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Following the preceding two papers on the linear optical and second-harmonic-generation calcula-
tions on the 18 cubic semiconductors of group-IV, III-V, and II-VI compounds using the first-principles
band-structure method, the two nonzero elements y'»'»(~) and y'&2'»(co) of the third-order nonlinear sus-
ceptibility in these semiconductors are studied. Contributions to the third-harmonic generation from
virtual-electron, virtual-hole, and three-state processes are investigated and the final results are corn-
pared with available experimental data. It is shown that the zero-frequency limits y'»'»(0) and y', 2'»(0)
in these crystals can vary over several orders of magnitude, yet the ratios y'i2'»(0)/y'& l'»(0) show remark-
able consistency and are in very good agreement with the available data. The frequency-dependent
dispersion curves for the 18 semiconductors up to 10 eV are also calculated. For most crystals, struc-
tures are limited to the low-frequency range below 4.0 eV. For several crystals, ~g"'(co)

~

show additional
resonance structures in the higher-frequency range that have never been revealed before. Correlations of
y' '(0) with direct band gap and y' '(0) are investigated. There is a remarkable correlation between the
direct gap and the triple of frequency of the leading peak in the dispersion curves. Our results are also
compared with the other existing calculation by Moss, Ghahramani, Sipe, and van Driel on some of
these crystals. We again emphasize the importance of having accurate conduction-band (CB) wave func-
tions and in taking a sufficient number of CB states into the calculation in order to obtain converged re-
sults. This is far more important than other effects that are not taken into account in the present local-
density calculation for the electronic states.

I. INTRODUCTION

In the preceding two papers' (hereafter referred to as
paper I and paper II), calculations of linear optical prop-
erties and the nonlinear second-harmonic generations
(SHG) in cubic semiconductors using the first-principles
band-structure method were described. This paper fol-
lows papers I and II and deals with the calculation of
third-harmonic generations (THG) in the same crystals.
THG is one of the simplest of all third-order nonlinear
susceptibilities. Other third-order processes include
three- or four-wave mixing, optical Kerr effect, optical bi-
stability and phase conjugation, refractive index modula-
tion, etc. Still, the THG process is extremely compli-
cated even for the simplest crystals. Diagrammatic
techniques have been used to describe various processes
involving virtual states. The other simple third-order
process that has been investigated is the resonant non-
linear refraction. While there are considerable experi-
mental and theoretical works dealing with the third-order
nonlinear optical process in large-gap insulators, ionic
crystals, and rare-gas solids, ' there has been relatively
little study of THG in cubic semiconductors. Like the
SHG, most of the experimental measurements on THG
in cubic semiconductors were done in the late 1960s or
early 1970s. Although there has been an upsurge of in-
terest in the enhancement of the high-order nonlinear op-
tical process in semiconductor quantum wells, quantum
dots, and superlattices in recent years, ' ' the funda-
mental process in the bulk semiconductor itself cannot be
considered well understood.

Because of the general complexity of the third-order
nonlinear optical processes, there were far fewer calcula-
tions for THG than for the SHG. Early theoretical cal-
culation with THG in cubic semiconductors started with
Jha and Bloembergen ' and Levine in 1968, and were
quickly followed by others. Wang derived a simple
empirical relation between hyperpolarizability
[equivalent to y (0)] and linear polarizability [equivalent
to y'"(0)]. Arya and Jha used a simple sp hybridiza-
tion model with three parameters in the nearest-neighbor
approximation to calculate y' '(0) for C, Si, and Ge.
Surprisingly' good agreement with experiment was
claimed with some of these calculations. Progress was
limited with these model calculations because the empiri-
cal parameters used were never fully justified, and the
lack of reliable data make critical comparison quite im-
possible. Following their earlier work on SHG, Moss
et al. (MGSV) presented a detailed scheme in 1990 (Ref.
31) to calculate the dispersion relation for gIiIi(co) and
gzI2(co) using a full band-structure approach. Computa-
tionally efficient formulas were derived using the stan-
dard perturbation theory and the minimal-coupling in-
teraction Hamiltonian. Different processes correspond-
ing to virtual electron, virtual hole, and three states were
clearly identified. ' Calculations of

~
y'„'» (co )

~

and
~y'i2I2(co)~ up to a photon frequency of 4 eV were per-
formed for Si, Ge, and GaAs. Similar calculations were
later extended to ZeSe, ZeTe, and CdTe. MGSV used
two different methods for the electronic-structure calcu-
lation, the empirical-tight-bonding (ETB) model, and a
minimal-basis, semi-ab-initio orthogonalized linear-
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combination-of-atomic-orbitals (OLCAO) method of
Huang and Ching. Both methods gave y' '(0) values
that did not agree well with the measured data. Howev-
er, the work of MGSV represents evaluation of the
frequency-dependent dispersion relations of y' ~(co) for
real semiconductor crystals.

In this paper, we present the results of our first-
principles calculations of the frequency-dependent THG
in the 18 cubic semiconductors. We follow the full
band-structure approach of MGSV and neglect the effect
of local-field corrections. We agree with MGSV that de-
tailed electronic structure is a much more important fac-
tor in obtaining the correct values for THG than some
other effects. Our work differs from MGSV in the follow-
ing respects: (1) We use the first-principles self-consistent
OLCAO method for the band-structures calculation as
described in paper I, instead of the much less accurate
tight-binding approximation or the semi-ab-initio
OLCAO method; (2) a scissor operator is applied to the
conduction-band (CB) states to address the problem of
gap underestimation associated with local-density ap-
proximations (LDA); (3) all the relevant momentum ma-
trix elements (MME) are calculated with the Bloch func-
tions throughout the entire Brillouin zone; (4) a sufficient
number of high-CB states are included in the sum over
states. This turns out to be a very important factor in ob-
taining accurate and converged results for THG as well
as for the SHG; (5) complete calculations are performed

I

for 18 semiconductors —three group-IV crystals (dia-
mond, Si, and Ge), nine III-V compound semiconductors
(A1P, A1As, A1Sb, GaP, GaAs, GaSb, InP, and InAs,
InSb), and six II-VI semiconductor (ZnS, ZnSe, ZnTe,
CdS, CdSe, and CdTe). We believe this to be the most
comprehensive and detailed calculation of THG in bulk
semiconductors to date.

In Sec. II, we outline the specific procedures for the
calculation of THG using the band-structure approach.
In Sec. III, we present and discuss the central result of
the paper, the calculation of THG for 18 semiconductors.
The paper ends with a brief conclusion in the last section.

II. METHOD AND APPROACH

In order to make this paper self-contained, we will out-
line the method of our calculation even though it follows
closely from MGSV (Ref. 31) and is parallel to the calcu-
lation of y' '(co) in paper II. According to MGSV, the
imaginary part of the complex y' '(co) function consists
of three contributions corresponding to the virtual-
electron (VE), virtual-hole (VH), and three-state (3S) pro-
cesses. The VH process consists of three different types,
VH1, VH2, and VH3. The specific formulas for crystals
with cubic symmetry suitable for computation are listed
below after the apparent divergent terms are discarded on
physical grounds: '

5(E; 3fico) 5—(Ek; —2A'co) 5(Ei; —iiico)
Im[y' '(co)] = ——

QRe[P "P"P"P"] A 1 +%2 +A 3E4 E4 E4
ij kl Jl ki li

5(E; —3A'co) 5(E i 2fico) 5—(E.k fico)—
Im[y' ' (co) ]= —— QRe[P"'P "Pk"P'k ] Xl +%2 +%3+VH1 3 4 3 1J li kl jk E4 E4 E4

ij kl Jl jl jk

(2a)

vr efi dk U~ ~~ UU ~U
5(Ep —3Am) 5(Ekc —2Am) 5(Ekl Rm)

Im[gviiz(co)]=+ — f 3 QRe[P~'Pg P&", Pk&] C 1
4

+C2 4 +C3
3 I BZ 4~

jl E,4 Ek- Ekl

(2b)

efi dk „„,„„5(EJ,—3A'co) 5(E&i —2A'co) 5(Eki %co)—
Im[yvii3(co)] = +— f QRe[P,"P(,'P'kPk& ] 2)1 . +2)2 ++3

4 3 fj k gk kl E4 E. Ekl

(2c)

5(EJ; 3fico) —5(Ei; —A'co)
Im[ '"(co)]=+— f gR [P"P"P"'P"] @1 " +@2

ij kl Jl li

where
729 128(2E, Ek,)—.

A1=
(3Ek, 2E, )(3Ei, E, ) —' (2E—i; Ek; )(2E, —3Ek; )(—2E;+Ek; )

A2=

2E

(Ek, 2Ei, ) (EJ, —3Ek)— (E(, +E, )(Ek, +2Ei, )

(3)

729
(3E i

—2E; )( 3EJk E);)—128(2E, E i)—
(2EJk Eji )(2E~; 3E~i )(2E,;+—Eji)—
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3= 1 1

(EJi 2—EJk ) (E, —3E,„)
729

(3Ek; 2E—; )(3Eki E—; )

1 1

(Ek, 2E—ki ) (E); 3Ek—i )

729
(3EJi 2';—)(3Eki —E, )

2E l

(E~k+Ei, )(E. J;+2E k )
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k; )2=

(2Eki Ek—; )(2E;—3Ek; )(2E;+Ek; )

2El,;

(Eki +Eji )(Eki +2Eki )

128(2EJ; EJi—)2=
(2Eki Eii )—(2E; 3E i

—)(2E.;+E i )

3= 1 1 + 2El
(EJi 2Eki ) —(Ei; —3Eki ) (Eki +EJi )(E~i +2Eki )

729
(3E k E; )(3—Ei; Ei, )—

(Eik+EJk ) (E;+Ek)2= j
(E,„+3E„) (E,„3E„)(EJ,+—E„) (E,, 3E„—)(E,k+Eii )

Here, &, j, k, and I are the band indices, v and c indicate
whether the state is in valence band (VB) or in conduc-
tion band, and E; =E; E, I'; =——iA'(iVs ) is the
MME. In the VE and VH processes, four states are in-
volved. For the VE process, one state is in the VB and
three in the CB, and the MME product contains two
CB-CB matrix elements. The VH process consists of
three types, ' one with three states in the VB and one in
the CB, the other two types with two states each in the
VB and the CB. Only the last two types contain the CB-
CB matrix in the MME product. In the 3S term, only
three states are involved, one in the VB and two in the
CB and the MME product contains no CB-CB matrix
element. This 3S contribution in y' '(co) is difFerent from
the SHG calculation of paper II, in which the MME
product contains a CB-CB matrix element in a three-state
transition. As will be discussed later, all three types of
processes can make significant contributions and should
not be neglected. The VE and VH processes make nega-
tive contributions, yet the overall sign of y' '(0) is posi-
tive because the 3S is dominating and positive. It is clear
from Eqs. (1), (2), and (3) that each type of contribution
consists of an co term, a 2' term, and a 3' term. It is the
3' term that is more directly linked to the THG and is
expected to dominate in the low-frequency region. The
resonance 5 functions in Eqs. (1)—(3) are evaluated using
an energy window of 0.01 eV, which is determined by de-
tailed testing so as to be consistent with the number of k
points used in the sum over the Brillouin zone (BZ). We
have used 505 k points with appropriate weighting fac-
tors in the —,', of the BZ to evaluate the sum over BZ.
This number of k-point sampling gives us an accuracy of
about 5% with respect to the k-space convergence. This
level of k-point sampling is found to be reasonably ade-
quate without succumbing to excessive computational
demand. One may be able to improve the k-space con-
vergence by employing some kind of interpolation
scheme but we decided to use only the k points where the
energy eigenvalues and the MME are calculated ab initio.

R p UCp CCp CCp CV

4~ ij kl

A. 1 A. 2 A3
(4)

4

XvHi(0) = 2 ei6

p UCp UVp VVp CU

Xl S2 S3
5 5 5

Ej&- Ejl Ej
(sa)

As was discussed in Sec. I of paper II, there are only
two independent nonzero elements y»»(co) and y, 2, z(co)(3) (3)

for THG in crystals with cubic symmetry. The computa-
tion of these specific elements entails the appropriate
choice of the components of the MME in the numerator
of Eqs. (1), (2), and (3). In a completely isotropic materi-
al, y'„'»(co)=3yIz', z(co). In the present study, both ele-
ments are calculated so that the degree of anisotropy in
THG in the cubic semiconductors can be checked. It is
advantageous to calculate the energy denominator in Eqs.
(1)—(3) and the MME products separately, since the
former only need to be evaluated once for both elements.

The real part of y' '(co) is obtained from the imaginary
part by Kramers-Kronig (KK) conversion. The validity
of using KK conversion to calculate THG can be
checked by comparing the zero-frequency values of
Re[y'„'»(0)] and Re[yii2', 2(0)] with the same values cal-
culated independently using the formulas before the reso-
nance expansion that gives rise to the 5 functions and by
setting co=0. These are given by

4

x(3) 2 eA
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4

XvHz(0) = + 2 eA

3 I
p UCp CCp VUp CU

ij kl

C'1 C2 C3

XvH3(0) =+—2 equi

3 I
P UCP UVp CCp CV

77 ljkl

(5b)

also because the dominating contribution to y' '(co) is
from the 3S term that does not contain any CB-CB
MME; the CB cutoff energy needed for a converged re-
sult in y' '(co) is somewhat less stringent than those for
y' '(co). However, the demand for the accuracy of the
wave function is actually increased because the VE term
of Eq. (1) involves products of two CB-CB MME instead
of one in y' '(co). Since the calculation of y' '(co) is much
more time consuming than y' '(co), the CB cutoff energy
adopted in the g' '(co) calculation is determined by the
overall consideration of convergency, accuracy, and
efficiency. The CB cutoff energy E,f used in the present
calculation for y' '(co) for the 18 semiconductors are list-
ed in Table I. They are about 10 eV less than that for
y~ '(co) in paper II.

2)1 + 2)2 2)3
5 5 5

ji Ej 1 Ekl
(5c)

4

(3)(0) + J yR [PUCPCUPUCPCU]

ij kl

6'I 6'2
(6)5 5

(EJ, EI;

Calculation for y' '(0) according to the above equations
is considered to be more direct and therefore more accu-
rate. We find the agreement between the two ways of cal-
culating y' '(0) to be within 5 —10% for most crystals.

In paper II, we have stressed the importance of taking
a sufficient number of accurately determined CB states
into the sum over states. This is equally true for the
THG calculation. Because the energy dependence in
y' '(co) is now 1/E, as opposed to 1/E in y' '(co), and

III. RESULTS OF CALCULATION

In this section, we present the results of our calculation
for the THG in 18 semiconductors. We divide them into
three groups, the group-IV elements diamond, Si, and
Ge; the III-V compounds Al, Ga, and In series; and the
II-VI compounds of the Zn and Cd series. Tables I and
II present the calculated values for yI, '»(0) and yPzIz(0)
which are broken into three separate contributions from
the VE, VH, and 3S parts. Also listed are the cutoff ener-

gy used for each crystal. For all the semiconductors
studied, the contributions from VE and VH to y'„'»(0)
are negative and that from the 3S term is positive and
overwhelming, thus resulting in the overall positive
values for y'„'»(0). For gzIz(0), they are some positive
but negligible VE contributions from a few crystals. Tak-
ing CiaAs as an example, the contribution to gI&I&(0)
from the VE, VH, and 3S contributions are —7.64,—2.28, and 16.87 (in units of 10 " esu), respectively.

TABLE I. Cutoff frequency and virtual-electron, virtual-hole, and three-state contributions to
g'»'»(0) (in units of 10 "esu).

Crystal

C
Si
Ge
AlP
AlAs
Alsb
GaP
GaAs
GaSb
InP
InAs
InSb
ZnS
ZnSe
Zn Te
Cds
CdSe
CdTe

15
20
15
30
15
35
15
25
30
20
30
30
15
20
26
15
25
15

Virtual
electron

—0.008
—0.56

—11.33
—0.32
—0.80
—9.15
—1.01
—7.64

—40.86
—9.98

—157
—933

—0.09
—0.19
—0.72
—0.35
—1.40
—5.45

Virtual
hole

—0.001
—0.34
—4.93
—0.21
—0.25
—1.55
—0.37
—2.28

—19.94
—3.16

—192
—1989

—0.044
—0.12
—0.54
—0.18
—0.68
—1.49

Three state

0.066
3.97

46.95
1.92
2.02

18.22
3.48

16.87
248.0
22.98

10 528
419 825

0.333
0.86
4.14
1.53
5.03

12.35

Total

0.057
3.07

30.69
1.39
0.97
7.52
2.10
6.95

187.2
9.84

10 179
417 836

0.20
0.55
2.87
1.00
2.95
5.41

by KK

0.058
3.62

33.98
1.34
0.99
7.38
2.00
6.77

204.6
8.28

8 956
350 070

0.25
0.58
2.77
0.87
3.17
5.72
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TABLE II. Cutoff frequency and virtual-electron, virtual-hole, and three-state contributions to
y'Iz'»(0) (in units of 10 "esu).

Crystal

C
Si
Ge
Alp
A1As
Alsb
GaP
GaAs
GaSb
InP
InAs
InSb
ZnS
ZnSe
ZnTe
Cds
CdSe
CdTe

E„(ev)
15
20
15
30
15
35
15
25
30
20
30
30
15
20
26
15
25
15

Virtual
electron

—0.0004
—0.10
—1.07
—0.03
—0.08
—3.46

0.006
—1.17
—2.08
—1.68
41
62
0.009
0.015

—0.04
0.05
0.11

—0.68

Virtual
hole

—0.001
—0.23
—4.03
—0.14
—0.15
—1.30
—0.30
—1.86

—17.10
—2.70

—169
—592

—0.031
—0.105
—0.45
—0.157
—0.59
—1.36

Three state

0.033
2.23

15.37
1.10
0.96

10.32
1.62
7.05

61.87
10.07

1094
15 248

0.169
0.42
2.02
0.68
2.00
6.06

Total

0.031
1.90

10.27
0.92
0.73
5.54
1.34
4.01

42.7
5.69

966
14 718

0.15
0.33
1.53
0.57
1.52
4.02

by (KK)

0.042
2.19

10.41
0.90
0.73
5.52
1.42
4.16

41.3
4.13

1006
12 574

0.16
0.34
1.65
0.60
1.60
4.67

The same numbers for yIz'&z(0) for GaAs are —1.17,—1.86, and 7.05, respectively. Also listed in the last
column of Tables I and II are the results for yIII I(0) and
gz'I2(0), obtained from the real part of g' '(co) through
KK conversion. The agreements with those obtained
directly from Eqs. (4) —(6) are generally within 10%. This
gives us confidence in the calculated dispersion relations
gI, '»(co) and yI2I2(co) that will be discussed later.

In Table III, we compare our calculated results of
y', 3I'»(0) and yIz', 2(0) with experimental data and
other existing calculations. ' ' ' ' ' The experi-
mental data may contain large error bars and in some
cases there is the problem of an extra factor of 4 because
of the different ways of defining the third-order suscepti-
bility tensor. Original references should be consulted for
details. Measured data are available only for C, Si, Ge,
GaAs, and InSb. It is gratifying that our calculated re-
sults are in very good agreement with the data for all
these crystals, realizing that experimental uncertainty
renders any results beyond the order of magnitude estab-
lished in the data quite meaningless. For InSb, the mea-
sured gI, I I(0) values are extremely large, presumably due
to the very small direct band gap in InSb. The three data
from Refs. 40, 43, and 44 differ by four orders of magni-
tude. Our calculated value lies somewhere between these
experimental large values. For CdS, we cannot locate
any reliable data for bulk crystal to compare. Cheng,
Herron, and Wang measured the THG in a series of
small CdS clusters ((30 A) and found y' '(0) to vary
from 0.5 to 33 (in units of 10 " esu) at 1.9 pm. Since
quantum dots of appropriate size are supposed to
enhance optical nonlinearity, these measured values are
certainly consistent with our calculated bulk value of
y'&I'II(0)=1.0X10 " esu and gIz'I2(0)=0. 57X10 " esu.
It is highly desirable that measurements on these crystals
be repeated.

The ratio yPz'&2(0)/yI&'I&(0) should be a more reliable

indicator of the accuracy of calculation since systematic
error in the experimental measurements may be canceled
out. For a completely isotropic medium, this ratio will
be —,'. Our calculation shows that only Ge has a ratio
close to —,. For most crystals, the isotropic ratio lies in
the range of 0.5 —0.75, with the small-gap semiconductors
(GaSb, InAs, and InSb) as exceptions. For a few crystals
where both g, '»(0) and gzI2(0) data are available, the
agreement with our calculation in this isotropic ratio is
quite good, especially for GaAs.

Also listed in Table III are the calculations done by
some other groups. Arya and Jha had calculated
gal~&I(0) using a tight-binding Hamiltonian in which the
parameters were fixed by fitting to known experimental
values for the VB width, direct band gap, and the linear
dielectric constant. Good agreement for C was obtained
but the results for Si and Ge were greatly underestimated.
While some of these calculations show good agreement
with data for some crystals, the empirical nature of these
calculations makes it difficult to assess their validity. For
example, the model calculation by Flytzanis gave
reasonably good agreement for Ge and GaAs, but failed
miserably on InSb. We shall compare our results more
directly with the calculations done by MGSV using the
full-band-structure approach. ' MGSV calculated both
g, '»(0) and yP2I2(0) for Si, Ge, and GaAs. They used
the ETB method and also a more rigorous semi-ab-initio
band method, and found the former to give results in
better agreement with experiments. It is clear to us that
the severe underestimation by MGSV using the semi-ab-
initio method is actually due to the insufficient number of
CB band states in the sum over states. The result of us-
ing the ETB approximation is likely to be misleading
since the closer agreement with experiment is the conse-
quence of the rather arbitrary ways of estimating the
MME. When Ghahramani, Moss, and Sipe (GMS) later
extended the calculation to the three II-VI compounds
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ZnSe, Zn Te, and CdTe using the same semi-ab-initio
method, their results were again more than an order of
magnitude smaller than our first-principles results in
which sufficient CB states are included to ensure conver-

gence.
Some other general observations of the results listed in

Table III are (1) within each series, the g' '(0) increases
as the atomic number of the second element increases; (2)
the II-VI compounds have smaller values of y' '(0) than
the III-V compounds; (3) there are large variations in
y' '(0) values ranging from the smallest of 0.057 X 10
esu in C to the largest of 417 800 X 10 "esu in InSb.

We now discuss the frequency-dependent dispersion re-

lations in y' '(co) for each crystal. Since there is no avail-
able experimental data to compare, we consider our re-
sults of g' '(co) to be theoretical predictions waiting for
experimental confirmation.

A. Group-IV elements

The calculated dispersion relations for yP, '»(co) and

gI2', 2(co) for C, Si, and Ge are shown in Figs. 1, 2, and 3,
respectively. The upper panel shows the real and imagi-
nary parts for yP, '»(co) and the middle panel shows the
real and imaginary parts for yIzI2(co). The lower panel

TABLE III. Calculated third-harmonic generation in cubic semiconductors.

Crystal
Present

calc.

{0) (10 " esu)

Expt.
Other
calc.

Present
calc.

X1212~0 )

Expt.
Other
calc.

71212~0 ) ~X1111~
Present

calc. Expt.

C
Si

Alp
AlAs
Alsb
GaP
GaAs

GaSb
InP
InAs
InSb

ZnS
ZnSe
ZnTe
CdS
CdSe
CdTe

0.057
3.07

30.69

1.39
3.97
7.52
2.10
6.95

187.2
9.84

10 179
417 836

0.20
0.55
2.87
1.00
2.95
5.41

0.0184'
2.4'

33'
20g

40'
lpk

12'
4.1g

3 9m

4.8'
18'

10"
80001'

1p11 q

0.017
26

1.75'
3 6h

0.8'

4 y
64'
12'
16h

2.7"
6.9'

206'

0 9f

1 pf

3.12"
2.4'
3 8h

0.7'

8.0'

3.0'
6.2'

0.02'
0.06'
0.25

0 03'

0.031
1.90

10.27

0.92
0.73
5.54
1.34
4.01

42.7
5.69

966
14 718

0.15
0.33
1.53
0.57
1.52
4.02

0.007'
1.15'

24'
5.2k

2 Pm

1.2'

1.24'
2 6h

0.5'
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0.22'
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0.66
0.75
0.74
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0.58
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0.034

0.75
0.60
0.53
0.57
0.52
0.74

0.26
0.48

0.60
0.52

0.53
0.25

'Reference 39.
Reference 21.

'Reference 15.
Reference 17.

'Reference 36.
Reference 19.
gReference 37.
"Reference 20.
Reference 23, using the semi-ab-initio method.

'Reference 23, using the ETB method.
"Reference 41.
'Reference 42.

Reference 38.
"Reference 18.
'Reference 40.
"Reference 44.
"Reference 43.
'Reference 24, using the semi-ab-initio method.
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FIG. 1. Calculated third-harmonic generations for C. (a)
y'»'»(co), real part, solid line; imaginary part, dashed line. (b)
y', 2'»(m), real part, solid line; imaginary part, dashed line. (c)
Solid line: ~gI'&'»ico) ~; dashed line: ~gIz'&z(col ~.

shows ~yI, '»(co) and ~gIzIz(co) ~. (From here on, the
dispersion curves for all the semiconductors studied are
presented in this fashion. ) We shall concentrate our dis-
cussion on the lower panel, and on ~g, '»(co)

~
in particu-

lar, since ~yIz', 2(co)~ is more or less parallel to y'„'»(co)
except in the high-frequency region where resonance
peaks may appear. Figures 1 —3 show that C has a double
peak, Si has a triple peak, and Ge has multiple peaks.
The leading peaks in these three crystals are at 2.4, 1.3,
and 0.4 eV, respectively. (We shall arbitrarily label those
peaks above 3 eV as resonance peaks except for C.) Ge
also has a very strong resonance peak at 4.7 eV. The po-
sitions of the major peaks in ~yI, '»(co)

~
are listed in Table

IV. Minor peaks are not listed and inspection of the
dispersion curves should be the best way to provide the
most detailed information.

FIG. 2. Calculated third-harmonic generations for Si.
Description is the same as Fig. 1.

eV and resonance structures near 3.5 eV. For GaAs, the
major structures are at 0.5, 0.9, and 1.6 eV. Our results
for GaAs are in reasonable agreement with the calcula-
tion of MGSV using the empirical-tight-binding method,
which also shows a three-peak structure at approximately
the same locations. However, the relative strengths of

10

reaL
—- imal.

0--

—5
4

reaL
——- imag.

B. III-V semiconductors

The dispersion curves for g, '»(co) and yI2'&z(co) for
AlP, A1As, and A1Sb are shown in Figs. 4, 5, and 6, re-
spectively. For A1P, ~y' '(co)~ consists of a broad peak
centered at 1.7 eV with no resonance peak in the high-
frequency range. For A1As and A1Sb, there are some
sharp structures in the low-frequency range and reso-
nance peaks at 4.8 and 3.6 eV, respectively. We find no
other theoretical calculation of y' '(0) or y' '(co) for the
Al compounds.

Figures 7, 8, and 9 show the calculated yI, '»(co) and
yP2'&2(co) for GaP, GaAs, and GaSb, respectively. For
GaP, ~g' '(co)

~
shows two prominent peaks at 1.1 and 1.7

3
N

OC

M
(L)

C)

I

CO

0---

4

f
I

0
0 4 6 8

ENERGY(eV)

FIG. 3. Calculated third-harmonic generations for Ge.
Description is the same as Fig. 1.
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TABLE IV. Calculated peak positions in g»'»(co) (in units of
eV).

0.8

Crystal

C
Si
Ge
A1P
A1As
A1Sb
GaP
GaAs
GaSb
InP
InAs
InSb
ZnS
ZnSe
ZnTe
CdS
CdSe
CdTe

Major peaks

2.4, 4.4
1.3, 1.6, 2.2
0.4, 0.5, 0.7
1.3, 1.7, 2.5
1.2, 1.6
0.8, 1.2, 1.9
1.1, 1.7
0.5, 0.9, 1.6
0.27, 0.4, 0.6
0.4, 1.0, 2.3
0.15, 0.26
0.08
1.3, 1.8, 2.4
0.9, 1.6, 2.3
1.1, 1.7
0.9, 1.6, 2.2
0.6, 1.3, 2.6
0.5, 0.9, 2.6

Resonance peak

4.7

4.8
3.6
3.5
6.0

4.4

3.2
4.4
3.3
3.9
3.8

3
V3

M
(D

CO

I

C3

Ol
m N

K
(D

I

CO

3

OC

0.4

0.0

0.2-

0.0-

0 2--
0.8

0.4-

0 0-—--
4 6

ENERGY(eV)

real
-- irnag.

10

the peaks are not the same. Our calculation also shows a
strong resonance peak in the 6.0-eV region in GaAs. For
GaSb, low-energy structures at 0.27, 0.37, and O.S7 are
well resolved and there is no resonance peak at higher
frequencies.

The dispersion relations for y' '(co) for InP, InAs, and
InSb are shown in Figs. 10, 11, and 12, respectively. For
InP, there are many structures in the ~g '(co)~ spectrum
with major peaks at 0.4, 1.0, and 2.3 eV and additional

FIG. 5. Calculated third-harmonic generations for A1As.
Description is the same as Fig. 1.

resonance peaks above 4.0 eV. The most prominent one
is at 4.4 eV. In contrast to InP, the y' '(co)

~
spectra for

InAs and InSb are very simple, consisting of a single
sharp peak at 0.15 and 0.08 eV, respectively. This is con-
sistent with the huge ~y' '(0)

~
values for these two crys-

tals discussed earlier, and is the consequence of their
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FIG. 4. Calculated third-harmonic generations for AlP.
Description is the same as Fig. 1.

FIG. 6. Calculated third-harmonic generations for A1Sb.
Description is the same as Fig. 1.
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FIG. 7. Calculated third-harmonic generations for GaP.
Description is the same as Fig. 1 ~

FIG. 9. Calculated third-harmonic generations for GaSb.
Description is the same as Fig. 1.

small direct gaps at I . The presence of additional peaks
or resonance structures in these two crystals cannot be
ruled out, but are most likely to be of negligible ampli-
tudes in comparison with the major peak. We find no
other calculations or measurements of the dispersion re-
lations for the In compounds. The strong single-peak
structures for InAs and InSb predicted by our calculation

should be easy to detect. The major peak and the reso-
nance peak positions for the III-V compounds are listed
in Table IV.

C. II-VI semiconductors

The dispersion curves for g, '»(co) and yIz', 2(co) for
ZnS, ZnSe, and ZnTe are shown in Figs. 13, 14, and 15,

0-

real
imai.

real
- imai.

3

OC

M
Q

CD

I

C3

—2

0

real——- imaI.

—2
2

real
-—-- imai.

4

(D
C)

o 2

0
0 4 6

ENERGY(eV)
10

3-—

0:-
0 4 6

ENERGY(eV)
10

FIG. 8. Calculated third-harmonic generations for GaAs.
Description is the same as Fig. 1.

FIG. 10. Calculated third-harmonic generations for InP.
Description is the same as Fig. 1.
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FIG. 11. Calculated third-harmonic generations for InAs.
Description is the same as Fig. 1.

FIG. 13. Calculated third-harmonic generations for ZnS.
Description is the same as Fig. 1.

respectively, and those of CdS, CdSe, and CdTe are
shown in Figs. 16—18. Generally speaking, the disper-
sion relations for the II-VI compounds are of lower am-
plitude and the resonance peaks, if they exist, are at
lower energies. The general features in ~y' '(co)~ for the
II-VI compounds seem to be a three-peak structure in the
low-frequency region plus strong resonance peaks at 3.2,

4.4, 3.9, and 2.5 eV for ZnS, ZnSe, CdS, and CdTe, re-
spectively. The major peak positions and the resonance
peak positions are listed in Table IV. Again, we find no
experimental measurements to compare. GMS have cal-
culated the dispersion curves for the THG in ZnSe,
ZnTe, and CdTe. Their results for ~y' '(co)

~
are in qual-

itative agreement with ours below the 2.5-eV region ex-
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FICx. 12. Calculated third-harmonic generations for InSb.
Description is the same as Fig. 1.

FIG. 14. Calculated third-harmonic generations for ZnSe.
Description is the same as Fig. 1.
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FIG. 15. Calculated third-harmonic generations for ZnTe.
Description is the same as Fig. 1.

FIG. 17. Calculated third-harmonic generations for CdSe.
Description is the same as Fig. l.

cept for CdTe, where our calculations show sharp struc-
tures at 2.5 eV.

IV. CONCLUSION

%"ith the third-order nonlinear susceptibilities in the
form of THG calculated for the I8 semiconductors, it is

desirable to seek any consistent correlations with other
physical parameters. In Fig. 19, we plot the 6rst major
peak position in ~y'&&'&&(co)

~
listed in Table IV (multiplied

by 3) with the direct band gap. A good linear relation-
ship of unit slope is obtained as expected. In the simplest
approximation, the THG involves successive absorptions
of three photons of' equal frequency. The points ofF the
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FKJ. 16. Calculated third-harmonic generations for CdS.
Description is the same as Fig. 1.

FIG. 1&. Calculated third-harmonic generations for CdTe.
Description is the same as Fig. 1.



9490 W. Y. CHING AND MING-ZHU HUANG 47

0 8

N
Q

I

C3

C)

10

Ga. SL) ——r
[nV

ALSI& i

A]V r
znse

+ 1

+ C IS ( al
ZnS

10 100

(f)) (I0 estj)

[flSb X

1 ~

1000

E (eV)

FIG. 19. Correlation between the first major peak in
~y'„'»(co)

~
and direct band gap.

~ InAs GaAs ALSb Si
Ce CdTe Gap ZnS

V3

I

CO 10
+ w

5 S 53
1 0 ~

CaSb Cd. Se I

LnSb Lnp ZnTe +

ALAs

ZnSe ALP

1 2
10

0
1

Eg (ev)

FICi. 20. Correlation between ~y'„'»(0)
~

(~ ) and ~g'~2I2(0)
(+) with the direct band gap.

line (AIP, GaP, and ZnTe) in Fig. 19 are all above the
linear line indicating that in these crystals, the third-
order nonlinear process may involve transitions above the
minimal direct gap. Such features must be related to the
energy bands and the symmetry of the wave functions
throughout the entire BZ, and can only be obtained by
detailed microscopic calculations.

In Fig. 20, we plot ~gI&I&(0)~ and ~gzI2(0)~ against the
direct band gap. As has already been pointed out, the
large THG values for some crystals are clearly related to
the small band gap. This effect is more accentuated for
the THG than for the SHG. In Fig. 21, we plot ~y'„I&(0)

~

and IyIzI2(0) ~
vs ~y' '(0)

~
for those crystals where both

elements are nonzero. It is clear that large third-order
nonlinearity is always accompanied with a large second-
order nonlinearity at least in the cubic semiconductors.

We have presented some detailed theoretical calcula-

FIG. 21. Correlation between ~y'„'»(0)
~ (~ ) and yI3zIz(0)

(+) with ~y"'(0) ~.

tions on the THG in cubic semiconductors based on the
full-band-structure approach using the state-of-the-art
local-density calculations. The results show marked im-
provement over the existing calculations. This is attri-
buted to two factors. First, the full-band-structure ap-
proach is a more fundamental and rigorous approach for
calculation of nonlinear optical excitation s. Second,
sufficient numbers of accurately determined CB band
states have been included in the sum to ensure proper
convergence. Without either of these, it would be very
difficult to obtain reliable results consistent with experi-
mental data. The detailed dispersion relations for fre-
quencies up to 10 eV are also investigated. So far, there
are no experimental data on the dispersion relations for
comparison and our results can be considered theoretical
predictions. More accurate measurements and calcula-
tions are clearly called for.

Although our calculation of THG and SGH has
neglected corrections due for many-particle interactions,
and a gap correction procedure in the form of a "scrissor
operator" is used, we believe these corrections in bulk
semiconductors are much less important than the need
for accurate electronic structure within the one-electron
formalism. Further refinement of calculation beyond the
present one-electron level may lead to even better agree-
ment with experiment. The present calculation also
shows the effectiveness and the versatility of applying the
OLCAO band method for higher-order nonlinear optical
calculations. We intend to use the same method to study
the nonlinear excitations in other more complicated yet
technologically more important materials, and to study
high-order nonlinear processes other than harmonic gen-
erations.
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