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The band-gap renormalization of optically excited semiconductor quantum wells due to exchange-
correlation effects in the electron-hole system is studied here. The first-order self-energies for this two-
component electron-hole plasma are calculated exactly within the random-phase approximation. All in-
tersubband interactions are included fully, and they are found to make significant contributions to the
self-energies and to their subband dependences. Particular attention is paid to the subband dependence
of the band-gap renormalization. These calculations are made for realistic systems with finite well
widths, finite barrier heights, and finite temperatures. The results are compared with recent experimen-
tal data for In,Ga,_,As/InP and GaAs/Ga,_, Al As quantum wells.

I. INTRODUCTION

The renormalization of the band gap in semiconduc-
tors due to high carrier densities is an important many-
body effect that has been studied in bulk systems for some
time. This effect is of technological importance in, e.g.,
diode lasers and optical bistability. It is most often seen
under optical excitation when enhanced densities of both
free electrons and holes are present. Under these cir-
cumstances the band gap is found to decrease with in-
creasing carrier densities due mainly to the exchange-
correlation effects in the electron-hole plasma. Recent
experimental results on semiconductor quantum-well sys-
tems have allowed this effect to be studied for varying
dimensionality.'”* Among the most interesting experi-
ments to date are those** on In,Ga,_,As/InP and
GaAs/Ga,;_,Al As quantum-well systems which show
that the renormalization depends on the subbands in-
volved in the transition.

The band-gap renormalization arises because the self-
energies of the band-edge states shift due to Coulomb in-
teractions among free carriers. The local-density approx-
imation (LDA) gives a simple and useful description of
these interactions in the ground state of many inhomo-
geneous systems and has been shown to give a reasonable
approximation to the overall band-gap renormalization in
quantum-well systems.* Its applicability in quantum-well
systems with their rapidly varying densities is not clear,
however, and it has been found to underestimate the sub-
band dependence of the renormalizations in them.* In
order to obtain a quantitative understanding of the renor-
malizations and of their subband dependence in
quantum-well systems fully dynamic random-phase-
approximation (RPA) self-energy calculations are done
here. The need to do full self-energy calculations to un-
derstand band-gap renormalizations has been pointed out
in connection with single carrier modulation-doped quan-
tum wells by Zimmermann et al.’> In order to make
quantitative comparisons with experiment we will show
that all intrasubband and intersubband Coulomb interac-
tions for the two-component electron-hole system should
be included and that the calculations should be done for
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realistic systems with finite well widths, finite barrier
heights, and finite temperatures.

Previous work on the band-gap renormalization of op-
tically excited semiconductor quantum wells has been
done by several groups® ® who have employed a number
of different approximations. In some of the most recent
work, Ell and Haug? used a plasmon-pole approximation
for the exchange-correlation shifts. It has been argued®
that this approximation is inadequate. This is due to the
questionable validity of the plasmon pole approximation
for quasi-two-dimensional systems as well as the fact that
these authors used a Padé approximation to solve the
Dyson equation for the screened Coulomb-interaction
matrix and that they neglected the intersubband contri-
butions to the self-energy. Das Sarma, Jalabert, and
Yang® have calculated the RPA self-energy at zero tem-
perature for a model system with infinite barrier heights,
but they only considered a single electron and single hole
subband. Inclusion of the higher subbands can be expect-
ed to have a significant effect on the self-energies. In re-
lated work, mentioned above, Zimmerman et al.’ have
performed a RPA calculation of the band-gap renormal-
ization of a one-component system in a modulation-
doped semiconductor quantum well neglecting only the
intersubband interactions.

In the present work we give a complete treatment of
the fully dynamical self-energy and the resulting
subband-dependent band-gap renormalization in the
RPA for a two-component electron-hole system. In par-
ticular, no approximations are made in solving for the
screened Coulomb-interaction matrix. Also the calcula-
tions are made for finite well widths, finite barrier
heights, and finite temperatures. Among the important
features of this work are the full inclusion of intersub-
band and intrasubband interactions for the two-
component system. We find that the intersubband in-
teractions make significant contributions to the renormal-
ization and in particular to its subband dependence.
These results are compared with experimental data and
with the results of the LDA.

The formalism for the self-energy calculation in the
RPA is given in Sec. II. Numerical results and compar-
ison with experiment are discussed in Sec. III.
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II. SELF-ENERGY

The RPA self-energy is the energy of a carrier interact-
ing with itself via the RPA screened Coulomb interac-
tion. In this approach the self-energy of the electron (or
hole) is calculated by taking the propagation of the car-
rier between emission and absorption of the virtual
plasmon to be that of a noninteracting particle. In this
case for a symmetric quantum well, the first-order self-
J

d’*k 1

S(qio)==3 [ o

where G is the noninteracting Green’s function

Gk, in,)=[io,—€, k)],

J. C. RYAN AND T. L. REINECKE 47

energy is diagonal in the subband index so that the renor-
malized subband edge is given by

e,(0)=¢€,(0)+Re [z(o,ea(on] , (1)

where the index a refers both to the type of carrier (elec-
tron or hole) and the subband index. The RPA self-
energy is given by

2 BzVaa aa’ (q—k, o, in')Ggr(k,iwv,) s 2)

(3)

€,(k) is the noninteracting subband energy relative to the chemical potential, and the Matsubara frequencies are

w,=2v+1)7/B, v=0,£1, %
obeys the Dyson equation

Vaa’,B‘ﬁ(q’i(‘)):Vga',B’B(q)+ 2 Vga
a’'p’
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. and B=(kyzT)~!. The RPA screened Coulomb interaction (plasmon propagator)

Va"a',ﬁfﬁ"(q,iw) (4)

with the unscreened Coulomb matrix elements given in terms of the subband envelope functions, 1,(z), b

2me?

Vo paw(@)= f PE(2)Pq(2)exp]

—qlz —z'| Wp(z" Wp(z')dz dz’ (5)

where g is the magnitude of the momentum parallel to the quantum well. The noninteracting polarizability is expressed
in terms of the noninteracting eigenvalues and the Fermi distribution functions, ng, as

o d% nplek+q)]—nglegk)]
g(q’”")_fzvz ek +Q) —exk)—io

In Eq. (5) the subband indices can be interpreted as a
carrier in subband « being scattered into subband a’ by a
carrier in subband B which is scattered into subband S'.
For instance, Vg oo is an intrasubband interaction where
all carriers remain in subband zero, ¥V, ;o is an interac-
tion in which a carrier in subband one scatters off a car-
rier in subband zero but no intersubband transitions are
induced, and ¥y, ;, is an intersubband interaction in
which both carriers are scattered from subband zero to
subband one. Interactions that couple the intersubband
and intrasubband modes, such as Vy, 1;, are all zero in a
symmetric well because the wave functions have definite
parity.

In studying the many-body effects due to carrier-
carrier interactions in compound semiconductors it has
often been found!® that the dynamical interaction of the

J
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f

carriers with LO phonons can be represented well by
screening the Coulomb interaction with the low-
frequency dielectric constant €, in the so-called “e, ap-
proximation.” This procedure is used here as seen in Eq.
(5).

The frequency sum in Eq. (2) can be performed by us-
ing the spectral representation of V,

do’ ImVaa B’B(q’w )

Ve, +
ad',B'B q) f o' —iw ’

Vaav“B'B(q,ia)):

)

where the retarded version of V is obtained by the analyt-
ical continuation iw—w+i8. The retarded self-energy
can then be obtained from the same analytic continua-
tion,

d’k
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where Ae=w—¢€,(k), and nz and np are the Bose and
Fermi distribution functions, respectively.

Use of the above equilibrium formalism in the present
case is only possible because each of the components
(electrons and holes) can be considered to be in
quasiequilibrium. This is because the intraband relaxa-
tion rate for the electrons and that for the holes is much
greater than the interband recombination/relaxation
rate. The noninteracting quasiequilibrium chemical po-
tentials are calculated separately for each type of carrier
by assuming a quasi-two-dimensional system of the sheet
density, n (n,=n,), at finite temperature. The quasi-
chemical potential of carrier i obeys

exp(BHtmn /m;)=[](1+exp{Blu;, —¢€;,(0)1}) , 9)

where the product extends over subbands, @, and m; is
the effective mass of carrier i. When only two subbands
are considered, a closed form expression for u is obtained
for each type of carrier,

_ €,(0)+¢€,(0)
2

+ éln{ [sinh®(Be,y/2) +exp(BHmn /m)]'2

—cosh(Ben/2)} , (10)

where €,5=¢€,(0) —¢,(0).

There are several different names for various combina-
tions of the terms in Eq. (8). The first term is called the
screened exchange for obvious reasons, and the last two
are the residue and line terms, respectively.!! The sum of
the last two terms is also known as the Coulomb-hole
self-energy, and it describes the energy of interaction of
the electron with the depleted density of surrounding
electrons due to exchange and correlation.

For zero temperature the self-energy can be obtained
by letting S— 0. In this limit the sequence of Matsubara
frequencies becomes a continuum, and the frequency sum
becomes an integral as 1/B§_‘,—>fda)/27r. IT° can also
be integrated analytically at zero temperature. As a prac-
tical matter of calculational efficiency we note that the
line term contains an integrable singularity since both w
and Ae go through zero. The substitution w=|A€|tand is
found to remove the singularity and also to map the
infinite frequency domain to a finite 6 domain which
gives for the line term in Eq. (8)

—sgn(Ae)Ef—kz;ka—f%[Vaa,,aa,(k,illetane)

- Vga',aa’(k)]
for0<O<mw/2.

III. DISCUSSION

In order to discuss the present results for the band-gap
renormalization we have made calculations for a 103-A
GaAs/Ga;_,Al,As quantum well for which experimen-
tal data are available. First we consider the several con-
tributions at zero temperature. The numerical evalua-
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tions begin with the eigenfunctions and eigenvalues of the
finite square well, with barrier heights determined sepa-
rately for electrons and holes.!? Significant population is
found only in the first two electron and first two hole sub-
bands, and therefore only those are included in the calcu-
lations. Heavy-hole subbands are included in the para-
bolic approximation. We have found that the effects of
including the light-hole subbands are small (typically ~3
meV in the renormalization) because of their higher ener-
gy and lower occupation, and therefore they are neglect-
ed here. We have also found that the Hartree contribu-
tions to the self-energies are small (~2 meV). This
occurs because the net charge density is nearly zero at all
points. The renormalization of the band gap is the sum
of the electron and the hole self-energies at the band
edges. The quantities of interest here are the density-
dependent changes in the le-1hh transition (first electron
subband to first heavy-hole subband) and in the 2e-2hh
transition. The difference between these transition ener-
gies is referred to as the “splitting” between them.

We first consider the screened exchange and Coulomb-
hole contributions to the renormalization of the band
gap. Figure 1 shows this decomposition with the total re-
normalization at zero temperature. The most obvious
point is that the splitting of the renormalization of the
two subband transitions is due mainly to the screened ex-
change. This is because the screened exchange depends
upon occupation, and the higher-lying subbands are al-
ways less occupied than are the lower ones. The
Coulomb-hole contributions, on the other hand, depend
upon how effectively the Coulomb field of the particle is
screened and are relatively insensitive to the details of the
subband occupation. The Coulomb-hole contribution to
the splitting of the renormalization is therefore less. The
kinks in the curves occur at the points at which the
higher subbands begin to fill. At higher temperatures, as
will be seen below, these features become thermally
smeared.

It is particularly interesting to look at the intersubband
and intrasubband contributions separately. Figure 2
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FIG. 1. The screened exchange (dashed lines) and Coulomb-
hole (dotted lines) contributions to the band-gap renormaliza-
tions and the total renormalizations as functions of density for a
103-A GaAs/Ga,_, Al, As quantum well at zero temperature as
a function of electron and hole sheet density n.
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FIG. 2. The intrasubband and intersubband contributions to
the band-gap renormalizations of a 103-A GaAs/Ga;_, Al As
quantum well at zero temperature as a function of sheet density
n.

shows these terms along with the total renormalization
for zero temperature. We see that the magnitude of the
intersubband contribution is significant, although some-
what smaller than the intrasubband contribution. The
sign of the splitting between the lowest and next-lowest
transition is opposite for the intersubband and intrasub-
band contributions, and therefore the intersubband con-
tribution decreases the splitting between the le-1hh and
the 2e-2hh renormalizations. This is because the
screened exchange is primarily responsible for the split-
ting and the lowest subband and has the greatest occu-
pancy. Therefore the intersubband screened exchange is
greater for the upper subbands, whereas the opposite is
true for the intrasubband screened exchange.

We have obtained the renormalizations at finite tem-
perature by performing the Matsubara summations in
Eq. (8). Results for the 103-A GaAs/Ga,;_, Al As quan-
tum well are given in Fig. 3. There it is seen that the
effects of finite temperature decrease the overall renor-
malization and decrease the splitting. This behavior re-
sults from the increased occupation of higher-lying
momentum states and the relative increase of the occupa-
tion of the upper subbands at higher temperature.

In the LDA the exchange-correlation interaction is re-
placed by a local potential which is obtained from bulk
results. In the present case we must generalize the LDA
to two components, which we do by fitting to bulk calcu-
lations for two-component systems. The exchange-
correlation potential is given by vi (1)
=8E , [n,(r),n,(r)]/6n;(r), where E is the exchange-
correlation energy. From calculations for bulk systems it
is known that the exchange-correlation energy is to a
good approximation independent of the material and
band structure provided that the units of length are given
by a set of excitonic units appropriate for each materi-
al.!* In addition, for bulk systems the contributions to
the electron and hole self-energies are nearly equal and
nearly independent of wave vector.!* Therefore, we
divide the exchange-correlation energy equally between
the electrons and holes,
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FIG. 3. The band-gap renormalizations of a 103-A
GaAs/Ga;_,Al,As quantum well at zero temperature (dotted
lines), and at 300 K (dashed lines) as a function of sheet density
n from the self-energy calculations in the text. The solid lines
give the results of the local-density approximation at 300 K de-
scribed in the text. In each case the lower curve corresponds to
the transition between the lowest electron and lowest heavy-
hole subband and the upper curve corresponds to the second
electron subband to second heavy-hole subband transition.
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E,.[n,(r),n,(r)] -
=7f[ne(r)exc(ne(r))+nh(r)exc(nh(r))]dr , (11)

where €, is the exchange-correlation energy per
electron-hole pair. We have fit €, to the detailed results
for two-component bulk systems.!’ For the density
dependence we use a form like that suggested by Hedin
and Lundquist'® and obtain

vi(ry=—=2[14+B(ri/AIn(1+ 4 /r))]/mar! , (12)

where i=e,h, a=(4w/9)/3, and r! is given by
n;a}=4m(r!)*/3 for each component. We obtain 4 =21
and B =1.89. The unit of energy is the excitonic Ryd-
berg e?/(2€4a, ), where the unit of length is the excitonic
Bohr radius a, =#%€,/e’u. Here p is the optical mass
uw '=m,'"+m; ', where m,,m, are the electron and
hole masses.

Results obtained from self-consistent LDA calculations
are shown in Fig. 3 for the case of the 103-A
GaAs/Ga;_,Al,As quantum well at 300 K. Bulk values
of band parameters are used in these calculations, and the
densities are taken to be the total densities. It is seen that
the overall magnitude of the renormalization in the LDA
is somewhat less than that of the self-energy calculations,
the density dependence is less strong, and that the split-
ting between the transitions for the different subbands is
less. In the LDA the splitting between the subbands
arises from the different spatial dependences of the total
charge density in the different subbands, and it does not
take into account the different occupation of the sub-
bands. Thus the LDA should not give as complete an ac-
count of the subband dependence of the band-gap renor-
malization as do the self-energy calculations.

We have also made two modifications in this simple
LDA which permit it to account better for the band-gap
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renormalization of quantum-well systems.*!® By using
an exciton Rydberg and an exciton Bohr radius appropri-
ate for the quantum-well system, we find* that the overall
magnitude is in better agreement with experiment. This
procedure is motivated by scaling with energy and length
units as done in bulk systems.!* In addition, by calculat-
ing the renormalization of each subband in terms of the
occupancy of that subband alone the splitting of the sub-
band renormalizations is represented better.* This
modification is motivated by the subband dependence of
the screened exchange found in the present calculations.
These modifications produce a simple and useful way of
estimating the band-gap renormalizations and splittings
in quantum-well systems.

We compare the present theoretical results from the
full self-energy calculations with the recent high-density
photoluminescence data of Lach et al.* on
GaAs/Gag ¢3Aly 37As quantum wells at 300 K and those
of Kulakovskii et al.>!” for Iny 53Gag 47As/InP quantum
wells at 77 K. These experiments were made using mesa
structures in order to obtain high uniform carrier densi-
ties. They were analyzed using detailed line-shape fits
which included the full valence-band nonparabolicity.
The comparison of experiment and theory for a 103-A
GaAs quantum well is shown in Fig. 4 and comparisons
for In,Ga,_, As quantum wells of 80- , 150-, and 190-A
widths are shown in Figs. 5(a)-5(c). The kink remains in
the theoretical results at 77 K because the thermal energy
is small compared to the subband separations, whereas at
300 K the curves are smoother.

From these results it is seen that the overall magnitude
of the renormalizations is in reasonably good agreement
with experiment. The subband splitting, however, is not
in quantitative agreement with experiment, and the devi-
ations are seen to vary from system to system. For exam-
ple, the agreement is quite good for the 80-A
In, Ga,_,As quantum well and less good for wider quan-

0 r T T T T

-10 | E
-20

-30

(meV)

> -40

AE

-50

-60

T

! 1

-70
12.0

12.4 12.6
log, ,(n)

12.2

FIG. 4. The theoretical results (solid lines) for the band-gap
renormalizations of a 103-A GaAs/Ga,_,Al,As quantum well
at 300 K compared to the experimental results of Lach et al.
(Ref. 4). The lower curve and squares are for the transition be-
tween the lowest electron and lowest heavy-hole subbands, and
the upper curve and circles are for the second electron subband
to second heavy-hole subband transition.
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tum wells where the theoretical results give decreasing
splitting with increasing well widths. The reason that the
theoretical splittings are greater for narrower wells is that
the narrower wells have larger intersubband energy sepa-
rations which decrease the intersubband Coulomb in-
teractions. The total splitting between the transitions is
decreased by the intersubband contributions, and there-
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FIG. 5. Theoretical results (solid lines) for the band-gap re-
normalizations of In,Ga,;_,As/InP quantum wells at 77 K
compared with the experimental results of Kulakovskii et al.
(Refs. 3 and 17) for (a) 80-A well width, (b) 150-A well width,
and (c) 190-A well width. The lower curves and squares corre-
spond to the lowest electron to heavy-hole transition, and the
upper curves and circles to the second electron subband to
second heavy-hole subband transition.
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fore the splittings are greater for narrower wells.

Vertex corrections are not included in the RPA. These
corrections may play an important role in lower-
dimensional systems. In the present work they are ex-
pected to increase the intersubband energy separation by
the depolarization shift, which will increase the renor-
malization splittings. We also note that the full nonpara-
bolicity of the valence bands has not been taken into ac-
count in these calculations, but we do not expect this
feature to have a large effect on the theoretical results be-
cause they are not strongly dependent on details of the
band structure. Finally we note that there may be con-
siderable uncertainty in the experimental results because
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they are obtained from multiparameter fits to photo-
luminescence spectra for the temperature, subband densi-
ties, and subband renormalizations. This may account in
part for the varying quality of the comparisons between
theory and experiment in the different systems.
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