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Persistent currents and edge states in a magnetic field
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We investigate equilibrium electron currents in an ideal two-dimensional ring (of radii R, &R2). The
most striking result emerges when the conditions for the existence of edge and bulk states are met, name-

ly R2 —R, &&aH where aH is the magnetic length. If the Fermi energy lies in a gap between two Landau
levels, the current (as a function of electron density) displays violent fluctuations (in sign and in absolute
value), which is quite unusual for systems without disorder. The fluctuations in sign result from the al-
ternative contributions of inner and outer occupied edge states below the Fermi energy, while those in

absolute value originate from the apparent symmetry between the slopes of the energy curves near the
two opposite edge states. On the other hand, when the Fermi energy is locked on a Landau level, the
current has a plateau as a function of electron density. Its value at a plateau represents the contribution
to the current of all the edge states in the lower Landau levels.

I. INTRODUCTION

Persistent current' is an equilibrium property of an
electronic system with a closed loop, expressing its
response to an applied magnetic field. Substantial
theoretical efforts have been devoted to the understand-
ing of this phenomena. In two recent experiments on
metallic rings, persistent currents have been detected. '

Numerous theoretical works" followed the original
idea, and concentrated on a system with a one-
dimensional ring geometry and its response to a central
Aux threading through it. More recently the importance
of many channel effects has been addressed, and several
authors considered two-dimensional (2D) and 3D cylin-
drical rings threaded by a Aux along the axis. '"' The
subtle nature of the averaging procedure has also been
considered, " as well as the importance of electron-
electron interaction. '"' A common feature is that the
magnetic field in the sample is not taken into account
(while experimentally it is present). In these kinds of
geometry, the persistent currents result from the sensi-
tivity of the energy spectrum to the boundary conditions
which are determined by the Aharonov-Bohm (AB) flux
@ through the hole. The main efForts were focused on
AB periodicity, the role of disorder in the appearance of
the half period and thermodynamic aspects of the averag-
ing procedure of many rings. Experimentally, an ideal
one-dimensional ring with a Aux through its hole is not
attainable. In the actual experiments, rings (or even
squares) with two radii R

&
(R2 are used such that

8 =R 2 R
&

(&E. i ~ They were put in a weak magnetic
field (up to about several flux quanta through the hole) so
that the effects of finite width and the magnetic field in
the sample are assumed to be limited. Discussion of per-
sistent currents in an annulus of finite width subject to a
perpendicular magnetic field was carried out a few years

ago. "Recently, " ' the inclusion of a weak magnetic
field has been suggested within a semiclassical approach
based on the Bohr-Zomerfeld quantization condition.

In the present paper we suggest that the study of per-
sistent currents in annular rings in a strong magnetic field

is interesting in its own, and contains information about
the energy spectrum of edge states in gaps between Lan-
dau levels in particular. The existence of these currents
was suggested several decades ago. In the study of the
quantum Hall effect, Halperin has shown that when a
conducting layer with two edges (e.g. , a ring or a
cylinder) is placed in a strong perpendicular magnetic
field, there exist current-carrying electron states which
are localized near the boundaries of the sample.

To be more specific, let us denote the energy eigenval-
ues for an annular ring in a magnetic field and a central
flux N by E„(m;4&), where n is a radial quantum number

which corresponds to the Landau levels and m is the an-

gular momentum. For a fixed value of n and N, the set of
points E„(m; 4& ) describes a discrete energy momentum

relation. We will study relatively large systems for which
several hundreds of m values are relevant for each n. By
changing N adiabatically between 0 and @o (here

ohc/e is the magnetic flux quantum) the energies

E„(m;@) move continuously in such a way that
E„(m;4&+4o)=E„(m + I;N). (This equality is required

by gauge invariance since the spectrum must have AB
periodicity equal to @o.) It is then useful sometimes to
think in terms of continuous lines (which we will call
dispersion energy curves). The contribution of an occu-
pied state at energy E„(m;N) to the current is given by
the Byers-Yang relation (see also Ref. 6),

aE„(m;C )

nm
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Our motivation in the present work is based on the in-
terpretation of Eq. (1) as a probe of the energy levels near
the edges. Let us assume that the Fermi energy lies in a
gap between two Landau levels E„and E„+&. It then in-
tersects the curve E„(m;4&) at two points. Physically,
Eq. (1) tells us that an equilibrium electron current in a
two-dimensional conducting film in a strong perpendicu-
lar magnetic Aux reflects the difference in the slopes of
the energy curve at the two edges of the sample. Further-
more, the discrete nature of the spectrum (which is the
case for mesoscopic systems) is of crucial importance
here since the sign of I„changes according to whether
E„(m;4&) is on the right or left side of the energy curve.
Hence, a knowledge of the current as a function of some
external parameter (electron density or external magnetic
field) is related to the spectroscopy of the pertinent edge
states. Motivated by this observation we extensively in-
vestigate the characteristics of the persistent (or edge)
currents in an ideal ring of radii R, &R2, for which the
Schrodinger equation is solved. We are mainly interested
in the situation where edge states as well as bulk (Landau
degenerate) states are present, which is the case

8 =R2 —R, ++aH

where aH =(A'c/eH)'~ is the magnetic length corre-
sponding to the magnetic field H.

This kind of geometry is chosen not only because it is
experimentally accessible but also because it is related to
the structure of the spectrum. The ring with a finite
width geometry is a typical one for which the dispersion
curves are not symmetric. Following the physical inter-
pretation of Eq. (1) it is evident that this asymmetry will
dominate the behavior of the edge currents. The first
thing to notice in this context is that the cUrrent will be
different from zero even when the additional central Aux

is absent (in contrast with the cylindrical ring
geometry). Thus, the central flux in the present case
merely plays the role of an adiabatic parameter through
which the energy curves are defined, and not as a trigger
of the current.

Our results can be summarized as follows: (a) When
the Fermi energy lies in a gap of bulk states, we find that
the edge current displays violent Auctuations in sign as a
function of electron number X, even when a single elec-
tron is added. The Auctuations in absolute value increase
with X as the Fermi energy increases between E„and
E„+i. (b) Another result which we find here (which is
self-explanatory albeit surprising) is related to the fact
that once the Fermi energy reaches a Landau level, it is
"locked" on it for a large range of N. This means that
the edge current remains constant, and its value
represents the contribution from all edge states connected
to the lower Landau levels. (c) We also investigate the
dependence of the persistent current on the magnetic field
and explain our results in the context of Eq. (1).

The subject of equilibrium currents as a response to an
applied external magnetic field dates back several de-
cades, but its relevance to mesoscopic systems received
much interest recently due mainly to the possible experi-
mental observation of important size and edge effects.

Attention is directed toward several mutually overlappig
focuses of interest, such as orbital magnetization, de
Haas —van Alphen oscillations, persistent currents, etc.
In this respect, the present work can be related to any
one of these topics for the special case where the
geometry of the two-dimensional systems is such that
there are two edges and when the magnetic field is very
strong. We recall that the experimental setup designed to
detect persistent currents ' is based on the ring
geometry. Of course, in the actual experiments, the
geometrical parameters and the strength of the magnetic
field are chosen such as to approach the one-dimensional
ring threaded by a Aux ideal geometry,

R2=R ), 8'«aH,

which is on the other extreme of condition (2) above.
Yet, it is our hope that the present research will intrigue
experimental works on conducting rings for which the
condition (2) is met. Most likely, it can be achieved in
semiconductors with low Fermi energies through the
techniques of fabrications of quantum dots (Si-metal-
oxide-semiconductor field-effect transistor, heterojunc-
tion interfaces, etc.).

II. EDGE CURRENTS IN AN IDEAL RING GEOMETRY

A= —,'HXr+
2&P'

(4)

The Schrodinger equation for the wave function %(r, B) is
then

'2

p+ —A 4'(r, B)=EH r, B),
C

where p is the momentum operator and E is the energy
eigenvalue. We adopt units such that Pi=2m = 1. Using
rotational symmetry (appropriate for the symmetric
gauge), the states can be labeled by a radial quantum
number n and the angular momentum m. The wave
function is conveniently factorized as 4'(r, B)
=e'™g„(r)Vr,and the radial equation for a given an-
gular momentum m reads

In this section we will solve the Schrodinger equation
for two-dimensional noninteracting electrons in a mag-
netic field within a ring of radii R ] & Rp and determine
the energy spectrum. Following Halperin, we will also
add a magnetic Aux @ through the hole. Using the one-
particle energies, we will compute the persistent current
as a function of electron density (for fixed magnetic field)
and as a function of the magnetic field (for fixed electron
density).

In plane polar coordinates, r, 0, the action of a magnet-
ic field H and a central Aux N are conveniently intro-
duced through the symmetric gauge for the vector poten-
tial
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d m —P r
A@2 p a 2

1
(r)

4r
Hkk' ~kk'

2f 2

8' +, (k(r'~k )
QH aa

=E„(m)it„(r),
(6)

+[(m —y) —
—,'](k~r ~k'), (13)

where we have defined P=@/@o. The normalization and
the boundary conditions are

R2f ~f„(r)~ r dr =1, (7a)
1

Q„~(R, )=f„(R2)=0 . (7b)

It is useful at this point to recall the relation between
the value of m and the nature of the wave function

(r) suggested by Halperin: Define the radius r
through

~Hr =m@0—@ .

Then if R, (r &Rz and ~r —R, ~ )&aH, the states
(r) are degenerate at the Landau energy,

E„= (n =0, 1,2, . . . , )
2n +1

QH
(9)

and each state g„(r) is peaked at r . If, on the other
hand r —R, or R2 —r is less than the order of few
times aH (or negative) the state P„(r) is exponentially lo-
calized close to R; (i = 1,2) and its energy is higher than
E„. This qualitative feature will be given a quantitative
numerical substantiation later on.

The solutions of Eq. (6) can be expressed analytically in
terms of conQuent hypergeometric functions with pa-
rameters a = —0.5(EaH —1),y =m —P+ 1, and argu-
mentz =r /2aH. They are

(r)=e '~ z ~+'~ [AM(a, y, z)+SU(a, y, z)] .

(10)

M(a, y, zi)U(a, y, z2) M(a, y, z2)U—(a, y, z, )=0 . (11)

Unfortunately, the implication of the boundary condi-
tions from which the eigenvalues are extracted through
Eq. (1) is rather difficult. We therefore found it more use-
ful to diagonalize the Hamiltonian in a standing wave
basis of functions,

Here M(a, y, z) and U(a, y, z) are two independent solu-
tions of the conAuent hypergeometric equation which are,
respectively, regular and singular at r =0. %'ith
z,. =R; /2aH, the eigenvalues (as well as the ratio between
the constants A and B) are determined by the boundary
conditions which lead to

and the cutoff mode K is chosen so that the spectrum
below the Fermi energy is insensitive to its value. For
each m, a set of IC energies E„(m ) is obtained
(n =0, 1,2, . . . , K —1) and when the magnetic field is
strong, the dispersion curves E„(m;@)should be fiat (de-
generate) far from the edges being equal to the Landau
energies (9). This is indeed the case as we can see from
Fig. 1(a) and that serves as a test of the numerical pro-
cedure. Instead of calculating the current via Eq. (1)
[which requires calculations of E„(m;@) for several
values of the Aux and then performing numerical deriva-
tives] we found it safer to evaluate the current directly as
an integral of the current density along the radial direc-
tion. It requires the knowledge of the wave functions
which are computed in terms of the eigenvectors of Hz~
[Eq. (13)]. For a given wave function 4„(r,8)

(r)e ', the current density is

(14)

Apart from the factor e (which we drop henceforth), the
component of J„along the tangential direction (in the
present scheme of units) is

(r)
a~

(15)

where the operator within the square brackets is the corn-
ponent of the current operator along the tangential direc-
tion. After replacing the derivative operator by im we
have the corresponding expression for the current,

I„=f )@„(r)f — dr .
j. r aH

(16)

It is somewhat tempting to calculate the current using
a discrete version of Eq. (1) with steps of difference
64=+@0, where + refers to forward difference and-
refers to backward difference. The advantage of this pro-
cedure is that it is suf5cient to know the spectrum at a
single value of the Aux in order to calculate the current.
The approximate expression is then

bE„(m;4&)I„= c

2fk(r)= 8

1/2
kyar(r —R, ) k=1,2, . . . , K .

(12)

To assess the usefulness of this procedure in the present
case let us recall the relation E„(m;@+No)
=E„(m+I;4') which is dictated by gauge invariance.
Equation (1') is then equivalent to

The matrix elements (k~r ~k') and (k~r ~k') can be
stored once for all so that the matrix to be diagonalized is

E„(m+I;@)—E„(m;@)
nm +@O
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Now, let us assume that the Fermi energy EI; crosses the
energy curve E„(m;@)in such a way that the energy of
the highest occupied state on the right side is E„(mz', 4&)

while the energy of the highest occupied state on the left
side is E„(m1.,4). Thus, E„(m„+I;@))EF,and also
E„(mI —1;4 ) )Ez. It is now easy to check that if one
sums the contributions of the numerators in Eq. (1") up
to the Fermi energy [see Eq. (17) below], the sum will al-
ways be positive, being either E„(mz + I;4) E„(—ml ', 4&)

in case one chooses to use a forward difference or
E„(mI —I;4)—E„(mz, @) in the opposite case. The
denominator, however, has different sign, being positive
in the forward case and negative in the backward case.
Thus, beside the inaccuracy of replacing derivative by
difference, one arrives at an unacceptable result that the
sign of the current depends on the direction of whether

one chooses to use forward or backward difference. The
unavoidable conclusion is that while Eq. (1 ) is successful-
ly applied in other circumstances, it cannot be used in
the present calculation scheme.

III. RESULTS AND DISCUSSIONS

Let us first inspect how I„depends on the quantum
numbers (n, m). If E„(m;N)=E„(namely, it is degen-
erate and belongs to the bulk) then clearly I„=O, since
E„(m;N) does not change with 4. If, on the other hand,
E„(m;N) is on an edge of the energy curve (namely, it is

in the gap of bulk states), then I„will be positive or neg-
ative according to whether E„(m;4&) is on the right side
(outer edge state) or on the left side (inner edge state).

60

50

40

g 30

20

10

10

5

0
0

X
2

I I I
l

I I I I

4 ~
~ ~
~ ~
~ ~
~ ~
~ ~

~ ~ ~
~ ~ ~

~ ~
~ ~

~ ~
~ ~

~ ~
~ ~ ~ ~

~ t ~
~ ~ ~~ ~
~ ~ ~ ~
~ ~ ~ ~~ ~ ~
~ ~ ~
~ ~ ~ ~

~ ~ ~ ~ ~
~ ~ 4 ~

~ ~ ~ ~
~ ~ ~

~ ~ ~~ ~ ~
~ ~ ~

~ ~ ~
~ ~ ~
~ ~ ~

~ ~ ~
~ ~ ~
~ ~

~ ~
~ ~ 0
~ 0
~ ~
~ ~
~ ~~ ~

~ ~~ ~~ ~
~ ~

4

100 200 300 400 500

I I ~ I I ~ I I I
I

I I I I \ I I I I
1

I I I I I I I I

~ iW

I
I I I I

I
I I I I

I
I I I I

I
I I ~ I

0
~ ~

~ j~ ~

~ ~

~ ~ ~~ ~

ig s

600

~ ~ ~

FIG. 1. (a) Energy curves as a function of
angular momentum quantum number m for a
clean annular ring of radii R, = 15.86,
R~=30.00, central flux /=0. 2, and magnetic
length aH=1. Energies and current are given
in units of inverse length square. The flat parts
correspond to the values of Landau levels for
the infinite system (2n +1)/aH=1, 3, 5, 7, and
9. (b) Energy E„(m,'N) (solid line) and current
I„computed from Eq. (16) and multiplied by
100 (dotted line) as a function of (n, m) ar-
ranged so that E„(m; N ) is nondecreasing.
The radii, field, and Aux are the same as in (a).
(c) Fermi energy (solid line) and persistent
current computed from Eqs. (16) and (17) and
multiplied by 100 (dotted line) as a function of
electron density n, =N/ m.(Rz —R

& ) (where N
is the number of electrons) corresponding to
the geometry and field strength of (a). (d) The
result of averaging the current over electron
number in an interval of 200. The current is
plotted as a function of N where here N is the
center of the pertinent interval. The other pa-
rameters are as in (a).
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The negative value will be larger in absolute value than
the positive one since the slope on the left is larger than
that on the right (assuming they both have approximately
the same energy, of course). On the other hand, the num-
ber of positive contributions within a given energy inter-
val will exceed that of negative contributions since the
number of single-particle states per energy interval is in-
versely proportional to the slope of the energy curve.
These considerations are given a quantitative support in
Fig. 1(b). We have gathered the pairs (n, m) into a se-
quence q(n, m) of quantum numbers according to the as-
cending values of E„( Nm), and plot E„(m;@)and I„
as functions of these quantum numbers. We notice the
negligible contributions from the bulk states, the larger
absolute values of the negative contributions, and the
more dense positive contributions. It is also evident that
the dispersion curves at the edges are not linear, since if
they are linear, the envelopes would have been parallel
straight lines.

We can now examine the behavior of the persistent
current at zero temperature

I=+I„O(E~ E„(m;@)), —
nm

where 0 is the step function. The Fermi energy EF de-
pends on the magnetic field H and on the electron num-
ber N (and also on @albeit very weakly).

We first consider the dependence of I on X. Experi-
mentally, variation of electron density is achieved rela-
tively easily in terms of an applied gate voltage. In Fig.
1(c) we display the Fermi energy and the persistent
current as function of electron density
n, =Aim(R2 —R

&
) for the same radii and field strength

as in Fig. 1(a), for which the condition (2) holds. In some
loose sense Fig. 1(c) is the "integral" of Fig. 1(b). As the
Fermi energy moves into the gap of bulk states, the
current displays violent oscillations in sign, whose abso-
lute values increase. The sign of the current is reversed
almost each time when the new occupied state just below
the Fermi energy belongs to a difTerent edge state than its
former one. The reason for the apparently irregular pat-
tern of oscillations is the asymmetry of the energy curves.
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This is a hallmark of the annulus geometry in contrast
with the strip geometry for which the energy curves are
symmetric. We stress again that the role of the central
flux in the present geometry is not to trigger the current,
but just to serve as an adiabatic parameter in terms of
which the current can be computed. The specific value of
the central flux (/=0. 2 for Fig. 1) is immaterial. Any
other value (including /=0 which correspond to the ex-
perimental situation) will give qualitatively the same re-
sults.

The magnitude of the current in physical units can be
estimated for typical experimental parameters simply by
noticing that in our units, the current is about two orders
of magnitude smaller than the Fermi energy. Thus, we
are tempted to conjecture the estimate I=10 (e/h)EF,
which for EF in the region of eV corresponds to a current
in the region of rnicroamperes.

The plateaus in the persistent current graph are almost
self-explanatory. As a function of electron density, the
Fermi energy is "locked" on a Landau level, and there is
no contribution to the persistent current from the bulk
states. The value of the current at each plateau is the
sum of the contributions of all the edge states from the
lower energy curves below this particular energy.
Despite this simple picture, the appearance of these pla-
teaus is quite significant, and represents another hallmark
(among many others) in the physics of electrons in strong
magnetic fields.

Using arguments related to Fig. 1(b) regarding the non-
linearity of the energy curves at the edges, and the accu-
mulated contributions of the plateaus, it is easy to con-
vince oneself that the current has a good chance to sur-
vive an averaging over N. This is substantial in Fig. 1(d),
where we plot the average of the current (with respect to
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electron number) over an interval 2b, (=200 in that case)
k =N+5

&I)„—: X
k=N —5

The locking effect can be eliminated once the Landau
degeneracy is removed. This is possible if the distance 8
between the edges of the system become smaller, leaving
room only for edge states. We test this point in Fig. 2 (a
thin ring geometry), for which relation (2) is replaced by

(18)R2, R& »aH, 8'=R2 —R& =4aH .

The energy curves plotted in Fig. 2(a) do not have a tlat
bottom part (except possibly the first one in which the
current is zero anyway). Therefore the locking effect
should be absent. %'e also notice that the asymmetry be-
tween left and right edges is reduced, and hence, the (19)R2»R& =3QH, 8 =R2 —R, »a~ .

35 I I ~ I 1 I I I
I

I I I I
I

~ K I ~
I

I ~ t ~ I I I I I

30

25
~ ~

'~
yt

~ ~ 020
~ ~

aO
~ ~

~ ~ n=4
~ ~ ~~ 0

15 ~ ~

+ ~ ~ ~ &=3
~ ~

~ t ~
~ ~

~ ~ ~

~ ~ ~ ~
~ ~

~ ~ ~ ~

~ ~

~ ~
~ ~

Il=2 n=l n
10

~ ~

~ ~5

i I I I I I I ~ I I I I I t I I I I ~ I I I I I I a

200 25015050 100-50 FIG. 3. (a) Same as Fig. 1(a) except that
Rl =3.06, R2=20.00. (b) Same as Fig. 1(c) ex-
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=3~ 06 R2 =20.00. (c) Lowest
( n =0) radial wave functions for left edge
states (m =0), bulk states (m =45, 90, and
135), and right edge states (m =180 and 225).
(d) Same as (c) for the second level (n =1).

30 ~ I I
I

I I I I I I I
I

I I ~
I

I

20

10
~ ~

~ 0

yI ~

~ ~
0

~ ~

-10

-20

-30

I I I I l I I I I I I I I I I I I-40

0.2 0.3 0.4Il
e

slopes on the left and on the right become close to each
other. In this case the current can be viewed as the sum
of terms obtained from a monotonic sequence (higher
than linear) with alternating signs. This is exactly what
we get as is shown in Fig. 2(b).

To further inspect the effect of asymmetry between the
two edge states, we have performed calculations in an an-
gular ring with a small hole (where the asymmetry is pro-
nounced). We notice that in the ring geometry, the
relevant parameters are not only 8'and aH but also R &.

Indeed, as R
&

becomes smaller, one approaches the origin
and the centrifugal term becomes important. Hence, the
asymmetry between the two sides of the energy curve is
increased. We show, in Fig. 3(a), the energy curves for
the geometry of a thick ring, for which
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results from the edge states, it is of great interest to study
the persistent current in the weak-field limit since this is
the domain where experiments have so far been per-
formed (although only with metallic rings). We carried it
out for the same ring as in Fig. 1 but with a magnetic
field weaker by two orders of magnitude. Thus, we have
in this case

the current is computed from an almost perfect sequence
with alternating signs [in the sense of the discussion per-
taining to Fig. 2(b)]. We therefore expect a regular pat-
tern of fluctuations corresponding globally to several
smooth lines, which "bifurcates" each time another level
is crossed. Figure 4(b) is a beautiful manifestation of this
analysis. We note in passing that in a rectangular
geometry of typical length L, irregular fiuctuations of the
orbital susceptibility have been predicted at an extremely
weak magnetic field (I./aH ~0). '

R2 =30.00)R
&
=25 ~ 86 QH= 10.00(R] a~=2. 5w

(20)

The energy curves shown in Fig. 4(a) are nearly perfectly
symmetric with the center slightly larger than m =0.
Unlike all previous cases (for which the magnetic field
was strong) the dependence of E„(m;@)on both m and n

is not far from quadratic. The parabolic dependence on
m implies that the slope of the energy curve is linear with
energy, while the almost perfect symmetry implies that

Dependence of the persistent current
on the magnetic Seld

From an experimental point of view it should be some-
what easier to follow the dependence of equilibrium (per-
sistent) currents in a strong magnetic field on the field
strength (than on the electron density). Yet, each case
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of much interest to study the behavior of the current as a
function of the magnetic field in a continuum version and
more realistic geometry (albeit pure system). This we
have done for the ring geometry of Fig. 1. The number
of Ilux quanta on the area (excluding the hole) ranged be-
tween 40 and 1000. (It is more natural in this case to plot
the current as a function of I/N& )T.he results are
presented in Figs. 5(a) and 5(b).

First let us inspect the Fermi energy curve. We fix the
number of electrons as 200 and start with IV&=1000,
which, in the present geometry corresponds to
aH = 1/&2. The degeneracy of the Landau level is such
that electrons occupy part of the first Landau level only,
so that the Fermi energy is (2n + 1)/aH =2 (for n =0).
Now we start to decrease the strength of the field and the
Fermi energy decreases as well since the energy curve is
lowered. At the same time, the degeneracy of the Landau
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FIG. 5. Fermi energy (solid line) and per-
sistent current (dotted line) as a function of an
inverse of the magnetic field for a fixed number
of 200 electrons. The abscissa is 1000/N&
where N& is the number of flux quanta in the
sample between R

&
=25.86 and R2 =30.00. (a)

The strong-field domain 1.00 & 1000/
N& & 6.50. (b) The weak-field domain
6.50 & 1000/N& & 25.00.
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has its own physical characteristics. Investigation of bulk
properties of infinite electronic systems as a function of
the magnetic field revealed some of the most beautiful re-
lated physical phenomena like Shubnikov —de Haas oscil-
lations and the de Haas —van Alphen effect. They origi-
nate from the semiperiodic (sawtooth) behavior of elec-
tron population as a function of the inverse of the mag-
netic field.

It has been pointed out by Sivan and Imry" that in the
presence of edges, this picture is modified since crossing a
Landau level from above puts the Fermi energy at the top
of the populated edge states belonging to the lower-
energy curves. They analyzed the effect of edge states on
the de Haas —van Alphen oscillations within a tight-
binding model with diagonal disorder on a relatively
small lattice such that the total number N& of Aux quanta
through the sample ranged between 7 and 25. It is hence
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level is decreased, so that eventually, the Fermi energy is
pushed up, as edge states from the first level are filled.
When the number of flux quanta is about 400
[1000/N&=2. 5 in Fig. 5(a)], electrons start to fill the
second Landau level and the Fermi energy stays there for
a while and so on. Thus, those parts of Fig. 5(a) in which
the energy decreases as a function of the Aux correspond
to the cases where the Fermi energy is on a Landau level
which decreases as 1/H. On the other hand, when the
Fermi energy increases with 1/0 it means that it is in the
gap of bulk states. For an infinite system, the picture is a
perfect seesaw. For a system with edges, the pattern is
distorted and in the weak-field limit [Fig. 5(b)] almost
disappears.

The behavior of the current follows from that of the
Fermi energy. When the Fermi energy is attached to the
lowest Landau level, we get the same locking effect for
the current as we have seen before. Once the Fermi ener-

gy is pushed above the Landau level, the fluctuation pat-
tern characteristic of the edge state contribution emerges.
When the Fermi energy reaches the second Landau level,
we do not observe the locking effect as we have found be-
fore, and the fluctuation pattern is almost unaffected.
Indeed, any change of the magnetic field simultaneously
causes a shift, a dilatation, and a decrease in the degen-
eracy of the energy curves, and that causes a completely
irregular pattern of fluctuations. Therefore, apart from
the region where the Fermi energy is attached to the
lowest Landau level, there will be no plateau and the
currents fluctuate violently. In the weak-field limit [Fig.
5(b)], there are no more degenerate Landau levels and the
energy curves are much less steep. This leads to an irreg-
ular pattern of fluctuations which is much more dilute.
In any case, our results indicate that the modifications
due to the finiteness of the system are not smooth but
rather irregular. We note in passing that fluctuations of
magnetization with the magnetic field in small systems

(few tenths of electrons) without edges have been report-
ed recently by Yoshioka and Fukuyama. '

Finally, some comments are due concerning the effects
of disorder, as well as temperature and inelastic effects.
As Halperin has argued, the disorder will localize the
bulk states, but will have little effect on the edge states.
Therefore, we expect the analysis carried out above to
hold also in the presence of weak disorder, except that
now, the negligible contribution from the bulk states is
due not to the fact that they are independent on the Aux
but to the fact that they are localized.

At finite temperature, the population is not sharp, and
the violent oscillations are expected to be rounded off.
This effect has also been noticed in the calculation of
magnetization. ' Of course, once the temperature is
higher than the level spacing between two states on the
edges, the effects discussed above will be washed out com-
pletely.

Inelastic effects like electron-phonon scattering may be
important if they can lead to coupling between inner and
outer edge states. In a strong magnetic field we expect
such a scenario to be highly improbable. Of course, if in-
elastic scatterings are strong enough so that the length
over which phase memory is retained gets smaller than
the system size, the concept of persistent currents dis-
cussed here itself breaks down.
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