+A; ))], (6)

where yj. are the phases of the vertical wires which are
directly coupled to the horizontal wire of phase y;. Z, is
the partition function.

Z; = dc/;e

and P=(1/ksT). The expectation values in Eq. (6) are
solved self-consistently from equations of the form of Eq.
(5).

In zero field, g,. =rl'—=g, and consequently Eq. (5) can
be rewritten after some reduction as

I, (NEJplgl )

Io(NEJplrl )
(8)

where I, and Ip are Bessel functions of the second kind.
Figure 2 shows a numerical solution of lgl as a function
of 2kBT/NEJ in zero field. Near the array's transition
temperature, all the g's are small and, correspondingly,
so are the expectation values in Eq. (6). Equation (8) can
therefore be expanded for small argument to obtain

XEJ
2kB

(9)

The direct proportionality of the transition temperature
to the number of horizontal or vertical wires in the array
can be readily understood by recognizing the fact that in
order for the system to enter the phase-coherent state,
the energy per wire available for fiuctuation (ks T) must
be on the order of XEJ, the total coupling energy be-
tween that wire and the wires orthogonal to it.

A. Ordered arrays

To perform a mean-field analysis of ordered arrays
with long-range interaction, we follow closely the mean-
field analysis of Shih and Stroud of conventional
Josephson-junction arrays. Shih and Stroud obtained the
thermodynamic properties of conventional arrays by
treating the phases of the individual array islands, y;, as
classical thermodynamic variables within the canonical
ensemble. Because of the long-range interactions in the
arrays we now study (in contrast to the arrays previously
studied), we are able to find analytical expressions for
both the temperature-dependent order parameter of the
system and the field-dependent transition temperature.

If we treat the phases of the individual wires in our ar-
rays also as classical thermodynamic variables, we can
calculate the order parameter of our system,
q,"=( exp(ig, ". ) ), using the expression

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8

2k T/NE
1.2

FIG. 2. Numerical solution for the magnitude of the order
parameter g as a function of 2k& T/XEJ.
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The mean energy per wire of the system in zero field
can be derived from Eq. (6) by summing it over i D. oing
this, we obtain the mean-field Hamiltonian

N, & N

HMF= R—eEJ g e
i=1 j=1

The average of HM„ is thus

(HM, ) = —ReE, y g,"g, * .

(10)

W4 —ml4

m4

W4

t
-W6

/

-W6

—zl6

Since, as we have stated above, g,"=g'-=g in zero field,
Eq. (11)becomes f=l/2 f=1/3

(12)

For 2X wires this means that the energy per wire is
N~i)( F—J/2. Taking the derivative of Eq. (12) with

respect to temperature, we obtain the heat capacity C of
the system. Figure 3 shows the plot of heat capacity per
wire (in units of ks), C, /2NKji, vs temperature. The
data show typical mean-field behavior, as well as the clas-
sical equipartition value of —,'kz per degree of freedom
(wire) at low temperature.

We draw attention to the important fact that the de-
rived thermodynamic properties of our arrays are all
directly dependent on N, the array size. As N grows, so
does the number of nearest neighbors in the array, and
consequently the system becomes more mean-field-like.
This behavior is quite unlike that of conventional
Josephson-junction arrays in which the number of nearest
neighbors remains constant despite the overall array size.
The properties of conventional arrays are size indepen-
dent.

In the presence of a magnetic field, corresponding to a
commensurate number of Aux quanta per unit cell,
f=p/q (where p and q are small integers), we expect the
ground-state phases and corresponding current
configuration to be spatially periodic. Figure 4 shows
ground-state configurations for f= ,' and —,'. Valu—es at

1 ' 6

1.2
z

0.8

Flax. 4. Cxround-state configurations for f=
z and —,'. The

values at the intersection of the wires are the gauge-invariant
phase difference y,

"—y' —(2n/No) I A(xj )dy across the junc-
tion at that position. The boldface plus signs denote sites of
positive vorticity of the smallest current loop.

the intersection of wires in this figure indicate the gauge-
invariant phase difference

f A (x. )dy
0

across the junction at that position. The sum of these
gauge-invariant phase ditferences (keeping track of the
appropriate minus signs) around any closed loop is con-
strained by

g y =2'( n f), n =.—. . , —2, —1,0, 1,2, . . . ,

where n in the ground state is typically either 0 or +1.
We employ bold plus signs in Fig. 4 to denote the centers
of the smallest positive-circulating current loops. If we
view the ground states in terms of these positive-
circulating currents, we find that the states appear to be
very similar to the ground states of conventional four-
nearest-neighbor arrays, despite the fact that their prop-
erties are very different.

To calculate the array's transition temperature in the
presence of a magnetic field, we again assume the order
parameter g is small. Using the method of Shih and
Stroud, the self-consistency equation [Eq. (5)j can be ex-
panded to read

N —1
h l ~E ~ U i(2~fjk)

k=0

Equivalently, we can write

0.4
N —1

u l ~E ~ h —i{2m.fjk )

j=0
Substituting Eq. (14) into Eq. (13), we find that

(14)

0 4 0.8 1.2
2k T/NE

1.6 N —1 N —1
h ( (~~ )2 ~ h ~ i(j —j')(2~fk)

j'=0 k =0
FIG. 3. Heat capacity per wire, C, /2Nk&, vs normalized

temperature 2k& T/NEJ as calculated by our mean-field approx-
imation.

If f=p/q, where p and q have no common factors and
q & N, we can sum over k in Eq. (15) to obtain
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N —1

rlj. = 4(pE—&) g rl,'N5J ~' ~, m =0, 1,2, . . .
j'=0

(16)

0.8

Since the 5 function is satisfied N/q times in a field of
p /q and g„=q„+~, we have

T 2
NPEq

7

0.6—

0.4

0
0 o o

o o 0
()

which directly results in a mean-field transition tempera-
ture

0 ' 2

NEJ
C 2ks&q

(18)
0

0 0.02 0.04 0.06 0.08 0. 1

in a field off=p /q.
Summarizing, we have found the mean-field tempera-

ture for a transition to the ordered ground states de-
scribed above in a field of f=p /q to be
T, (q)=NEJ/2ks&q for an N XN array with q (N.
Since two numerically close values of f can have very
different values for their denominator q, T, (q) is a very
discontinuous function in the case of an infinite array (see
Fig. 5). These discontinuities are, of course, not present
in the case of a jinite array. By employing a finite-size
analysis, we can understand the process by which the
discontinuities are smoothed. Combining our previous
expressions [Eqs. (13) and (14)] for the linearized self-
consistency equations near T„we can write

r

N —1N —1
h 4 h~ja~, an)

)'=o a=o
(19)
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FIG. 5. Normalized transition temperature 2k& T, /NEJ vs
number of fiux quanta, f, per unit cell in an infinite-sized or-
dered array. The discontinuities found in this plot are not
found in finite-sized ordered arrays (see Fig. 6).

where a a =exp(i2vrf jk). This expression is equivalent to
the eigenvalue problem derived by Vinokur et al. in the
disordered case. We have explicitly diagonalized Eq.
(19) for a finite 10X10 array, calculating the mean-field
transition temperature from the largest eigenvalue. We
find that the mean-field transition in this finite array is a
continuous function of f (see Fig. 6), as it must be physi-
cally, and equal to the infinite-array mean-field value for

FIG. 6. Normalized transition temperature 2k&T, /NEJ vs

number of fiux quanta, f, per unit cell in a 10X 10 array. Here

f ( 1/N. Unlike in an infinite array (see Fig. 5), T, is a smooth
continuous function off in a finite-sized array.

commensurate applied fields. We suggest that this con-
tinuous change of T, with applied field is associated with
a corresponding continuous change in the ground-state
configuration of the finite array. In contrast, the ground
states in the infinite array have a q X q periodicity in a
field of f=p /q, and hence the current distribution
changes discontinuously with f.

Using current conservation in each wire as the equilib-
rium condition, we have calculated, to first order, states
corresponding to f near a commensurate value in the
finite array. We find these states to be made up of the
commensurate ground states plus additional, small circu-
lating currents analogous to a Meissner shielding state
(except that these currents do not significantly shield the
applied magnetic field because of the small i, we have as-
sumed). Near zero field, for example, we expect the
ground state to be of this "Meissner" form until f= 1/N
in an XXX array. In this regime, T, drops smoothly
from NEz/2k' for f =0 to its low value of
T,(f =0)/&N for f=1/N, the smallest commensurate
field.

lg.If one assumes the form i), = ~i)~e ' for the order pa-
rameter of the jth wire (where ip, is the ground-state
phase of that wire), one can show that after substituting
T/T, (q) for NEJp/2 in Eq. (8), the mean-field thermo-
dynamic properties derived in the zero-field case and
shown in Figs. 2 and 3 are in fact universal for all fields
commensurate with the array.

B. Disordered arrays

We can also use the matrix given in Eq. (19) to analyze
the disordered mean-field T„as was done by Vinokur
et al. , by replacing our previous expression for a k with

exP[i2rrf(j +5 )(k+5a)]. Here 5 and 5a rePresent the
deviations of the jth and kth wires from their ordered po-
sitions in units of the lattice constant. Figure 7 shows the
T, (identified with the largest eigenvalue) of a 10X 10 ar-
ray averaged over an ensemble of ten systems. Each of
these systems has spacings between the parallel wires
which are uniformly distributed by up to +O. Ibx, where
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FIG. 7. Normalized mean-field transition temperature
2k+ T, /NEJ vs number of fiux quanta, f, per average unit cell in
an ensemble-averaged 10X 10 disordered array. The solid black
line through the data is a guide to the eye. 5 refers to the max-
imum fractional displacement of a wire from its ordered posi-
tion, i.e., the maximum displacement is 5.hx and is equal to 0.1

here.

Implementing the well-known Metropolis algorithm, we
simulated free-boundary arrays of size NXX, where
%=8, 20, 30, and 50. Each MC simulation underwent
10000—20000 equilibration passes throughout the entire
array lattice before executing 20000—30000 averaging
passes. The results of the disordered arrays we present in
this paper are an average of 5 runs (each a different reali-
zation of a disordered array) since we found the result of
individual simulations to be very noisy.

Using our MC simulations, we looked at the heat capa-
city per wire, C, /2N=[(E ) —(E) ]j/2Nk&T, and
phase-coherence modulus (known in other systems as the
magnet'ization modulus ' ' ) M=(~QJ ie '~). M is a
measure of long-range coherence of the phases, qv, in the
array. ' At temperatures well above T„M=0, indicat-
ing that the phases are completely random and not
coherent at all. Closer to T„M begins to increase and
continues to do so until T=O. At this temperature,
M =2N (in zero field), indicating that the phases have
complete long-range coherence. Since it is not gauge in-
variant, M is not a measurable quantity when a magnetic
field is present in the system.

A. Heat capacity

Ax is the mean spacing.
As shown in the figure, the behavior as a function of

field can be divided into four general regions. For ex-
tremely small fields f & 1/N, T, approaches the zero-
field limit, T, =XEJ/2k~, since the amount of Aux enter-
ing the entire array is much smaller than one flux quan-
tum. For small applied field 1/N &f &1/N, T, de-
creases as f increases. We note that this region directly
corresponds to the one where H &Ho (where, again, Ho
is the field required to generate a Aux quantum through
the average-sized strip between two adjacent wires) in the
analysis of Vinokur et al. In the intermediate region
1/N &f & 1, we observe complicated behavior, which we
ascribe to the similarity between the disordered and or-
dered arrays when f is small. When f5, & 1, we expect
(from our disordered expression for a k ) that the effect of
the disorder will be small, and thus the dependence of T,
on f should resemble that of the ordered case. This is
seen in Fig. 7 for 1/N &f & 1, where the T„ like that in
the ordered array, rises (although the exact form is un-
known at this time). As f increases to values greater
than 1, the effects of disorder become more apparent, and
the behavior moves toward the field-independent behav-
ior described by Vinokur et al. in Eq. (3). We note,
however, that the high-field asymptote of T,
( —0.85EJi/N /k~ ) predicted by our mean-field analysis
is significan~tl larger than that predicted by Vinokur
et al. (E~v'N /2k') for the same-sized array. We will
comment on this discrepancy below.

III. MONTE CARLO SIMULATIONS

In addition to our mean-field analysis, we have per-
formed MC simulations of both ordered and disordered
Josephson-junction arrays with long-range interaction.

1. Ordered arrays

Figure 8 shows the heat capacity per wire (again, in
units of ks), C„/2Nks, of the different-sized arrays we
simulated in zero field. As can be seen in the figure,
C„/2Nks, has a pronounced peak, indicating a phase
transition, at a temperature T, . This peak sharpens and
increases in height as we increase the size of the simulat-
ed array —a clear indication that the system is mean-
field-like as opposed to Kosterlitz-Thouless-like. " Com-
paring the simulated heat-capacity curves with those de-
rived from mean-field theory, we find that the simulated

1.5
MF Theory
8x8
20x20

o 30x30
50x50

0
0

I

0.5

o oO
+ 0 0

Ooo 0 o O, O, O

1.5 2
2k T/NE

2.5 3

FICx. 8. Heat capacity per wire, C, /2Nkz, vs normalized
temperature 2k&T/NEJ for the ordered array with long-range
interaction in zero field as calculated by Monte Carlo simula-
tions and mean-field theory. The size of the simulated array is
N XN, where N =8, 20, 30, and 50. The transition temperature
in the simulations is taken to be the temperature at which the
heat-capacity curve has the steepest slope —usually where
C, /2Nk& is half-maximum.
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FIG. 10. Normalized transition temperature 2k~ T, /NEJ vs
field f for a simulated 10% disordered 20X20 array. All data
shown are an average of five MC runs —all of different disor-
dered arrays. For f)) I, T, asymptotically approaches the
value -0 75EJV'.N/ke. Inset: For f & I/N, T, =NEJ/2ke.
For I/N &f & I/N, T, =EJ/2kev'f; for I/N f & I, T, rises
with f, although the exact form is unknown. The peak at f- I

can be attributed to the fact that the array is not fully disor-
dered. For comparison, T, derived from the analysis of Vi-
nokur et al. [Eq. (2)] is also shown.

FIG. 9. (a) Heat capacity C, /2Nk& vs normalized tempera-
ture 2k&T/NEJ for a simulated 50X50 ordered array in the
presence of magnetic fields, f=0, ~, 5, —,'o, and 2', . (b) Compar-
ison of T, (f)/T, (0) vs f between mean-field theory and Monte
Carlo simulations.

curves approach the mean-field form as N is increased
(see Fig. 8). Since the part of the heat-capacity curve
which has the steepest slope (usually where C, is about
half-maximum) corresponds to the discontinuous jump at
T, on the mean-field theory curve, we take the tempera-
ture at which this occurs to be T, . From our MC simula-
tions, we were able to confirm that T, does indeed scale
with N, as was predicted by our MF calculations. '

When a field f=p/q is present in the ordered-array sys-
tem, we found that T, =NEJ/2k'')/q [see Figs. 9(a) and
9(b)], again agreeing with our MF calculations.

2. Disordered arrays

To simulate disordered arrays, we have introduced dis-
order into our system by randomly varying the mean dis-
tance A~ between the parallel wires of each orthogonal
set. Specifically, we have uniformly distributed the spac-
ings by up to +0. lhx in the arrays we refer to as having
10%%uo disorder and by up to +0.5hx in arrays we refer to
as having 50% disorder. Because the disorder introduced
into the system is purely geometric' and therefore only
affects the A; term in the Hamiltonian [Eq. (1)], disor-
dered and ordered arrays show identical behavior in zero
field.

Figures 10 and 11 show T, vs f for the 10% and 50%
disordered arrays, respectively. As a basis for compar-
ison, T, vs f, as derived from the analysis of Vinokur

0.8
Ref. 5

—~ - Monte Carlo

0.6

0.4

10

FIG. 11. Normalized transition temperature 2k~ T, /NEJ vs
field f for a simulated 50% disordered 20X20 array. All data
shown are an average of five MC runs —all of different disor-
dered arrays. T, scales with N and f in the same way it does in
the 10% disordered array. However, no peak in T, at f- I
occurs in the 50% disordered array. For comparison, T, de-
rived from the analysis of Vinokur et ol. [Eq. (2)] is also shown.

et al. [Eq. (2)], is also shown on the same plots. As be-
fore, we can define T, for four difFerent regions. For
f &1/N, T~=NEJ/2k~. For 1/N &f &1/N,
T, =Ez/2ka&f . This relationship is in agreement with
our mean-field-theory analysis and with the first-order
approximation of Vinokur et al. of T, for extremely
small fields [Eq. (4)] using the relationship H/Ho =fN.
%'e note, however, that, as shown in Figs. 10 and 11, T,
slightly differs from the exact form of T, [Eq. (2)] predict-
ed by Vinokur et al. For 1/N &f & 1, we see that T,
rises with respect to f, very much as it does in ordered
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B. Phase-coherence modulus

Figure 12 shows the phase-coherence modulus M as a
function of temperature for array sizes % =20, 30, and
50. As can be seen in the figure, long-range phase coher-
ence sets in gradually in these samples. This particular
characteristic —the gradual onset of long-range phase
coherence —is very similar to that of ordered convention-
al arrays. ' For T) T„M asymptotically approaches
zero as shown in the figure. This approach to zero is
slower for smaller arrays than for large ones. In the limit

0.8

0.6

MF Theory
20 x 20

o 30 x 30
~ 50 x 50

0 4

0.2

0
0

OO
~ OO

~ ~ ~ ~

'0 0.5 1 1 5 2
2k T/NE

2.5

FICx. 12. Normalized phase-coherence modulus M/2N vs
normalized temperature 2k& T/NEJ for simulated arrays of size
20X20, 30X 30, and 50X 50 in zero field. For a comparison, the
magnitude of g, originally shown in Fig. 2 and which is
equivalent to the normalized phase-coherence modulus for an
infinite array in zero field, is also plotted.

arrays for this region. This behavior was not predicted
by Vinokur et al. ; the exact relationship between T, and

f in this regime is unknown at the present time.
The small peak in T, at f—1 is observable in only the

10%, and not the 50%, disordered array. We attribute
this peak, which is also found in our mean-field calcula-
tions with the same disorder (see Fig. 7), again to the fact
that the array is not fully disordered. When f )& I, we
find that r, asymptotically approaches -0.75EJ&N /
ks, for both the 10%%uo and 50% disordered arrays. This
asymptotic value is lower than that obtained by our
mean-field calculations (T, -0.85EJ&N /k~). In addi-
tion, we note that Vinokur et aI. predicted that T, would
asymptotically approach (EJVN )/2k'. To see if the
discrepancy among the different asymptotes was due to a
size effect, we simulated 10%%uo and 100%%uo 50X50 disor-
dered arrays to compare with the results on 20X20 ar-
rays shown in Figs. 10 and 11. The asymptotic value of
T, of these arrays at high fields is still -0.75EJ&N /ks,
suggesting that size is not a crucial factor. The consisten-
cy of our results for 10% and 50% randomness suggests
that the degree of randomness is not the source of the
discrepancy. Thus the discrepancy among the asymp-
totes derived from our simulations, our mean-field calcu-
lations, and the analysis of Vinokur et al. is presently of
unknown origin.

of X~ ~, M would equal zero for T~ T„as in the
mean-field plot, shown for comparison.

IV. DISCUSSION

The size effects we have discussed in arrays with long-
range interaction are unlike those found in conventional
Josephson-junction arrays. Conventional arrays undergo
a Kosterlitz-Thouless (KT) phase transition in which
thermally activated vortex-antivortex pairs become
bound below a certain temperature TKz which is in-
dependent of the actual size of the array. TK~ is related
to the vortex-core energy which does not change with ar-
ray size for X~ ~ and, hence, neither does TK~.

Finite array size, however, does affect the nature of the
KT transition in conventional arrays. The resistive be-
havior of these arrays can be described by the relation-
ship V o- I' '. In the ideal case, i.e., an infinite array, the
exponent a (T) is predicted to jump from 3 just below
TKz to 1 just above. ' This sharp jump, known as the
universal jump in the superAuid density, indicates the
unbinding-binding of the vortex-antivortex pairs at TK~.
Finite array size leads to deviations from this theoretical
prediction. In particular, it causes a smearing of the
jump in a ( T), in part due to nucleation of free vortices at
all temperatures T) 0 (Ref. 16) and to the logarithmic
spatial interaction of vortices. ' The overall effect is a
less pronounced KT transition in a finite-sized array.

In the case of arrays with long-range interaction, we
find that the transition to the superconducting state
occurs at a temperature T„which is very much depen-
dent on the actual size of the array. This dependence on
size occurs because the number of nearest neighbors in
the array continuaHy grows with increasing array size.
Indeed, even in the limit of X~~, these novel arrays
cannot be considered as models of two-dimensional sys-
tems. ' Because T, is size dependent and does not de-
pend on any type of vortex-antivortex interaction, we de-
scribe arrays with long-range interaction as truly mean-
field-like.

We have fabricated both ordered and disordered
Josephson-junction arrays with long-rang interaction and
have performed both ac-susceptibility and dc-transport
measurements on them. Our results are presented in a
companion paper.
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