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Magnetoplasmon excitations in a two-dimensional square array of antidots

Danhong Huang
Department ofPhysics, The University ofLethbridge, Lethbridge, Alberta, Canada TIE 3M4

Godfrey Gumbs
Department ofPhysics and Astronomy, Hunter College and the Graduate Center, City University ofNew York,

695 Park Avenue, 1Vew York, Pew York 10021
(Received 14 July 1992)

The single-particle energy eigenvalues and eigenfunctions as well as the magnetoplasmon dispersion
relation are calculated for a Landau quantized two-dimensional square array of antidots. Comparison is
made with recent measurements of the magnetoplasmon excitation energies for antidots. Some unique
features observed in the experiment of Kern et al. [Phys. Rev. Lett. 66, 1618 (1991)]have been repro-
duced in numerical calculations and explained theoretically.

I. INTRODUCTION

Recently, submicrometer lithographic technology has
been used to produce quantum dots which contain only a
small number of electrons in discrete energy levels. '

Various properties of quantum dots have been extensively
studied, including the electronic eigenstates which have
been obtained with the use of self-consistent calcula-
tions, magnetoplasmon excitations, magnetization insta-
bility, magnetoresistance, and many-particle tunneling.
The reversed structure to quantum dots is antidots which
are obtained by etching an array of microscopic holes
into a high-mobility two-dimensional (2D) electron-gas
(EG) conductor. The introduction of this strong spatial-
ly modulated potential leads to dramatic commensurabil-
ity effects at low temperature in a uniform external mag-
netic field B.' In this array of artificial scatterers, there is
pronounced structure in the magnetoresistance, anoma-
lous low-field Hall plateaus, and a quenching of the Hall
effect near B=0.' Kern et al. have reported on the
unique collective excitation spectrum of antidots. It con-
sists of a high-frequency branch which starts with an os-
cillating and negative B dispersion and then increases in
frequency with the magnetic field. A second low-
frequency branch corresponds at high magnetic fields to
edge magnetoplasmons which perform classical skipping
orbits around the hole. There is anticrossing of the
modes as the magnetic field increases. Some properties of
antidots can be explained classically, but many interest-
ing and anomalous features seem beyond the scope of
simple electron orbit analysis. For example, the negative
B dispersion and the oscillations near B=0 of the high-
frequency mode can only be explained quantum mechan-
ically. With a simple model for antidots, we numerically
calculate the single-particle energy eigenvalues and eigen-
functions for a square array of quantum antidots in the
presence of a perpendicular magnetic field. We have
found that there is a strong mixing of the Landau bands,
due to the resonant coupling between umklapp scatter-
ings. The peaks in the Fermi energy arise since some
states in the Landau bands have been raised to higher en-
ergy levels. The calculated magnetoplasmon dispersion

relation has qualitatively reproduced the negative B
dispersion, as well as the oscillations and anticrossing ob-
served in a recent experiment.

The oscillating dispersion of the edge modes near B=0
is attributed to the oscillations in the single-particle Fer-
mi energy and energy of the edge state, i.e., the resonant
coupling between the umklapp scatterings. The negative
dispersion of the edge modes near B=0 is a result of the
removal of the degeneracy by the Coulomb interaction
between the 2', cyclotron mode and the edge mode,
which repel each other. It is also partly due to the in-
crease of Landau-level degeneracy with magnetic field,
which leads to the usual negative dispersion for edge
modes. The anticrossing is directly attributed to the
Coulomb interaction between the electrons, which is par-
tially screened in the presence of weak scattering. The
appearance of the 2m, cyclotron mode is due to the fact
that some degenerate states in the first two Landau levels
have been raised to higher energy levels. The intensity of
this optical transition is nonzero due to the mixing of the
Landau wave functions.

The rest of this paper is organized as follows. In Sec.
II, we describe our model for antidots and derive the ei-
genvalue equation for the single-particle energies of elec-
trons in a quantizing external magnetic field. In Sec. III,
we derive the dispersion relation for magnetoplasmons in
a planar array of antidots. Section IV is devoted to the
conclusions derived from the results of our calculations
and some discussions.

II. SINGLE-PARTICLE EIGENSTATES

Our model consists of a 2D square array of quantum
antidots with lattice constants a, in the x-y plane. The
electrons with effective mass m * are constrained to move
in the x-y plane where the antidots, which we simulate by
5-function potential scatterers, are located. The magnet-
ic field B is in the z direction, perpendicular to the plane
containing the array. In the Landau gauge, the vector
potential is given by A=Bxy, where y is a unit vector
along the y axis and the Hamiltonian is
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with free electron and interaction parts given, respective-

( i A—V'+ eBxy )
2P7l

(2)

V,„,= Vo g g 5(x —ja)5(y —j'a),
j= —oo j'= —oo

(3)

iky
ql' '(x,y)= p' '(x —Xo),

&2m.
(4)

with P' '(x) satisfying the following equation:

Pl COc+ (x —Xo) P' '(x)=E' 'P' '(x)2' dx

where the positive 5 potential in the x-y plane simulates
the 2D array of antidots. Vo/a is the peak strength of
these 6-function scatterers. The states for electrons with
up and down spins are treated here as being degenerate,
but spin effects can be incorporated into our formalism.
For a homogeneous 2D EG in the absence of scatterers,
the eigenstates are simply Landau wave functions, given
by

In this notation, k is the wave vector in the y direction,
co, =eB/m* is the cyclotron frequency, LH=(R/eB)'
is the magnetic length, n is the Landau quantum number,
and X0= —kLH = —Ak/eB is the guiding center. In Eq.
(6), H„(x) is the nth-order Hermite polynomial. When
there are no scatterers, the energy eigenvalues are in-
dependent of the wave vector k. In our numerical calcu-
lations, we allow the continuous wave vector k to be
discrete. Using periodic boundary conditions in the y
direction, we have

km
2& vl

a

%(x,y)= g C„%'„' (x,y),
n, m

where the basis set is given by

where L =X a is the length of the 2D array in
the y direction, and the quantum number
m =0,+1,+2, . . . , +~. We expand the eigenfunctions
for the 2D array of antidots in terms of the complete set
of Landau wave functions for a homogeneous 2D EG.
This yields

where
exp [i2~m (y /L~ ) ]ql'„' (x,y)= (10)

1/2

2"n 1L~

(x —Xo)
X exp

2LH
H„

x —X0

LH
(6)

with Xo '= —2n.a(LH/a) (m/N ). Furthermore, this
basis set is orthonormal and the energy eigenvalues are
the solutions of the secular equation

2)et[(E„' ' —E)5„„.5 +(n', m'~V, „,~n, m )}=0, (11)

E„' '=(n+ ,')fico, . — with

I. /2 I. /2
(n', m'~Vi„, ~n, m ) = f dx I dy ql'„.',(x,y)Vi„,@~„(x,y)

X

+N„ /2

j=—N /2

V0
5(m —m' lN )—.(ja —Xo ')P'„' (ja —X' ')], (12)

where 1=0,+1,+2, . . . , + ~ stands for the contribution due to umklapp scattering. Here, we have assumed that the
length of the 2D array in the x direction is N a. This imposes an upper limit on the quantum number m given by

~
m

~

~ bN N /2, where b =N/$0 is a scaled magnetic field with the flux quantum Po=h /e and C&=Ba being the mag-
netic Aux passing through the square region between antidots. The eigenfunctions can be obtained from the Jth eigen-
vector [C„],after numerically diagonalizing the matrix in Eq. (11). Since the eigenvector is normalized, we have

~C„~ = 1 for any value of J. The scaled scattering strength is written as u0 =2m *Vo/(2M &2). Also, we intro-
duce the dimensionless variables x =x /a, y =y/a, and the scaled energy e=E/A'co, . In a straightforward way, we ob-
tain

2)et[[(n+ ,') e]5„„5 —+(—n', m'~v, „,~n, m ) ] =0, (13)

where
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exp H„

and the corresponding eigenfunction is

"tI2m[xb+mIN ] exp[i2m(mIN»)y]

QN„
(15)

In our finite-size calculations, we truncate the set of
quantum numbers [n, m ] by taking im i (M„and
n (N„, where M„=bN N I2. In this way, we have to-
tally included bN„Brillouin zones and the dimension of
the matrix is Nd=bN„N (N„+1). From these parame-
ters, we can calculate the Fermi energy E~=EJ—N /2,tot

where N„,=N N~a n2D is the total number of electrons
in the square array and n2D is the areal electron density.
In this notation, the charge-density distribution can be
expressed as

p(x,y) =
1 J Nt t/2

%q(x,y )i

In our numerical calculations, we have taken

N =N =10, N„=3, —5(x ~5 and —5(y (5 .

When boundaries are introduced in the y direction, the
wave vector k is discrete [see Eq. (8)]. The number of
guiding centers between adjacent antidots varies from five
to twenty over the range of magnetic fields used in our
calculations. The results obtained only change by a few
percent when N increases, for fixed values of N~ and N„.
The introduction of boundaries in the x direction is
equivalent to putting two infinite potential barriers at

x =+N„a/2. When the amplitude of the wave function
is large near the boundaries, we find the wave function
changed with N . However, if the wave function only
has a significant amplitude away from the boundary re-
gion, it is insensitive to the boundary change. Since there
are many electrons in this array, the quantum number J
for the topmost occupied state is large. We find that the
amplitudes of the wave functions with large values of J
are vanishingly sma11 near the boundaries but large away
from them. Throughout this paper, we are dealing with
the low-lying excitations. Therefore, the topmost occu-
pied state is taken to be the initial state for the excita-
tions; the excitation energies as well as the form factors
become insensitive to the value of N„we are using. In
choosing N„=3 we are including four Landau levels.
Here, we are concentrating on the transitions between the
two lowest Landau bands. Only neighboring Landau lev-
els are found to have significant mixing. As a result, the
inclusion of four Landau levels is a good approximation.
The convergence of the numerical results is ensured by
requiring the final results to be insensitive to the choice of
the parameters N, N„, and N„.

Figures 1(a) and 1(b) show the square of the eigenfunc-
tions for different scattering strengths. The stronger the
scattering, the more localized the eigenfunctions are in

FIG. 1. The square of the
eigenfunctions for different
eigenstates, scattering strengths,
and magnetic fields. Here, we
have taken N Xy 10 Np 3,—5 x 5, and —5 y (5 in
the calculations. Here, J= 10
and b=1.0. (a) u0=2X10'; (b)
u0=1X10 .
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U =1 x lo5
O U =1 x 104

O

the y direction. For the ground state with J= 1 in a weak
magnetic field, the distributions of the eigenfunctions in
the x and y directions are exponential and standing-
wave-like, respectively. As the magnetic field b increases,
this state gradually develops with its eigenfunction main-
ly distributed near the left-hand side of the 2D array.
However, the spread in the x direction of the eigenfunc-
tions for the excited states with J )&1 is large, but their
evolution to an edge distribution is suppressed. The
plane waves in the y direction, associated with various
guiding centers in the Landau wave functions, experience
correlated multiple rejections from the scatterers to form
these scattering states. Under strong scattering and an
intense magnetic field, we find a puddlelike distribution.
For weak scattering, increasing the magnetic field can
delocalize the eigenfunction in the x direction.

In Figs. 2(a) and 2(b), we plot the energy eigenvalue
spectrum as a function of the reduced magnetic field b for
different scattering strengths up. These results show that
the original degenerate Landau levels are split and ex-
panded into bands due to the removal of the degeneracy
by scattering. The periodicity of the lattice potential in
the y direction produces a gap at the Brillouin-zone
boundary from the Bragg reAection. (This gap is not due
to the discrete values of the wave vector k in the y direc-
tion, used in the numerical calculations. ) The single-
particle excitations discussed in this paper are related to
the transitions between the two bands separated by this
gap. There is strong mixing from the first two Landau
bands in the presence of scatterers. When the scattering
is strong, there exist eigenstates with negative energy at
some specific value of magnetic field. This is due to the
resonant coupling between umklapp scatterings in the
Landau levels. As a duality of these negative-energy
states, there also exist eigenstates with much higher ener-

gy. For weak scattering, an increase of magnetic field
suppresses the mixing between the Landau bands. There
are no eigenstates with negative energy in the weak-
scattering case. When the guiding center is close to the
scatterers, the related states will have much higher ener-

gy. Increasing u p produces the mixing. Although a
strong magnetic field reduces the overlap of the Landau

III. MAGNETOPLASMON EXCITATION
ENERGIES

The results of our calculations for the single-particle
energy eigenstates for an array of finite size are used to
calculate the rnagnetoplasrnon excitation energies for an-
tidots for which the electron-electron interaction must be
included. Assuming an external perturbation of the form

qx &y

LLJ

X
c}

6 +-+-~

u =1x10', n =2/a'

u =1x10, n =1/a

u =2x10', n =2/a'

u =2x10, n =1/a

eigenfunctions at different scattering sites, it also in-
creases the number of Brillouin zones participating in the
umklapp scattering. Due to the resonant correlated mul-
tiple rejections, part of the degenerate states in the Lan-
dau levels is raised to the higher energy states.

In Fig. 3 we have plotted the Fermi energy as a func-
tion of magnetic field b for different scattering strengths
uo and electron densities n&D. The scatterers change a
straight line into a decreasing and oscillating curve. The
peak in this curve implies that some states in the Landau
levels have been raised to higher energy levels. The peak
is larger for the case with lower electron density.

Figures 4(a) —4(d) present the charge-density distribu-
tions for various values of scattering strengths, magnetic
fields, and electron densities. Large magnetic fields great-
ly delocalize the charge-density distribution in the x
direction under weak scattering, as shown in Fig. 4(a).
Moreover, the edge distribution of the charge density is
favored for strong magnetic fields. The higher electron
density increases the spreading of the charge-density dis-
tribution near the central region along the x direction
[see Figs. 4(b} and 4(c)], while the strong scattering shar-
pens this distribution in the same region [see Figs. 4(b}
and 4(d}]. The charge-density distribution is almost uni-
form in the y direction compared to the x direction.

I
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CV
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I I ~

i
I

i
I

I I I

i.o
b=i /Q

o )p )4 )8
b=4/Q,

1.4 1.6 1.g 2.0
FICx. 2. The spectra of eigenenergies as a function of magnet-

ic field for different scattering strengths. Here, we have used
N Ny:10 Np 3 and 1 ~b ~2 in the calculations. We have
not shown the higher-energy levels, corresponding to the
backward-scattering edge states. (a) uo =2 X 10', (b)
Q0=1X10 .

b=4/Q

FIG. 3. The Fermi energy as a function of magnetic field for
different scattering strengths and electron densities. Here, we
have used Nz Ny 10 N =3, and 1+b ~2 in the calculations.



47 MAGNETOPLASMON EXCITATIONS IN A TWO-DIMENSIONAL. . .

FIG. 4. The charge-density distributions for di6'erent scattering strengths, magnetic fields, and electron densities. Here, we have
taken N =lVy =10, N„=3, —5~x 5, and —5&y ~5 in the calculations. (a) b=2.0, u0=1X10, n2D=1/a; (b) b=1.0,
u0=1X10, n2D=1/a; (c) b=1.0, uo=1X10, n20=2/a; (d) b=1.0, uo=2X10, n2D=1/a .

we obtain the induced Hartree potential from Poisson's
equation as

V'" ( q„,q, co ) = — 6n (q„q, co ),
&sexy

where q ~ =(q +q )' and e, =4~eoeb with eb being the
background dielectric constant. When the condition

I

~
e " ' V'"'(q„,q~, co)~/A'co((1 is satisfied, we

&x &y

only need to keep up to the linear term as a reasonable
approximation for the time-dependent wave function,
where the A'co=12. 4 meV for A, =100 pm (far-infrared
wavelength region). When this approximate wave func-
tion is used in linear-response theory, " we obtain the
density fluctuation due to the external perturbation as

fo«J ) fo«J)—
&n(x, y, &) =2 g (~IH& IJ') (J'l&(x —x')&(y —y')I J )

J,J' EJ.—EJ—%co

where the prefactor 2 comes from the spin degeneracy, and

(19)

I 1

qx &y

with V'"'(q„', q~, co) = V"'( —q„', —
q~, co). The Fourier transform of Eq. (19) is given by

5n (q, q, co)= f dx f dy e 5n(x, y, t)

= —2e g II& &(co)SJ g(q„, q ) g SJ.J(q', q')V' '(q„', q', ~),
I

&x &y

(20)

(21)
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where the polarization function and the form factor are
defined by

2 4me 2

sc,J= J,o4;J J,o X
q, q s9'

(22)
XSJo(q q» ) (30)

S~. z(q„,q )=I dx I dy e

X %z (x,y)%z(x,y), (23)

and V' '= V'" + V'"'. fo(E) is the Fermi function and
E is an energy eigenvalue. Here, we neglected the ex-

change and correlation part V"' which is believed to play
a small role in the present problem. Defining the matrix
elements

VJ J= g SJ z(q„,q»)V(q„, q, co),
qx qy

(24)

4m.e
Vx' E:

= g g Ili, J(co)St(, x(q„,q» )

q, q &sexy

XSJ q(q„, q )VJ. q, (25)

where Sz J(q, q )=Sz J ( —q, —
q )=Sz~(q„, —q ).

The energies of the magnetoplasmon excitations corre-
spond to the solutions of the secular equation

4menet
)
S~,S~, y—y, , ,(~)

q, q &s~xp

XSg (q„,q„)SJ, z(q„,q ) '=0 . (26)

At T=O K and in the random-phase approximation
(RPA), the polarization function is given by

gJ j(co) IIJ J(co)+ IIJ J'(co)

2(E,", ' —E,"')(n,, —n, )

g2 2 (E(o) E(o) )2J' J
(27)

for 1 ~ J ~ J', where the quantum number J is restricted
to the occupied states and J' to the unoccupied states.
Moreover, the occupation number can be calculated as

where VJ J.= VJ J, and making use of the self-sustaining
condition V'"'=0, we finally obtain the self-consistent
equations

Here, the off-diagonal matrix elements in Eq. (30) corre-
spond to the coupling between transitions to di6'erent ex-
cited states.

In our numerical calculations, we have taken
n 2D

= I /a so that N«, =N„N». Furthermore, the
Landau-level filling factor is vL =2~LHn2D=1/b Fo.r
each level, we have 2M„=bN N~ allowed states. If b ~ 1

we have 2M„~N„„/2 or vL ~ l. In our calculations, we
take N„=N» = 10, N„,= 100, N„=3, n2D = I/a,
m*=0.067m, (rn, is the free-electron mass), a=31.6
nm, and eb = 12.5. Furthermore, we have chosen
J=N«, /2 for the highest occupied state and J=N«„
2M„+1, 3M„ for the unoccupied states, as shown in

Figs. 5(a) and 5(b). From Figs. 5(a) and 5(b) we see that
the transition with constant b J=N«, /2 is associated
with the intra-Landau-level transition or edge mode at
strong magnetic field, while the transitions to the levels
with J=2M„+1, 3M„are related to inter-Landau-level
transitions or cyclotron modes at strong magnetic field.
For cyclotron modes, 6J depends on magnetic fie1d; this
is due to the increase in Landau-level degeneracy with
magnetic field. At low magnetic fields, the edge mode
with J=N„, has an energy which is higher than that of
the excited state with J=2M„+1. Here, both the Fermi
energy and the energy of the excited state with
J=ZM„+1 follow the third Landau level, while the edge
mode and the excited state with J=3M„ follow the
fourth Landau level. Due to mixing of the umklapp
scatterings, some states in the first two Landau levels are
scattered into higher energy levels. This leads to the
original second Landau-level state with J=3M„develop-
ing into a third Landau-level state at strong magnetic
fi|,ld. All three excited states are separated at b=1,
which is independent of uo. There is a level crossing be-
tween edge and excited states at b=1.2 under strong

V,

O

E
cv ~lO o

0 for J&N, , /2

1 for J N„, /2 . (28) 1.25
b=4/Q

1.75

(
O(

0.75 1.25
b=4/(I)

1.7S

2)et[A —fi co I]=0, (29)

where I is the unit matrix, and the matrix A is defined by

The three-level model can be solved analytically. When
more than three energy levels are included, we must solve
Eq. (26) numerically. In general, the spectrum is ob-
tained from the fo11owing eigenvalue equation:

FIG. 5. Eigenenergy levels EJ for the excited states and Fer-
mi energy as a function of the magnetic field with difFerent
scattering strengths. Here, we have chosen N =N~ = 10,
N„=3, m =0.067m„a =31.6 nm, nzD = 1/a, and
0.5~b ~2.0 in the calculations. The notations, i.e., (0), (A),
(+), and (X), correspond to J=N„, /2, N„„2M„+1,and
3M„, respectively. (a) uo=2X10', (b) u0=1X10 .
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3
V g

C)

4

0.75

b=i/Q
1.75 0.75 1.25

b=C/g
1.75

scattering. The second and third Landau-level states are
largely unaffected except at low magnetic fields, while the
edge and the highest occupied states are strongly modu-
lated by the scattering.

Figures 6(a) and 6(b) show the magnetoplasmon ener-
gies as a function of magnetic field for different scattering
strengths. For strong scattering, we can see two an-
ticrossings at b=0. 8 and 1.3, respectively. The higher
one is related to the coupling between the edge mode and
the 2', cyclotron mode, while the lower one is due to the
coupling between the co, cyclotron mode and the edge
mode. There is a threshold field for the lowest branch of
magnetoplasmon excitation, below which the gap be-
comes negligible. In weak magnetic fields, we clearly see
the negative dispersion and oscillation of the magneto-
plasmon energies for the edge modes before going into
the upper anticrossing region. The change with scatter-
ing strength becomes obvious at strong magnetic field.
The Coulomb interaction lifts the degeneracy in the
single-particle energy eigenvalues due to the difFerences
in screening at weak magnetic fields. Our calculations
show that the efFect due to the Coulomb interaction is
small when the magnetic field is strong.

The negative 8 dispersion of the edge modes is mainly
due to the lifting of the degeneracy by the Coulomb in-
teraction between the excited state with J=3M„and the
edge mode with J=N„,. It is also a result of an increase
in the Landau-level degeneracy with magnetic field which
leads to the usual negative dispersion for the edge state.
The oscillating dispersion of the edge modes is attributed
to the oscillations in the Fermi energy and the energy of
the edge states, i.e., the resonant coupling between the
umklapp scatterings [see Figs. 5(a) and 5(b)]. The an-
ticrossing is a direct result of the Coulomb interaction be-
tween electrons. This anticrossing is partly smeared out
when the scattering is weak. The occurrence of the 2',
cyclotron mode is the fact that some degenerate states in
the first two Landau levels have been raised to higher en-

FIG. 6. Energy of magnetoplasmon excitations for antidots
as a function of magnetic field for different scattering strengths.
Here, we have used N„=N~ = 10, X„=3, a =31.6 nm,
n2D=1/a, m*=0.067m„eb =12.5, and 0.5&b &2.0 in the
calculations. We have chosen the transitions from the topmost
occupied state J=N„, /2 to the unoccupied states J=4Nt t/5
(o), 2M„+1 (6), 3M„(+). (a) u0=2x10', (b) u0=1x10 .

ergy levels, involving the original second Landau-level
excited state with J=3M„ into a third Landau-level
state. Also, the mixing of the Landau wave functions en-
sures the nonvanishing intensity for this optical transi-
tion.

IV. CONCLUSIONS AND DISCUSSION

In conclusion, we have calculated exactly the single-
particle energy eigenvalues and eigenfunctions for a
square array of quantum antidots in a perpendicular uni-
form magnetic field. Quantum mechanically, we have
found significant effects due to scattering. The strong
mixing of the Landau bands, due to the resonant cou-
pling between umklapp scatterings, is clearly shown. The
peaks in the Fermi energy imply that some states have
been raised to high energy levels. Our calculations
display many of the features for magnetoplasmon excita-
tions which have been reported in a recent experiment on
antidots.

Due to the strong spatial modulation arising from the
potential scatterers, we cannot use a perturbation ap-
proach to obtain the single-particle energies, thereby
making numerical calculations essential. Comparing our
numerical results with experimenta1 measurements by
Kern et al. , we find that the basic features in the mea-
surement have been reproduced by our present simple
model, including the oscillations, negative dispersion, and
anticrossing. We emphasize that this agreement is only
qualitative and not quantitative. The disagreement be-
tween our model calculations and the experimental data
is due to setting the radius of the core equal to zero.
However, the basic features predicted here should not be
changed qualitatively if the radius of the core is taken to
be much smaller than the lattice constant. For a finite
core radius, we must modify the matrix elements in Eq.
(12) when calculating the eigenstates. This would, of
course, change the polarization function in Eq. (27) as
well as the form factor in Eq. (23).

In order to present a clear analysis of the physics in-
volved, we only include four energy levels in our numeri-
cal calculations of the magnetoplasmon excitation ener-
gies. In principle, all the occupied states and the low-
energy unoccupied states, excluding those with much
higher energy levels, should be included. Unfortunately,
this makes the dimensionality of the matrix in Eq. (30)
too large for our computational facilities. However, we
believe that the qualitative feature displayed in Figs. 6(a)
and 6(b) will not change for larger determinants.
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