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Ballistic transport in quantum channels modulated with double-bend structures
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We report on quantum-mechanical calculations of ballistic transport in finite quantum channels with
single and multiple double-bend discontinuities. The channels connect to two semi-infinite two-
dimensional electron gases, which serve as emitter and collector when a potential difference is applied.
The calculations are performed by use of a transfer-matrix method formulated by using one common
basis for all matrices required for the description of the electron states in the finite channel. It is shown
that in the quantum channel with a single double-bend discontinuity, at least one conductance peak can
be found at an energy below the threshold of the first plateau. These peaks appear due to resonant tun-
neling via quasibound states at energies below the first transverse mode. It is also shown that in the
quantum channel with a multiple double-bend discontinuity the quasibound states in different double-
bend regions couple to each other, leading to multiple splits of the conductance peaks. Critical discus-
sions on recent experimental measurements and theoretical calculations on electron transport in doubly
bent quantum channels are presented. We emphasize the fact that the quasibound states can be probed
by electron transmissions only if the doubly bent channel is of finite length, and only if we also consider
the electron states in much wider outside regions connected with the channel.

I. INTRODUCTION

Recent advances in nanostructure technology' have
made it possible to define constrictions, with lateral di-
mensions of 100 nm or less, in a two-dimensional electron
gas (2DEG) formed at a semiconductor heterostructure,
resulting in the fabrication of quantum wires, constric-
tions, and quantum dots. In such a small structure, elec-
tron transport is ballistic and the motion of electrons is
governed by quantum mechanics rather than classical
mechanics, revealing a few interesting features in electron
transport. The quantization of the conductance of nar-
row constrictions observed by van Wees et al. and
Wharam et al. and the resonant conductance via quasi-
bound states in classically unbound systems ' are just
two examples of recent developments in this area.

Based on the one-electron Schrodinger equation,
Kirczenow has performed calculations for the electron
conductance of narrow ballistic constrictions in a 2DEG
and the quantization of conductance in units of 2e /h
has been obtained. In addition, the calculations have pre-
dicted that in such a quantum channel, the conductance
should oscillate strongly as a function of the Fermi ener-
gy, due to the presence of longitudinal resonant states.
Schult, Ravenhall, and Wyld have calculated the ener-
gies and wave functions for an electron in the intersecting
narrow channels of infinite length and have found quan-
tum bound states. When the channels are suSciently
short and are connected to the two-dimensional electron
reservoirs, the quantum bound states will couple to the
continuous state of the 2DEG's, leading to the formation
of quasibound or resonant states. The quantum-
mechanical calculations by Berggren and Ji for the elec-
tron transport in the intersecting channels of finite length
have convincingly associated the sharp resonances in the
conductance to the quasibound states in such ballistic
systems. Electron transport in ballistic lateral superlat-

tices consisting of finite periods of intersections or T-
shaped structures' '" has also been studied theoretically.
In these calculations, conductance gaps and strong oscil-
lations have been found, indicating the formation of elec-
tron miniband structures in these superlattices. The ex-
perimental observation of the gaps and the oscillations in
the conductance of a T-shaped superlattice has been re-
ported. '

An experimental investigation on electron transport in
a finite and doubly bent quantum channel was recently
performed by Wu et al. ' Fine resonant peaks superim-
posed on the conductance plateaus of the quantum sys-
tem were observed and were assumed to be due to quan-
turn interference in the double-bend region. In addition,
Wu. et al. observed also two sharp peaks in the conduc-
tance of the doubly bent quantum channel below the
threshold of the lowest plateau. They associated these
two peaks with resonant tunneling through impurity
states in the channel. ' On the other hand, theoretical
calculations by Exner and Seba, ' Sols and Macucci, '

Avishai et al. ,
' and Goldstone and Jaffe' have predict-

ed that in a singly bent quantum channel of infinite
length there can exist at least one bound state below the
first transverse-mode energy. When the channel is of
finite length, the bound state can be coupled to the con-
tinuous states in the outside of the channel and becomes
quasibound. Thus resonant tunneling via the quasibound
state can occur. This will give rise to a resonant peak in
conductance below the threshold of the lowest conduc-
tance plateau. From this analysis, one can expect that
quasibound states with energies below the first
transverse-mode energy should exist in the doubly bent
quantum channel studied experimentally by Wu et al.
As a consequence, one may expect to observe conduc-
tance peaks corresponding to resonant tunneling via
these quasibound states in this quantum system. Howev-
er, recent theoretical calculations by Weisshaar et al. '
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on transmission probabilities of a quantum channel with
a double bend and of infinite length give no indication of
the appearance of such resonant peaks in conductance
and no indication of the existence of bound or quasi-
bound states below the first transverse-mode energy ei-
ther. This does not mean that there calculations are in
disagreement with the calculations by Exner and Seba,
Sols and Macucci, Avishai et al. , and Goldstone and
Ja6'e, but rather indicates that it is essential to make
channels be of finite length in order to probe bound states
(or precisely quasibound states in these cases) by means of
electron transmission.

In this paper, we report on quantum-mechanical calcu-
lations for ballistic electron transport in short quantum
channels consisting of a finite number of double bends
and being connected with the two semi-infinite 2DEG s.
We will idealize the systems by assuming that the
geometries of the multiply bent channels are formed by
embedding rectangular barriers of finite height in a nar-
row straight channel delimited by hard-wall boundaries.
When the height is sufficiently large, our single double-
bend structure will be in analogy to the channel structure
studied experimentally in Ref. 12. We will show that the
conductance peaks corresponding to resonant tunneling
via quasibound states below the first transverse-mode en-
ergy should appear in a quantum channel of a constant
width and with a double right-angle bend (or, simply, a
double bend). Our calculations are done with the use of
transfer-matrix method formulated by basing all our ma-
trices throughout the quantum channels on one common
basis. The method has a great flexibility, i.e., it can be
easily used to treat electron transport in the quantum
channels having very complicated structures in both the
longitudinal and the transverse directions.

The rest of the paper is organized as follows. In Sec. II
we describe the method of calculations. In Sec. III we
present and analyze the calculated results for the conduc-
tance of the ballistic channels with a double bend. Our
calculated results for the channels with multiple double
bends are also presented and discussed in this section.
Section IV contains a summary and some concluding re-
marks.

II. THEORETICAL METHOD

We consider a quantum ballistic channel having el-c-
trons confined by the hard-wall boundaries along the y
direction but allowed to move along the x direction. We

where x o is the reference coordinate along the x direction
for the strip region i and has been specified in Fig. 1, and
y' (y) are a set of transverse eigenstates in this strip re-
gion with eigenvalues E'. The quantities k' can be ex-
pressed in terms of E' and the energy c. of the electrons
injected into the region,

k' =
a

1/22m'(s —E' )

f2

For a fixed c, k' can be either real or imaginary. In the
case that k' is imaginary, the convention ( —I)' =i will
be used. We must sum over all a values in Eq. (2) to in-
clude all evanescent and current transporting waves as
demanded by completeness.

If the potential V/(y) is zero everywhere in the quan-
tum channel, the confinement potential V, (y) should give
rise to a set of normal modes @„(y) which satisfy the
one-dimensional Schrodinger equation

d
, +V, (y) @„(y)=s„@„(y),

2m
(4)

where n is the index of the normal modes and c.„are the
normal mode energies. We will use this set of normal
modes C&„(y) as our basis throughout the channel. By
projecting the transverse eigenstates p (y) onto this basis,

further assume that the channel can be divided along the
longitudinal x direction into strips which are small
enough so that the potential in each strip is of transverse
y-direction dependence only. This is illustrated in Fig. 1

where the quantum channel has been partitioned into N
strips. The Schrodinger equation of motion of an elec-
tron with energy c in strip region i in the channel can
then be written as

(j2 (j2+ + V, (y)+ VI, (y) 4'(x,y)2' Bx Bg

= s%'(x,y),
where m * is the eff'ective mass, the confinement potential
V, (y) is zero inside the entire channel and infinite out-
side, and VI', (y) describes the electron potential in the
strip region i. In the considered strip region, the wave
function that satisfies Eq. (I) can be written as

4'(x, y) = g [b' e ' +c;e '
j

' (y),

I I
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FIG. 1. Schematic diagram of a finite quantum channel in which the electron potential varies along both the transportation x and
the transverse y directions. The channel is connected with two semi-infinite 2DEG s and has been partitioned into X strip regions in
such a way that in each strip region the electron potential only varies along the transverse y direction.
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Eq. (2) can be rewritten as

4'(x,y)=g @„(y)g d„' [b' e

—ik' (x —xo)+c'e

n =1~2,3. . . (6)

Once Eq. (6) is solved, the coefficients b' and c' in Eq. (5)
are the remaining unknowns in the expansion for the
wave function ~II (x,y) in the considered strip region i
Obviously, we have a set of coefficients b' and c' for
each strip region. However, the connection between the
coefficients of any two strip regions in the channel can be
achieved by a transfer-matrix method.

Let us consider two adjacent regions i and i+1 as
shown in Fig. 1. Using the usual wave-function-matching
conditions, we can express the coefficients b' and c' ap-
pearing in the expansion for the wave function iII (x,y) in
the region i in terms of the coefficients b'+ ' and c'+' ap-
pearing in the expansion for the wave function ql'+'(x, y)
in the region i + 1. The result may be written in a matrix
form as

Bl Bl +1
=M(i, i +1)

where B' and C' are coefficient vectors, whose elements
are [b' ] and [c' ], respectively, and M(i, i +1) is the
transfer matrix which relates the coefficient vectors B'
and C' to the coefFicient vectors B'+' and C'+'. It can be
shown that the transfer matrix M (i,i + 1) is

—1 —1p' p'y' 0
0 (y')M(i, i+1)= Q' —Q'

p/+1 p/+1

Qi+1 Qi + 1

where y' is the diagonal matrix with elements given by
(y') =exp(ik'1') and the submatrices P' and Q' are
defined by (P')„=d„' and (Q')„=d„' k'w. Here /' is
the width of the ith strip region along the x direction and
w is the width of the straight square-well channel (see
Fig. 1). It can be seen that all elements of the matrices
are dimensionless. If the channel is divided into X strips
as we have shown in Fig. 1, it is straightforward to show
that the connection between the coefFicient vectors at the
two end strip region is

B1 Bx
=M(l, N)

where the transfer matrix M(1,N) is given by

where the expansion coefficients d„ for the strip region i
are obtained by searching for their corresponding eigen-
values E' from the system

QI( „—E' )&„+(@„(y)l&'(y)l@ (y))]d'

M(1,N)

=M(1,2)M(2, 3) . M(N 2—,N —l)M(N —1,N) .

(10)

By inversing M(1,N), one can also express the coefficient
vectors 8 and C in terms of the coefficient vectors B'
and C'. We note that, beside the structure parameters of
the quantum channel, the transfer matrix M(1,N) is
energy-dependent only [see Eqs. (3) and (8)].

Now, we discuss the boundary conditions imposed on
the wave function at the two ends of the quantum chan-
nel. One type of commonly used boundary conditions is
to connect the finite quantum channel with two perfect
infinitely long leads. Here we prefer to use another type
of commonly used boundary conditions, that is, we con-
nect the quantum channel to the 2DEG's as shown in
Fig. 1. We are doing so not only because this boundary
condition is more realistic to the device structures stud-
ied in many experiments, but also because it is crucial in
order to probe localized electron states by means of elec-
tron transmission.

Consider an electron with wave vector k=(k, k~ ) and
energy E, where E=R (k +k~)/(2m'), incident on the
channel from the left 2DEG reservoir. For x &xo =—xo,
its wave function can be written as

~p (x y)=e " '
pl, (y)

4 (x,y)= f dk'A„, e ' $2D(y) .—oo y y
(12)

As usual, iII (x,y) needs to be matched to 0"(x,y) at
x =xo and 0' (x,y) to 0' (x,y) at x =xo with the re-
quirement that amplitudes and derivatives with respect to
x are equal. After eliminating 3 „we can derive the

boundary condition imposed on the coefficient vectors 8'
and C' in a matrix form as

B1 T+ T
0 0

B1

C 1 0 (13)

where, with w again as the width of the straight square-
well channel, the vector A is defined by

(A)„=2k„wA,„I,nk

with

~.~ = f dy @.*(y)4F(y)

and the submatrices T'+ and T' (here i =1) are defined
by

+ f dk'A„, e " '
P&, (y),

oo

where PI, (y)=(2m. )
' exp(ik y), k„'=[2m*E/fi

—(k') ]'~ . Here, the integral is taken over all transverse
components k' and thus k' can be either real or imagi-
nary, i.e., evanescent waves are again included. For the
electron emitted from the channel in x &xo, the wave
function is
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(T'+ )„=g(t„d' +5„d' k' )w, (16) either one of the two end strip regions may be obtained.
For example, by eliminating 8 and C, we obtain

with

= J dk'k„'A, „,2„, (17)

Bl
t S(1)+S(N)r(N)M-'(1, N)] 0

Similarly, after eliminating A„„we can derive the bound-

ary condition imposed on the coefficient vectors B and
C as

where I (N) is

I(N)=
y

(21)

where

yN 0 BN

() ( tv) —i
y

(18)

0 0
S(N) =

T— T+ (19)

We note that for a given channel structure, the matrices
S(l) and S(N) are energy dependent only, while the vec-
tor A depends on both the energy c. and the direction of
the wave vector k of the electron in the 2DEG incident
on the channel. Using Eqs. (13) and (18), the coefficient
vectors B' and C' or the coefficient vectors B and C
may be eliminated from Eq. (9) and thus the system equa-
tion for the expansion coefficients of the wave function in

I

Thus the coefficient vectors 8' and C' can simply be ob-
tained by inverting the matrix at the left side of Eq. (20)
and all the subsequent coefficient vectors B' and C', in
this example i =2, 3, . . . , X, can then be computed from
them using Eq. (7). It is very obvious that the coefficient
vectors and thus the electron wave function in the quan-
tum channel depend on the wave vector k of the electron
incident on the channel. We will therefore add on the
wave function V(x,y) a subscript k to indicate this
dependence.

For each incident wave k, the electric current carried
through the quantum channel by the wave function
%'i,(x,y) can be expressed in terms of the expansion
coefficients of the wave function in any one of the strip
regions in the channel,

peg w/2J(s,8)= dy %k(x,y) %k(x,y) —iIli, (x,y) +i*,(x,y)
2m ~ —w/2 By By

2m „~p
(22)

where 8 specifies the incident direction of the electron
wave in 2DEG and is defined as sin(8)=k~/~k„+k~ ~'

s=iit (k +k )/2m* is the energy of the incident elec-
tron. Here, the superscript i (the strip region index) has
been dropped. Equation (22) can greatly be simplified if
we evaluate the current using the expansion coefficients
of the wave function 0'i,(x,y) in a strip region in which
Vb(y) =0. In this case, d„=5„and the current is

eA'
J(E,B)= — gk„(b„b„*—c„c„*)m*

(I)
+gk„(b„c„*—C„b„*) (23)

where (R ) [(I)] indicates that the sum is taken over those
values of n for which k„ is real (imaginary).

At T =0, the conductance of the quantum channel is
given by 6 = ~I/V ~, where V is a potential difference be-
tween the two 2DEG's, which causes a fiow of electrons
from left to right, and I is the sum of the contributions to
the current from all the incident wave k on the channel
from the left reservoir in the energy widow (EF—e V, EF )

at the Fermi energy EF. In the linear response regime,

where V is assumed to be very small, the energy window
is very narrow and the conductance of the quantum
channel can then be written as

f d8 J(E,i'I) . (24)

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we will report on the results of the ap-
plications of our theoretical method to the quantum wire
structures modulated with single and multiple double-

We note that the method presented in this section is
formulated in a basis of infinite order and is exact. How-
ever, Eqs. (6) have to be solved numerically by truncating
n and m at a high transverse level M. In the present cal-
culations we let M be as large as it is necessary to obtain
a desired convergence in the conductance and we seldom
need to be beyond M=7. We further note that the
method is also very general and has a great Aexibility.
The method can be easily used to treat the ballistic trans-
port in the quantum confinements having very complicat-
ed structures in both the longitudinal and the transverse
directions.
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bend discontinuities. All our calculations have been
performed with the assumption of an effective
mass I*=0.067m, which is appropriate to the
Al„Ga, „As/GaAs interface. In this work, we have
chosen to plot the conductance G as a function of a di-
mensionless variable g=(w/vrfi)(2m*EF)'/, where w is
the width of the straight square-well channel delimited by
hard walls and the EF is the Fermi energy in the 2DEG's.
It is very clear that g depends linearly on w and on EP .
From an experimental point of view one would like to
vary the width of the quantum channel w by means of,
e.g. , an applied split-gate voltage. However, it is very
convenient in theoretical calculations to vary the Fermi
energy EF while keeping tL~ constant. In the present cal-
culations, we have assumed w =100 nm. Thus g will de-
pend on Ez only and will be called the renormalized Fer-
mi energy.

We have first applied our theoretical method to the
quantum channels with a double-bend discontinuity. We
have idealized our channel structures by implanting two
rectangular barriers of a finite height Vo in the straight
square-well channel of width w delimited by hard-wall
boundaries. Figure 2 shows the calculated conductance
G for the quantum channel with such a double-bend
modulation of different barrier height Vo. The geometri-
cal detail of the double-bend structure is shown in the in-
set of Fig. 2. At VO=O, the considered structure is just
the straight square-well channel with hard-wall boun-
daries. Figure 2(a) shows the calculated conductance for
this case. The feature that the conductance is quantized
in units of 2e /h is seen in this figure. The oscillations
that appear at the edges of the quantized conductance

I

+&] )

plateaus are due to the formation of the longitudinal reso-
nant states in the constriction. In a weak modulation,
i.e., in a small barrier potential Vo, this feature in the
conductance of the straight square-well channel is seen to
be only slightly disturbed. By comparing Fig. 2(b) to Fig.
2(a), one sees that at Vo =e„where E, = (R /2m *)(m./w )

is the lowest transverse-mode energy of the straight
square-well channel with the hard-wall boundaries, the
step structure remains in the calculated conductance for
high renormalized Fermi energy g. However, deviations
in the conductance from the novel plateau structure
clearly appear in the first few lowest plateaus. Especially,
the first plateau has been suppressed overall except at the
edge and the end of the plateau. At the edge of the pla-
teau, a conductance peak can be identified. This peak be-
comes sharper as the strength Vo of the modulations in-
creases [see Figs. 2(c)—2(f)], and appears as a 5-function-
like peak at Vo=50c, , [see Figs. 3(d) and 4(b)]. We have
also examined the development of the peak as the length
I of the two narrow straight parts of the double-bend
structure increases. The results are shown in Fig. 3. It is
seen that as I increases, the peak becomes narrower,
whereas the height and position of the peak remain rath-
er unchanged. This strongly indicates that the peak is as-
sociated with an electron state well localized in the junc-
tion part of the double-bend structure, i.e., the region in
between the two rectangular barriers.

In recent works by Exner and Seba' and by Goldstone
and Jaffe, ' it was rather rigorously proved that in a
curved quantum channel there exist at least one electron
bound state or localized state at energy below the first
transverse-mode energy (i.e., the bottom energy of the
lowest subband). A more intuitive proof of the existence
of such bound states in a sharp bend quantum channel
can be found in Ref. 15. In these works the quantum
channels have been assumed to be infinitely long. Our
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FIG. 2. Calculated conductance G as a function of renormal-
ized Fermi energy g'=(w/A'~)(2m Ez)'~' for the quantum
channel with a double-bend modulation established by implant-
ing two rectangular barriers of a finite height in a straight
square-well channel of width w delimited by hard-wall boun-
daries. The geometrical detail of the double-bend structure is
shown in the inset of this figure with w =100 nm, l„=50 nm,
l~ =60 nm, lI = l„=30 nm, and l, =w —

l~ =40 nm. The strength
of the double-bend modulation is defined by the barrier height
Vp. The curves in this figure show the conductance G calculat-
ed for different values of strength Vp and have been offset verti-
cally for clarity: (a) Vp =0 (b) Vp = 2E, l (c) Vp =4c l (d)
Vp=6c&, (e) Vp=8c. &, and (Q Vp=10c&.

FIG. 3. Calculated conductance G as a function of renormal-
ized Fermi energy g=(w/A'~)(2m EF)'~' for the quantum
channel with a double-bend modulation at a fixed strength
Vp = 50K i. The curves in this figure show the conductance G
calculated for different values of l and have been offset vertical-
ly for clarity: (a) l =20 nm, (b) I„=30 nm, (c) 1„=40nm, and
(d) l„=50nm. The geometrical detail of the double-bend struc-
ture is shown in the inset of this figure. All the unspecified pa-
rameters are the same as in Fig. 2.
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FIG. 4. Calculated conductance G as a function of renormal-
ized Fermi-energy g=(cu/Rvr)(2m*E+}'~ for the quantum
channel with a double-bend modulation at a fixed strength
VO=50c&. The curves in this figure show the conductance G
calculated for different values of I„which has been set to w —

ly

and defines exactly the width of the doubly bent channel at
Vo —+ ~: (a) l, =30 nm, (b) l, =40 nm, (c) l, =50 nm, (d) l, =60
nm, and (e) l, =70 nm. The geometrical detail of the double-
bend structure is shown in the inset of this figure. A11 the
unspecified parameters are the same as in Fig. 2. The curves
have been offset vertically for clarity.

above results have provided a numerical proof for the ex-
istence of localized state with energy below the first
transverse-mode energy in a double-bend quantum chan-
nel. Since here we consider electron states in the quan-
tum channels of finite length and being connected with
the two 2DEG's, we prefer to call these localized states
quasibound states. This is because the wave functions of
these states spill over somehow onto the 2DEG regions.
The sharp peak in the conductance as shown in Fig. 3(d)
[also in Fig. 4(b)] corresponds to resonant tunneling via
such a quasibound state. In addition to the sharp peak a
broadened peak resonant with the bottom of the first pla-
teau can also be seen in Fig. 3(d), indicating there exists
another quasibound state at the edge of the first subband.
We believe that when the barrier height Vo approaches
infinity this quasibound state should eventually be located
at an energy well below the edge of the first subband.

In Fig. 4 we also display the calculated conductance in
the quantum channel with the single double bend for
different ratio I, /m, where l, =m —l is the width of the
doubly bent quantum channel formed by implanting two
rectangular barriers in the straight square-well channel of
width w (see the inset of the figure). In the calculations
presented in this figure, the barrier height is fixed at
Vo = 50E& ~ We may note that at the limit case of Vo ~~,
the first transverse-mode energy, or the threshold of the
first conductance plateau, of the doubly bent quantum
channel is given by A (vr/l, ) /(2m*)=E, /(l, /w) . Fig-
ures 4(a) and 4(b) show the calculated conductance for
the doubly bent quantum channels with I, /w=0. 3 and
0.4, respectively, in which electrons are forced through a
double-bend discontinuity when the Fermi energy Ez is
lower than the barrier height Vo. In these figures, partic-
ularly in Fig. 4(a), the two peaks corresponding to reso-

nant tunneling via quasibound states below the threshold
of the first conductance plateau of the doubly bent quan-
tum channel are seen. The peak at an energy farther
below the threshold of the first plateau is rather sharp,
while the peak at an energy closer to the threshold is
quickly broadened as the value of I, /w is increased. The
calculated conductance for the doubly bent quantum
channel with l, /w =0.5 is shown in Fig. 4(c). The value,
0.5, is the allowed maximum value of l, /w for the
maintenance of a complete double-bend discontinuity in
our quantum system. Here we can see that the peak far-
ther below the threshold of the first conductance plateau
remains sharp, while the other peak just appears as a very
weak bump at the threshold of the plateau. Figures 4(d)
and 4(e) display the calculated conductance for the chan-
nel with /, /w=0. 6 and 0.7, respectively, in which a
straight open strip along the transport x direction is pro-
vided for electron motion. Only one conductance peak at
an energy below the threshold of the first plateau is seen
in Figs. 4(d) and 4(e), indicating that there can only be
one quasibound state at energy below the first transverse
mode in these lateral structures.

In a recent experiment, ' interference phenomena due
to a double bend in a quantum channel were observed.
The lateral structure of the quantum channel studied in
this work may be considered to be analogous to our mod-
el structures with I, /w (0.5 [e.g., the structures used for
calculations of the conductance presented in Figs. 4(a)
and 4(b)]. The authors of this work observed also two
sharp conductance peaks below the threshold of the first
conductance plateau. ' They argued that the two peaks
originate from resonant tunneling through impurity
states in the quantum channel. However, our calcula-
tions strongly suggest that the two peaks observed in this
experiment may well be due to the resonant tunneling
through quasibound states. Thus we call for experimen-
tal reexaminations on this issue. We believe that the two
conductance peaks should appear at low temperature as a
fundamental phenomenon due to the presence of quasi-
bound states below the first transverse mode in such a
quantum confinement.

A theoretical investigation on electron transport
through a doubly bent quantum channel has also been
carried out recently by Weisshaar et al. ' In this work
only the double bend itself is basically included in the cal-
culations while assuming that the two straight channels
that are connected together through the double-bend
junction are infinitely long. The authors of this study
only reported the calculations of the total transmission
probability from individual modes, not the conductance,
for the doubly bent quantum channel. Thus a direct
comparison of our calculations with theirs cannot be
done. However, we wish to note that due to their use of
the assumption that the channels which are doubly bent
are infinitely long, these authors were unable to find the
transmission peaks corresponding to resonant tunneling
via bound states below the first transverse mode of the
channel. This is because these bound states are entirely
confined to the quantum channel and cannot be coupled
to incoming and outgoing waves at infinity. Thus we
wish to stress that in order to probe such bound states in



47 BALLISTIC TRANSPORT IN QUANTUM CHANNELS. . . 9543

a quantum channel via electron transmissions, it is essen-
tial to set the quantum channel to be of finite length and
consider electron states in much wider outside regions
that are connected with the channel.

In Fig. 4 we can also see that when going from Fig. 4(e)
down to Fig. 4(a), both the threshold of the first conduc-
tance plateau and the sharp conductance peaks due to
resonant tunneling via the quasibound states below the
threshold are shifted towards high renormalized Fermi
energy g. This is consistent with the fact that in this or-
der the doubly bent quantum channel tends to be narrow.
In addition to the appearance of the quasibound states,
the conductance plateau structure is seen to be strongly
distorted. Many dips appear in the conductance pla-
teaus. This is so even in the case that a straight open
strip for electron motion is actually present in the chan-
nel [see Figs. 4(d) and 4(e)]. These dips, often called an-
tiresonances, originate from interferences of electron
waves due to the double-bend discontinuity in the quan-
tum channels.

A multiple double-bend discontinuity in a narrow
quantum channel can be obtained by introducing more
than two rectangular barriers in the channel. Two such
quantum structures are shown in the insets of Figs. 5(a)
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FICi. 5. Calculated conductance G as a function of renormal-
ized Fermi energy g=(w/Pier)(2m*E„)'~ for the quantum
channel with (a) a double and (b) a triple double-bend modula-
tion at a fixed strength V0=4c, &. The geometrical details of the
two multiple double-bend structures are shown in the insets of
the two figures. A11 the unspecified parameters are the same as
in Fig. 2.

and 5(b). When the height of the barriers in the quantum
channel is set to infinity, these two structures may be
called double and triple doubly bent quantum wires, re-
spectively. In the cases that the barrier height Vo is
finite, the structures can still be considered as the double
and triple doubly bent quantum wires for electron trans-
port at Fermi energies far enough below the height Vo.
In the calculations for the quantum channels with these
two multiple double-bend discontinuities we have as-
sumed Vo =4m&, since here we are mainly interested in the
conductance peaks corresponding to resonant tunneling
via quasibound states below the first transverse mode of
the quantum channel. We display in Figs. 5(a) and 5(b)
the calculated conductance for these quantum structures
with this barrier height. The calculated conductance for
the corresponding quantum channel with the single
double-bend discontinuity may be found in Fig. 2(c). At
energies below the threshold of the first conductance pla-
teau, we find one conductance peak in the quantum chan-
nel with the single double-bend discontinuity [see Fig.
2(c)], two peaks in the channel with the double double-
bend discontinuity [Fig. 5(a)], and three peaks in the
channel with triple double-bend discontinuity [Fig. 5(b)].
This finding is also expected to be correct for these multi-
ple doubly bent quantum channels with the barriers of
infinite height. Thus we may conclude that a conduc-
tance peak below the threshold of the first conductance
plateau in the quantum wire with a single double bend is
split into N peaks in the quantum wire with N sequential
and aligned double bends. This result clearly indicates a
formation of N-fold splitting quasibound states in the sys-
tem due to the coupling between the quasibound states
localized in different double-bend junctions. We like to
note that for the geometry of the double-bend junctions
we have investigated, there can be two quasibound states
at energies below the first transverse mode in each junc-
tion when the height of the barriers defining the junction
is infinite [see Figs. 3(d) and 4(b) for an approximate
case]. Therefore, as Vo approaches infinity, we should
find two sets of N-fold splitting quasibound states below
the the first transverse mode in the quantum wire with X
sequential and aligned double bends, provided that the
couplings between quasibound states in adjacent double-
bend junctions are not too strong. As a consequence, two
sets of N-fold splitting resonant peaks in the conductance
should appear at energies below the threshold of the first
conductance plateau in the N-fold double-bend quantum
wire in this case. Finally, we mention that Figs. 5(a) and
5(b) also show that the dips in the conductance become
deeper and the bottoms of the dips become wider as the
number of double bends in the quantum wire is increased.
This may suggest that experimental observation on the
effects of interferences in the ballistic regime become
easier in the quantum wire with a larger number of
double-bend junctions.

IV. SUMMARY AND CONCLUDING REMARKS

In this paper we have reported on exact quantum-
mechanical calculations of electron transport in narrow
quantum channels with single and multiple double-bend
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discontinuities. In order to model the transport in the
ballistic regime and, particularly, to probe quasibound
states by means of electron transmission, we have as-
sumed that the channels are of finite length and are con-
nected with 2DEG's, which acts as source and drain
when a potential difference is applied. A transfer-matrix
method has been formulated and used in the calculations.
We have based all our matrices throughout the quantum
channel on one common basis. Thus the method has a
great flexibility, i.e., it can be easily used to treat electron
transport in the quantum channels having very compli-
cated structures in both the longitudinal and the trans-
verse directions.

The method has first been used to investigate the elec-
tron transport in the narrow quantum channel with a sin-
gle double-bend modulation of different strength Vo. We
have shown that for a large enough modulation strength
Vo, at least one conductance peak corresponding to reso-
nant tunneling via quasibound state of the double-bend
structure can appear at an energy below the threshold of
the first conductance plateau. We have found that the
number of resonant conductance peaks that appear at en-
ergies below the threshold of the first conductance pla-
teau depends on the ratio l, /w (see, for example, the
schematic illustration in the inset of Fig. 4 for l, and w j.
We have shown that, at a strong doubly bent modulation,
two conductance peaks at energies below the threshold of
the first conductance plateau can appear when the ratio
I, /m is smaller than 0.5, whereas only one peak at an en-
ergy below the threshold of the first plateau can appear
when the ratio I, /w is larger than 0.5. Thus our calcula-
tions have provided a numerical proof of the existence of
the quasibound states below the first transverse-mode en-
ergy in a double bent quantum channel. Based on these
results we have proposed that the two conductance peaks
observed by Wu et al. ' at gate voltage below the thresh-
old of the first conductance plateau may well be inter-
preted in terms of resonant tunneling via quasibound

states. We have stressed that in order to find theoretical-
ly such quasibound states via electron transmissions, it is
crucial to set the quantum channel to be of finite length
and consider electron states in much wider outside re-
gions connected with the channel. We have further ap-
plied our theoretical method to the quantum channels
with multiple double-bend discontinuities. We have
shown that each conductance peak at the energy below
the threshold of the first conductance plateau is split into
X peaks in the quantum channel with % sequential and
aligned double bends and that the dips in the conduc-
tance become deeper and the bottoms of the dips become
wider as the number of double bends in the quantum
channel increases.

The two conductance peaks corresponding to the reso-
nant tunneling via quasibound states at energies below
the first transverse mode in a doubly bent quantum chan-
nel were also found in the calculations by Wu, Sprung,
and Martorell' with the use of the single-mode approxi-
mation leading to a description of the channel simply by
a one-dimensional double square well.
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