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The asymptotic perturbation series developed over many years from the Landau-Ginzburg theory
is used to study the specific heat of a thin-film superconductor in a magnetic field. Et is found that
rewriting the series as an expansion in the entropy improves the self-consistency of its Pade or Pade-
Borel resummations at low temperatures. However, there is a discrepancy between Monte Carlo
data and the series resummations, possibly due to saddle-point contributions that are only a finite
energy away from the point about which the perturbation expansion is performed. Our expansion
is also used on the exactly soluble zero-dimensional Landau-Ginzburg model, our toy model. The
results of the Pade and Pade-Borel resummations are more accurate than previous methods, but still
do not converge to the exact low-temperature limit. The 6 expansion and Stevenson transformation
are tried on the toy model but the former is discarded because its convergence is too slow to be
practical and the latter because results are very poor in the temperature region where the Borel sum
fails to converge to the exact result. We conclude that no satisfactory resummation procedure exists
for this problem. Finally Monte Carlo data are compared with recent experimental results and the
agreement is found to be poor at low temperatures. The extension of our analysis to the series for
bulk systems has been made. No strong evidence for a transition could be found.

I. INTRODUCTION

The question of whether a thin-film type-II supercon-
ductor in a magnetic field has a phase transition is contro-
versial. The popular belief is that below a nonzero tem-
perature (T ) the vortices form a triangular (Abrikosov)
lattice. The melting of this lattice has been studied the-
oretically by Huberman and Doniachi and Fisher, 2 who
proposed dislocation unbinding as a melting mechanism.
Various Monte Carlo simulations on approximations to
the full Landau-Ginzburg partition function and exper-
imental studies claim evidence for the existence of the
Abrikosov lattice phase. However, it has been argued by
one of uss that below four dimensions thermal fluctua-
tions destroy the superconductor phase coherence (This.
falls to three dimensions if the vector potential A is
fixed. ) It seems natural that the absence of long-range
phase coherence in two dimensions should be accompa-
nied by the destruction of the vortex lattice for a thin
film. This view is supported by a recent Monte Carlo
simulation4 in which no evidence for a phase transition
was found, although as the temperature was lowered it
was observed that latticelike order existed over longer
length scales.

Ruggeri and Thoulesss and more recently Hikami and
coworkerss s -developed a perturbation series for the free
energy starting from Landau-Ginzburg theory. The se-
ries is asymptotic so that; in order to study the low-
temperature region where a transition might be expected,
extrapolation techniques such as Pade or Pade-Borel
approximants must be employed. The question as to
which resummation procedure of the series works best
and whether it converges to the correct result is the chief

topic of this paper.
We shall begin by considering a variable transforma-

tion which allows us to rewrite the series in terms of the
entropy, which for this special case is the renormalized
propagator. This means that we have included all possi-
ble loop insertions —as compared with just the one-loop
insertions of the original series of Refs. 5—8. As a conse-
quence we have an expansion that is effectively in terms
of the skeleton Feynman diagrams.

The modified series is found to have improved self-
consistency when extrapolated by Pade or Pade-Borel
methods to the low-temperature region. However, al-
though the agreement with the Monte Carlo data is good,
there is a noticeable discrepancy at low temperatures if
we do not impose the limiting low-temperature behavior
by hand. Consequently our work can provide no evidence
for or against a phase transition in thin films.

In three dimensions we cannot consider the variable
transformation to be equivalent to a skeleton-graph ex-
pansion, but this does not prevent us from carrying out
the transformation. Analysis of the series does not pro-
vide very strong evidence for a phase transition in three
dimensions, in contrast with the conclusions of Ref. 7.

The zero-dimensional Landau-Ginzburg theory for
this problem is exactly soluble and thus became our toy
model. It is found that the skeleton-graph expansion
performs significantly better than the original series, but
high-order Pade approximants have a low-temperature
limit 10' greater than the exact answer. Analysis of
the toy model suggests that the problems stem from a
contribution of the stationary point of the action which
switches in at the mean-field transition temperature. It
can be shown that saddle points of the finite action (or
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energy) will always make a contribution to the partition
function, and hence the free energy. The finite-energy
stationary points, which we shall show also exist in two
dimensions (but not three), are the source of the discrep-
ancy between the Pade and Pade-Borel resummations of
the skeleton-graph expansion and the exact result in the
toy model. If this is also true for turo dimensions, it im
plies that the resummed perturbation series mill not con-
verge to the correct lour temp-erature limit in turo dimen-
sions no matter how many terms are supplied, unless a
better technique of resumrnation can be found. Note that
just because a series is Borel summable (as is the case of
all the series considered heres), this does not imply that
the Borel sum is an exact result.

In a search for better methods of analysis, two have
been tested on the toy model, but have not been trans-
ferred to the two-dimensional case because of their poor
performances. These were the 6 expansion, 0 which has
been proven to converge to the exact result in a similar
toy but does so too slowly to be of any use in the two-
dimensional case, and the Stevenson transformation,
which did not produce sensible results below the mean-
field transition temperature. We are unaware of any
other extrapolation techniques which might yield better
results, for series of the length available to us.

The Monte Carlo results are also compared with recent
experimental results, for a superconductor-insulator
multilayer, where the layers are considered to have two-
dimensional (2D) character. The agreement is very poor.
Possible sources of the discrepancy are the lack of disor-
der in the theoretical model (which is still being investi-
gated) or the three-dimensional character of the stack of
layers.

II. PREVIOUS WORK

perpendicular to the film. We are now able to rewrite
the free energy in terms of the reduced temperature,

ar, = cr, + eBh/p, (2.3)

which is zero along the H„ line. To further simplify the
calculation the order parameter itr will be taken to be in
the lowest Landau level, so that(. 0 or

ih —+ 5 —eiBx+ eBy
~ @ = 0.

r9x By

This approximation is valid providing

(2.4)

8~kT, r orq
(2 5)

(rc is the Ginzburg ratio), which is a regime explored in
recent experimental work. iz For a sufficiently thin film
variations of Q and g' along the magnetic field direction
can be neglected. In Ref. 5 the free energy (now per unit
volume) was expressed as

GzD eB 1 f2~ L,hx'r

kT, L,srh 2 PeB

where z is deFined by the relationship

(2.6)

PeB (1 —4z)
vrL, h

(2 7)

and the function f2D(z) is not known exactly but a per-
turbation series for it can be obtained in terms of P
through the use of Feynman diagrams.

Ruggeri and Thoulesss calculated the perturbation se-
ries up to 6th order and this was subsequently extended
to 11th order by Brezin, Fujita, and Hikami, viz. ,

+l~(r)]
kgT,

( @4
~(T) 141'+ & 2

~(
—ihV' —2eA)@~2 5

2)i

(2 1)

We start from the Landau-Ginzburg free-energy func-
tional

f2D(x) = —2z —x + 9 x —
so z +471.396594517x

—6471.56257496x + 101279.327846x
—1779798.78759x + 34709019.6144x
—744093435.668x + 17399454123.5x
+O(x'2). (2.8)

Throughout this paper we will work with dimensionless
variables and thermodynamic functions, such that up to
a constant in the free energy we have

& F[4(r)j17 17 exp (2 2)

where n(T), P, p, are our phenomenological parameters.
The temperature dependence of or(T) is taken to be lin-
ear, n(T) = o.'(T —T,). For a sufficiently thin film fluc-
tuations in the vector potential A can be ignored. This
is justified because the range of variation of fluctuations
in A is of order A /I, where L, is the film thickness and
A is the bulk penetration depth. This range is usually of
macroscopic size. The free energy is then defined by the
functional integral

Lzvrh 1
g2D = G2D — ln(z) + f2D(x)eB 2

~L,h 1 —4x
/3eB

with the entropy defined by

dg~Ds =—
QAz'

(2.9)

(2.10)

For convenience we will work in the symmetric gauge
A = B( y, x, 0)/2 where B i—s the uniform field, applied

The chief thermodynamic function that we consider is
the specific heat, normalized by its mean-field disconti-
nuity, viz. ,
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kT2 (n ')z
(2.11)

P~ is the minimum value of the Abrikosov factor,

2

]4I'd' / I
(2.12)

This minimum is found to correspond to a regular trian-
gular lattice of the zeros of Q, i.e. , for the vortices, when
P —1.1596. This means that the normalized specific
heat in our units is

d g2D

dct'z
(2.13)

In three dimensions the dimensionless free energy g3D
and temperature az are defined by

(eBkrs&~m i 1 + f3D(x)
(2x)'"

47rh2

'KPr, eBkrsT/2m) ' (2x)2r's '

(2.14)

where 03D is the free energy of Ruggeri and Thouless,
apart from an additive constant, and nh, is their tem-
perature variable. The perturbation series was originally
calculated by Ruggeri and Thouless up to sixth order5
and later extended to runth order by Hikami and Fujita:s

fsD = —2x —~x + i2x —
i44p x + 125.59552619x

—1430.59289592: + 18342.7659972x
—261118.677032: + 4084812.30742; . (2.15)

Equation (2.8) is an asymptotic divergent series and
resummation techniques must be employed in order to
study the behavior of thermodynamic properties. In
previous work these have been of the Pade and Pade-
Borel type with usually the additional constraint that
at low temperatures the mean-field result should be
recovered. This condition becomes the requirement
that the normalized specific heat should tend to unity in
the low-temperature region when cry —+ —oo.

Ruggeri and Thouless imposed the low-temperature
constraint by subtracting the mean-field limit (—4x/P~)
from the free-energy series. This series is required to have
a low-temperature limit of zero, which was enforced by
choosing an [N —1, N] Pade approximant which auto-
matically goes to zero for large x. The full result for the
free energy f2D (x) was then found by reintroducing the
mean-field limit.

In an alternative approach, Hikami and Fujita6 con-
strained their Pade approximants by assuming the form

example would be described as [N, N].)
We have found that the manner in which the mean-

field constraint is imposed has an eKect on the specific-
heat function even close to az. ——0—the mean-field tran-
sition temperature. However, for any particular method,
imposing the constraint does improve the mutual consis-
tency of the approximants. The mean-field result was not
reproduced exactly by the unconstrained approximants,
although these do come closer with increasing order ¹

It is evident that a more reliable approach could be
obtained by imposing more information about the low-
temperature behavior, and to this end, Ruggerirs studied
fluctuations around the flux lattice. He obtained the one-
loop correction (Gaussian fluctuation) to the mean-field
expression for the entropy so that, in our units, the en-
tropy s has a low-temperature behavior of the form

as Az' ~ —oo ~ (2.17)

nz ~x n7

P. P.(I + 4x) P.
1

v2P ~z

as x ~ oo, nz ~ —oo . (2.18)

The two expressions for s are inequivalent. We suspect
Eq. (2.17) is correct, though we make no use of either
equation in our work.

A. Toy model

It was noted by Bray~ that one can obtain a series
for the zero-dimensional Landau-Ginzburg system which
is of the same form as that for the thin-film supercon-
ductor. This theory has the advantage of being exactly
soluble and so has been used as a toy model to test the
validity of various resummation schemes. Since none of
the standard methods give convincing results for the toy
model, this casts considerable doubt on their validity for
the two-dimensional case.

In the toy model one starts with the free energy defined
by

gpD (x) = —
2 ln(x) + fpD (x), (2.19)

This allowed him to further constrain the Pade
approximants. He suggested the correction introduced
by this procedure as an explanation for the peak in the
specific-heat curve.

More recently Hikami, Fujita, and I arkin" have also
studied the low-temperature behavior, but they used an
earlier expression of Thouless~ such that their entropy
expression is

f»(x) = -2
OO

(1++, 5 x )

where fpD is given by

fpD = —ln dt exp [
—(1 —4x)t —xt ] (2.20)

with the requirement that aiv = (2/P, )biv. (The coeffi-
cients of the Pade approximants will always be labeled
such that a~ is the coefficient of x~ and the order in this

This has been derived from the expression for the zero-
dimensional partition function,
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(2.21)

The analog of the free-energy series f2D, [Eq. (2.8)] is

f&D(x) = -2x —2x'+ —"x' —196x'+ ""'x'
3

245408 ~6 + 15111808~7 65488g28~83 7

+ 20211520000 9 429568420352 10
9 5

+ 39907677104128&11~ gf&12 i (2.22)

and the variable corresponding to aT, i.e. , the effective
temperature, is y = (1 —4x)/v'2x. The exact solution
for goD is most readily expressed in terms of y and is

FIG. 1. The skeleton-graph expansion in terms of loop
diagrams up to three vertices.

goD (p) = —ln[e" erf c(p /~2)] = —in[a~(ip/~2)],

(2.23)

where tii(z) is as defined in Ref. 18 [Eq. (7.1.3)]. The
analogs of the entropy and normalized specific heat in
zero dimensions are defined by s=) b„ i&») (3 3)

done using MATHEMATIGA. Fl'om the original Landau-
Ginzburg equation (2.1) it can be shown that the entropy
can be written as a series in odd powers of 1/nT,

dgoD
8 =—

dg

C d2gpD

AC dy2
(2.24) where aT is defined in Eq. (2.9).

It is also possible, however, to write the entropy as a

III. THE SKELETON-GRAPH METHOD

The weaknesses in the standard resummation proce-
dures used in Refs. 5, 6, and 8 suggested that a more
robust method is required. To this end the series of
Eq. (2.8) was rewritten as one for the reduced tempera-
ture oz in terms of the entropy,

12
(2n —1)

n=0
(3 1)

This was then rearranged for the entropy in terms of
the renormalized propagator (the entropy) for all but the
initial propagator,

(3 2)

In terms of diagrams this corresponds to Fig. 1, where
the thick line indicates the renormalized propagator (s)
and the thin line the bare propagator (1/nT). The skele-
ton method effectively allows us to work to a higher order
in the coupling constant than in the Hartree-Fock resum-
mation used in Refs. 5 and 6. This first becomes appar-
ent with the three-vertex diagrams. In the Hartree-Fock
scheme terms of the form in Fig. 2(a) are included but
the term in Fig. 2(b) must be calculated separately. In
the skeleton expansion this diagram is already included.
(The reduction in the number of diagrams becomes signif-
icant at higher orders, so the scheme could be of further
use if more terms in the series were needed. ) This dia-
grammatic interpretation of the series inversion is only
possible because the renormalized propagator is directly
proportional to the bare propagator. 17

The algebraic techniques required to invert the se-
ries are straightforward, but because the original polyno-
mial is 11th order, the evaluation of the new series was

(b)

FIG. 2. (a) Graphs which are included in both the
Hartree-Fock and skeleton expansions. (b) An exaniple of
a three-vertex graph which is included in the skeleton-graph
expansion but must be calculated separately in the Hartree-
Fock expansion.
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s = 4'2x(2x fzD —1)/(1+ 4x) . (3.4)
I

polynomial in x with known coefficients using the free-
energy perturbation series

By equating the expressions of Eqs. (3.3) and (3.4), we
can determine the coefficients b„. Having done this, the
series in terms of nT [Eq. (3.3)] can be written in terms
of s by inversion, leading to

nT = ——[1 —2s + s —
s s + 15.983333333333s —105.6447691199sio

s
+839.4513161383306s —7668.3830488111s + 78436.36669669s
—883237.5856207423s + 10822981.33681286s —143118270.587s + O(s )] . (3.5)

The same procedure has been carried out for the toy
model, using Eq. (2.20), to obtain an equation for the
entropy analogous to that of Eq. (3.4). The resulting
series to the same order as the two-dimensional series is

y = ——[1 —2s + 2s —10s +82s —898s
1 2 4 6 8 10
s

+ 12018s12 —187626s14 + 3323682s16
—65607682s 8 + 1424967394s
—33736908874s + O(s )] . (3.6)

Higher-order terms are readily obtainable and we have in
fact calculated the series up to s44.

In the three-dimensional case of a bulk superconduc-
tor, it is possible to carry out a series inversion analogous
to that performed in two dimensions. However, in three
dimensions we cannot consider it as a skeleton-graph ex-
pansion because there is an additional wave-vector inte-
gral over k„ the wave vector associated with changes in
the order parameter g with height, and thus, for exam-
ple, the entropy at lowest order is related to nz by

dk, 1

2vr (k +nz)' (3.7)

which prevents there being a simple relationship between
the renormalized propagator and the entropy. Exam-
ination of the integral shows that in three dimensions
s 1/~nT, suggesting that s2 will be the appropriate
variable for the series inversion —this is indeed found to
be the only simple variable with which it is possible to
perform the inversion. The resulting series is

n = [1 + 32s + 80s + s + 53742.577772s
1

T 3

+ 2334728.2603s + 121469761.94s

+ 7228438383.6s + 479024071485s

+ O(s )] (3 8)

IV. ANALYSIS OF THE SKELETON-GRAPH
SERIES AND COMPARISON

WITH PREVIOUS METHODS

A. Two-dimensional case

Published results for the specific heat of the thin-
film superconductor have used the toy model as their

where s is always negative, and so the series is in fact of
the alternating type and is Borel resummable. s

I

benchmark. s 4 We shall also compare our results with
the Monte Carlo values obtained in Ref. 4. The Monte
Carlo simulation lends itself most readily to a determi-
nation of the entropy. The specific-heat function can be
obtained by difFerentiation of the entropy but because of
a scarcity of points a smooth curve could only be obtained
by first fitting a cubic spline. Hence the comparisons with
the Monte Carlo itself are made in terms of the entropy
which is the raw data. However, in order to facilitate
comparison with other papers, the remaining results are
presented in terms of the specific heat with the proviso
that the Monte Carlo curve is only a guideline, due to
the inadequacies of the cubic spline.

Apart from the overall external factor of —1/s, the
terms in the skeleton series seem to have a dominant high-
n behavior a„(—1)"n!, with a„defined by Eq. (3.1).
This indicates that rewriting the reduced temperature
nT in terms of a Pade-Borel form using s2 as the vari-
able would be a suitable summation technique. The or-
der of the Pade approximants must be selected such that
the entropy is directly proportional to o.T at low tem-
peratures, which restricts us to [N+ 1, N] approximants
for the temperature in terms of entropy. The specific
heat could then be obtained by differentiating the tem-
perature with respect to entropy and then inverting. In
order to allow comparison with previous work, the results
were normalized to the mean-field theory discontinuity,
so that if at low temperatures the specific heat achieved
the mean-field value, the normalized specific heat would
be unity.

We will describe as "unconstrained" those approxi-
mants where the only information supplied is the se-
ries and the order of the approximant. The constrained
approximants have the further requirement that they
must tend to the mean-field limit at low temperatures.
This is imposed using the method of Hikami and Fu-
jita [Eq. (2.16)]. In our case the mean-field limit is
nT = s/P~, which becomes the requirement that aiv+i +
bprP, = 0.

We also make comparisons with the best previous
method where the [N, N] Pade-Borel approximant for the
free-energy series in x is constrained as in Eq. (2.16), with
an additional factor of 2 removed from the coefficients
of the series. (See Ref. 8 for the justification of this factor
2N )

Examination of Fig. 3 for the entropy shows that the
skeleton-graph series fits the Monte Carlo data slightly
better than the original method, but in itself this would
not justify the extra effort of determining the skeleton-
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FIG. 3. Entropy data for the two-dimensional case, show-

ing that the constrained Pade-Borel approximant constructed
from the skeleton-graph expansion fits the Monte Carlo data
slightly better than that similarly constructed from the orig-
inal series.

graph expansion. The significant improvement is in the
manner that the unconstrained Pade-Borel results hang
together and yield the correct characteristic curve of
Fig. 4. In fact the difference between unconstrained and
constrained Pade-Borel approximants of the same order
is only apparent below nT ——2 (Figs. 4 and 5).

The difFerence between the Pade-Borel approximants
and the Monte Carlo data decreases in the order [4,3),
[3,2], [6,5], [5,4]. Thus there is an odd-even effect associ-
ated with how the accuracy improves with N. (A possi-
ble explanation can be found in the stability of the Fade
forms themselves. For the Pade forms with odd-order
denominators the positions of the poles and the values
obtained from the approximants are far more sensitive
to small changes in the coefficients of the perturbation
series.

FIG. 5. Same as Fig. 4, but using the constrained approx-

imants.

The Pade approximants were also evaluated (see
Fig. 6), and we again find that without the constraint,
although the shape of the curve is similar to the Monte
Carlo data, the low-temperature limit is diEerent, the dif-
ference being greater than that between the Monte Carlo
data and Pade-Borel approximants. Unlike the latter
the Pade approximants do not exhibit an odd-even ef-
fect with increasing order.

H. Three-dimensional case

In this case we again find that if we do not impose a
low-temperature limit the value of the specific heat at low
temperatures is very dependent on the approximation
method used. The curves produced using the skeleton-
graph series with both Pade and Pade-Borel approxi-
mants are smooth with no peaks. However, as pointed
out by Hikami, Fujita, and I arkin7 there is a peak in the
Pade approximant if it is constructed from the original
series, see Fig. 7.

They provided evidence for a transition by the calcu-
lation of the Abrikosov factor (P ) from the fr""-energy

0.8
C/AC

0.6

0.4

0.8
C/b, C

0.6

0.4

-6
0.2

FIG. 4. Comparison of different orders of unconstrained
Pade-Borel approximants of the skeleton-graph series for the
specific-heat function. (Because of numerical differentiation
problems the Monte Carlo data should only be treated as an
aid to the eye. )

0
-10

FIG. 6. Comparison of di6'erent orders of Pade approx-
imants constrained and unconstrained for the specific-heat
function for the two-dimensional case.
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FIG. 7. Specific-heat data for the three-dimensional case.
We find that the low-temperature limit, as in the other di-
mensions, depends on the approximation used. It is only the
Pade approximant constructed from the original series that
has a pronounced peak.

FIG. 8. Specific-heat function for the toy model demon-
strating that the skeleton-graph expansion gives a more con-
vincing approximation than the original series to the exact
answer.

perturbation series in x reexpressed in a simple [N, N 1)—
Pade form. In two dimensions if these values are plot-
ted against 1/(N —1)z, the value of P~ for N ~ oo is
close to the standard answer of P = 1.16. They subse-
quently applied this technique to the three-dimensional
case, and using two of the three points available, obtained
P = 1.28, which if true would indicate a phase transi-
tion, i.e. , P P 1.16 is explained by the presence of a
phase transition. However, if all three points are used
(with the value of p~ corrected for the [3,2] to 1.667) and
plotted against 1/(N —1), these extrapolate to P~ 1.17,
which does not indicate a phase transition.

Trying to perform a similar analysis for the skeleton-
graph series is tricky, since in two dimensions the Pade-
Borel approximants do not have uniform convergence (as
discussed in Sec. IVA), and the Pade approximants do
not fit a simple 1/N form. However, for the former only
an abscissa of 1/N allows both lines to have an infinite
N limit of approximately 1.16.

We can only conclude that the existence of a phase
transition in three dimensions cannot be reliably ascer-
tained through analysis of the existing series alone.

() y&) y dt, Ry) O.
t t + y2/2)'

(4.1)

This suggested that possibly there should be a square
root in the denominator of the integrand, rather than
a straight Borel resummation. Hence the Borel integral
was modified such that it had a 1/Qt singularity in the in-
tegrand, but this did not significantly affect the specific-
heat function obtained.

approximants overshoot the exact answer, Brst doing so
at y —3.

In previous papers the specific-heat curves have been
constrained such that at low temperatures the correct re-
sult is obtained. This works well for the [5,4] Pade-Borel
approximant but appears to make the approximants un-
stable at higher orders.

From the exact solution for the free energy, Eq. (2.23),
we know that it contains 'tv(iy/~2)'. Examination of
Abramowitz and Stegunis [Eq. (7.1.4)] shows that there
exists an integral representation

C. Toy model

The results for the two-dimensional case appeared
very encouraging, so the skeleton-graph technique was
also applied to the toy model, leading to the results
shown in Fig. 8. Unfortunately, it was found that al-
though the results were promising for the [5,4] Pade-
Borel approximant —it has the correct curve shape and a
low-temperature limit of 1.03—the higher order approx-
imants do not home in on the correct low-temperature
limit, with values oscillating around 1.1 (Fig. 4). Using a
simple Pade approximant the convergence of the curves
was found to be monotonic, but very slow. The Pade
approximants are easy to calculate, so we have evaluated
them up to [22,21] order (Fig. 9). The convergence looks
good up to [15,14]. Unfortunately, above this order all

0.8
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FIG. 9. Unconstrained Pade approximants for the toy
model up to [22,21) order, showing that they do not converge
to the correct low-temperature value.
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Despite their faults the approximants derived from the
skeleton-graph series are a vast improvement on those
obtained from the original series. The latter in both the
Pade and Pade-Borel forms do not exhibit the correct
shape for the exact answer or the low-temperature limit;
e.g. , the [5,5] Pade-Borel approximant has a limit of 1.5.
Constraining the curves only serves to produce a hump
in the curves, which gets worse with increasing order.

These results suggest that extrapolation of the
skeleton-graph series is more reliable than that of the
original series. They also indicate that a wrong low-
temperature limit can be an artifact of the resummation
procedure.

D. Analysis of the toy model
and relevance to higher-dimensional eases

2
iv( —iy) = 2e" —iU(iy); (4 2)

From the previous section it is obvious that approxi-
mating the toy model is in itself not a trivial task. It
was hoped that gaining an insight into the underlying
problems associated with the toy model would help our
understanding of the two-dimensional case.

We know that all the approximation methods work well
for y & 0, i.e., above the mean-field transition tempera-
ture, but collapse in varying degrees for y & 0. Examina-
tion of the exact solution shows us why, at least for the
standard perturbation theory. Consider the free energy
[Eq. (2.23)] in conjunction with the expression for iU(iy)
[Ref. 18, Eq. (7.1.11)],

1

@()=I,'~ i ). 0 ()(Co l4"
1

zz" /(4—P) ) (4 3)

where g~ = (~ni~) ~2(1/2j')~ +»&z ~ = C, /(2~ay)
with 40 the Hux quantum and z = ++ay such that (z, )
are the (complex) positions of the vortices.

The free-energy functional can now be written in terms
of the complex expansion parameters (v~),

on passing through y = 0 an exponential term switches
in, which is not picked up by normal perturbation theory.
For y & 0, the argument of the exponential in the integral
of Eq. (2.20) has a maximum at t = 0 and minima on
either side. The exponential contribution comes from the
maximum.

It is possible that the difference between the Monte
Carlo data and the unconstrained skeleton-graph Pade
and Pade-Borel approximants in the two-dimensional
case is also due to saddle-point contributions that are
only a finite-energy difference away from the point about
which we perturb. They could be provided by the finite-
energy solutions which we shall show exist in the two-
dimensional case. These contributions are not picked up
by the perturbation expansion and hence may prevent us
resumming the series to give the correct result.

In two dimensions the existence of finite energy solu-
tions can be shown starting with the Landau-Ginzburg
equation (2.1). The order parameter when truncated to
the lowest Landau level can be represented by

m=o -,p,-,.=o
(4.4)

F/kT~ = Clg COCO + Co Co ~ (4 5)

If we minimize this with respect to cg then we ob-
tain coco = —nz/2, and provided o;~ & 0 we have

F/kT, = —a~&/4, a finite-energy solution. Similar solu-
tions can be found for any number of vortices present. All
these solutions are saddle-poiDt solutions, that is, they
are unstable against the addition of further vortices.

In three dimensions we have been unable to find any
finite-energy stationary points. This could mean that the
series is convergent in three dimensions after Pade-Borel
resumm ation.

If we consider the simplest solution of no vortices
present, that is, eo ——co, then

A. The 6 expansion

The 6 expansion is a method which has been proven
recently by Buckley) Duncan) and gonesxo to produce a
convergent series. They had applied it to a toy model
similar to our own, i.e. ,

exp[—p2x2 —g~4] d2;; (5.1)

expansion, which although known to converge was found
to be very slow, and the Stevenson transformation, which
only converges to the correct answer above the mean-field
transition temperature.

V'. ALTER.NATIV'E SERIES EXPANSIONS
OR RESUMMATIONS

In this section we detail two alternative methods that
have been tried out on the toy model in an attempt to
find one that converges to the known exact answer: the 6

cf. the integral of Eq. (2.21). The 6 expansion is not a
new technique, but they had shown that the expansion
converged exponentially fast, with the non-perturbative
terms being picked up. That is, it worked in the low-
temperature regime p & 0. This seemed ideally suited to
our problem, for it is the low-temperature regime which
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&(fpD)k
dA

(5.4)

For all but the lowest orders the PMS equation for general
x becomes too large to solve analytically. Thus the PMS
condition was solved for chosen values of x, such that we
had a discrete set of values for fpD. The specific heat
was then obtained by numerical difFerentiation. Values
of x were chosen such that the error due to the numerical
differentiation was ~ 10

For our toy model, solutions to the PMS equation only
exist for odd orders in 6. Even-order values could be cal-
culated using a more complicated PMS condition, but as
this was only a trial of the method sufBcient information
could be obtained just from the odd orders. The 6 expan-
sion was only calculated up to 11th order, chosen because
our two-dimensional series has 11 terms. Up to 9th or-
der, the PMS condition could be solved directly using
MATHEMATICA. For the 11th order, a Newton-Raphson
approach was used; the initial value of A chosen for each
x was that calculated at 9th order.

The results for the speci6c heat in the region y ) 0
were extremely accurate, with the only limitation being
the numerical differentiation, even at 5th order, for y =
4. However, the results were less impressive in the y &
0 region. Only the 9th and 11th order approximations
gave any results of the correct sign in this region, before
fiuctuating wildly and then producing imaginary values
around y = —2. Thus although it has been proved that
this method converges, it requires rather more than 11
terms to even get an idea of what is happening at low
temperatures.

B. Stevenson transformation

This is a simpler, earlier use of the PMS constraint
than the 6 expansion. Along with a very simple trans-

is of most interest.
The b expansion begins by rewriting the exponential

in Eq. (2.20) as

exp[ —(1—42:)t—z2t] m exp( —At+6[ —2:t +(A —1+4+)t]);

(5 2)

b is our new expansion parameter and A is another ar-
tificial parameter. To obtain a series approximation we
expand down the b part of the exponential, then expand
again using the binomial theorem and integrate over t:

„~".(A —1+4z)&" "i(—z)"(n+ r)!
r!(n —r)!A"+"+'

n=O r=0

(5.3)

To consider a particular order of b, say, k, we simply
stop the sum over n at k and then set b = 1; this is the
partial sum for fpD up to k and is denoted by (fpD)A...
The coefficients in the series can be calculated simply
using MATHEMATICA. The next step requires the opti-
mization of A, which is done by invoking the principle of
minimum sensitivity (PMS). This in essence requires that
the dependence of (fpD)i, be minimized. The necessary
condition is

formation of variable it has been shown to produce good
results in such cases as the alternating factorial series,
which has zero radius of convergence. Stevenson states
that for a given series "ifwe optimize the choice of r (the
PMS parameter) at each order the resulting sequence of
approximations is convergent, " although not necessar-
ily to the exact function.

The method was tried on the toy although there were
no technical complications in transferring it to the two-
dimensional case. If we consider the skeleton-graph series
then the suggested transformation is

3 = a/(1 —rs), (5.5)

VI. EXPERIMENTAL DATA

It is apparent from the methods detailed in the pre-
vious sections that starting from the perturbation se-
ries there are still problems in extrapolating to the low-
temperature regime. The skeleton-graph expansion is an
improvement but does not converge to the correct limit
when resummed by Pade or Fade-Borel techniques for
the toy model. We expect similar problems for the two-
dimensional case, but in practice the constrained [5,4]
Pade-Borel approximant is an excellent Gt to the Monte
Carlo data.

With this proviso, how do our theoretical results com-
pare with those obtained experimentally? In the real
world we can only approximate to a two-dimensional sys-
tem. Urbach et aL have done this by investigating the
specific-heat properties of a multilayer system of super-
conducting Mo77Ge23 separated by insulating amorphous
germanium.

In order to avoid resummation problems, we will com-
pare the experimental results with the Monte Carlo data.
The comparison is disappointing (Fig. 10), making the
differences between the various resummation results ap-
pear insignificant. Although noisy, at least for high tem-
peratures there is some agreement —but at low tempera-
tures the shapes of the curves and their values are com-
pletely different. In fact the zero-dimensional specific-

where s is our new variable and r is the PMS parame-
ter. This new variable is substituted into Eq. (3.6), and
the equation is expanded out, to the selected order. For
example, the third-order approximant (where order is de-
termined by the power of s) is

y(s, r) = —1/s+2 3+2 3+(1+2s —6s )r+2s 7 .

(5.6)

This is then minimized with respect to 7 to give several
values of r. As it was unclear which value to choose and
the exact answer is known all values were substituted
back into Eq. (5.6) to find the value with the answer
closest to the exact answer. It was evident from this that
the most negative value of r was appropriate.

To avoid having to numerically differentiate, compar-
ison was made directly between the value of y obtained
for a given s with that for the exact answer. Good re-
sults were obtained for y ) 0, but no sensible values
were obtained for y ( 0, even up to 24th order.
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heat curve is a better fit around T,.
It is not known whether the source of the discrepancy

is theoretical, experimental, or both. One possibility is
that the theoretical model does not take into account
disorder, and this is being investigated at present using
Monte Carlo simulations. There is also the problem that
the sample is not really two dimensional so that the whole
of the Landau-Ginzburg expression of Eq. (2.1) applies
to it. Although each of the layers can be considered two
dimensional, the measured specific heat is an average of
all the layers, which are coupled via the electromagnetic
field. One would expect that the theory of this situation
would be dependent on the thickness of the layers and
their spacing.

FIG. 10. Comparison of the experimental data of Ur-
bach et at. (Ref. 12) with the two-dimensional Monte Carlo
data and the exact zero-dimensional solution. The zero-
dimensional data have been multiplied by the Abrikosov fac-
tor, P 1.16.

the low-temperature region. For this special case we have
been able to improve upon the standard extrapolation
techniques. By noting that the renormalized propagator
(the entropy) is directly proportional to the bare propa-
gator, we were able to rewrite the available series in terms
of the renormalized propagator. Having reformulated the
series we could then use the standard Pade and Pade-
Borel techniques to extrapolate it to the low-temperature
region.

The specific-heat function evaluated by this technique
difFers detectably from the Monte Carlo results if it
is not constrained by the mean-field low-temperature
limit. A possible source of the discrepancy between
the Monte Carlo and the series extrapolation has been
found through study of the zero-dimensional toy case,
which is exactly soluble. The skeleton-graph expan-
sion works significantly better than the original series
for this problem, although it does not converge after re-
summation, either by Pade or Pade-Borel methods, to
the correct low-temperature limit. In the toy problem it
is found that problems arise because of an exponential
term which switches in below the mean-field transition
temperature it is in fact a contribution from the saddle
point in the potential. In order for a similar argument to
be applied in the two-dimensional case we require there
to be finite-energy solutions, and the existence of such
solutions has been demonstrated.

In three dimensions the inversion of the series does not
correspond to an expansion in terms of skeleton graphs.
However, the series has been inverted and reveals no
strong evidence for a phase transition.
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