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Calculation of optical excitations in cubic semiconductors. II. Second-harmonic generation
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The second-harmonc generations in 15 noncentral symmetric cubic semiconductors are systematically
studied by the first-principles full band-structure method. The crystals studied are the III-V compounds
A1P, A1As, AsSb, GaP, GaAs, GaSb, InP, InAs, InSb; and the II-VI compounds ZnS, ZnSe, ZnTe, CdS,
CdSe, and CdTe. Calculations are focused on the frequency-dependent complex second-order nonlinear
optical susceptibilities y' '(co) up to 10 eV and their zero-frequency limits y' '(0). A simple scissor
operator is applied to adjust the band gaps from the local-density calculations to the experimental
values. Large numbers of k points in the sum over Brillouin zone are used which are important in
resolving structures in the dispersion curves. Comparison with available experimental data on y' '(0)
and y( '(co) shows general good agreement. It is shown that for a well-converged result, sufficiently high
conduction-band (CB) states at least 40 eV from the top of the valence band must be included because of
the large CB-CB transition-matrix elements. Correlations between the calculated nonlinear optical pa-
rameters and other physical parameters such as band-gap and static dielectric constants are also investi-
gated. It is shown that the validity of the Miller's rule with regard to the ratio between linear and non-
linear susceptibilities is limited to the low-frequency range.

I. INTRODUCTION

In recent years, nonlinear optics has developed into a
field of major study because of rapid advances in laser
technology. ' Nonlinear optical techniques have been
applied to many diverse disciplines such as atomic,
molecular, and solid-state physics, materials sciences,
chemical dynamics, surfaces and interface sciences,
biophysics, and medicine. The development of new ad-
vanced nonlinear optical materials for special applica-
tions is of crucial importance in technical areas such as
optoelectronics, acoustic-optic conversions, optical signal
processing, optical computing, and neuro-network im-
plementation. While there are intense efforts in experi-
menting, designing, fabricating, and searching for various
nonlinear optical materials including semiconductors and
semiconductor microstructures, ionic compounds, fer-
roelectric and liquid crystals, organic molecules, glasses
and polymers, there is comparatively a much smaller
effort to understand the nonlinear optical process in these
materials at the microscopic level. Theoretical under-
standing of the factors that control the figures of merit is
extremely important in improving the existing electro-
optic materials and in the search for new ones.

Nonlinear optical process refers to the interaction be-
tween electronic states of the material with the incident
electromagnetic (EM) field (usually in the form of an in-
tense laser beam), which results in the modified EM fields
that are different from the original field in frequency,
phase, and amplitude. In crystals with no quasiparticle
excitations, this is best described by the polarization P of
the medium as a power series of the incident field E(co) of
frequency co. In components, this is given by

P;(co)=gg';,"(co)E,(co)
J

+gy;'q'(co=co. i+co2)E (coi)Ek(co2)
jk

+gg; Jki ( co —co i +co 2 + co3 )

jkl

XE.(co, )Ek (co2)E, (co3) +
where y'"'(co) is the nth-order frequency-dependent com-
plex susceptibility. g'"(co) is linear susceptibility related
to the usual dielectric tensor E(co) =c,, (co)+i E~(co)
through

y"'(co) =(1/4m. )[E(co)—1 j .

y' '(co) and y' '(co) are the second- and third-order non-
linear susceptibility tensors of rank three and four, re-
spectively. (From here on, it is implicitly understood that
p'"' are the frequency-dependent tensors of appropriate
rank unless specifically stated otherwise. ) For a simple
process of second-harmonic generation (SHG), we have
ct)i =ct)2= co and ct) =ct)] +ct)2= 2' where co is the frequen-
cy of the field generated by the polarization of the medi-
um and ~&, co2 are the frequencies of the incident field.
Similarly, for the third-harmonic generation (THG), we
have co& c02 c03 co and co col+ c02+ c03 3' . Hence,
for optical harmonic generations, only a single excitation
frequency co for y'"'(co) is sufficient to specify the frequen-
cy dependence of the susceptibilities. Other more com-
plicated processes involve sum and difference frequency
generation or d-c effect, two-photon absorption, the para-
metric process, the electro-optic linear Kerr effect in
g' '(co), hyper-Raman scattering, anti-Stokes-Raman
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scattering, and the Kerr efFect for y( )(co), etc. ' lt is
also common to label the second-order nonlinear optical
coefficient as d k', which is related to the susceptibility
tensor by

~(2)( ) 2d(2)(~)

Since the maximum number of independent tensor ele-
ments in g';.k(cu) is 18, it is also customary to write the in-
dex ijk for y'g(co) in the contracted form y,'. '(co) with
i =1,2, 3 and m =1—6. We shall use the more conven-
tional form of g',~k(co) rather than the contracted form.
For systems with bond electrons in which the effects of
the free charge carriers are neglected, the nonlinear opti-
cal property of a material is mainly determined by the
magnitudes of g' '(0) and y( '(0).

Direct theoretical calculation of nonlinear susceptibili-
ty tensors in (1) is a very formidable task because it must
accurately account for the electronic response of the
dielectric medium to the external field. Various theoreti-
cal models involving plausible approximations have been
devised so as to catch the essential features of the non-
linear optical parameters (NOP) without being deluged
with unextractable computational complexities. In spite
of many attempts to calculate the NOP for semiconduc-
tors in the past 20 years or so, consistent agreement be-
tween theory and experiment has not been achieved un-
less somewhat arbitrary adjustable parameters were in-
troduced either explicitly or implicitly. " ' The calcu-
lated parameters can sometimes differ from the measured
ones by orders of magnitude. ' This predicament can
usually be traced to the approximate nature of the calcu-
lation, both in the theoretical formulation for the non-
linear optical parameters and in the ways the electronic
states were determined. Furthermore, subtle effects such
as local-field effect, exciton dynamics, and other types of
many-body interactions can also contribute. Of equal im-
portance is that experimental measurements were not al-
ways reliable, thus adding to more confusions. Some of
the experimental dim. culties include the need to account
for the vibrational and thermal effects, electrostriction,
effects due to finite wave mixing and self-focusing, effects
due to sample size, surface quality, and dimension. These
factors all add to the uncertainty of the measured data.
Very often, the data quoted in the published literature
were not from direct measurements, but were extracted
by calibrations to measurements on other standard but
arbitrarily chosen materials such as a-quartz, KH2PO4
(KDP) or NH~H2PO4 (ADP), etc. It is therefore not
unusual for the measurements on NOP of the same ma-
terial to differ by a wide margin.

There are basically two theoretical approaches to
studying the nonlinear optical properties in crystals. The
first is to use the concept of bond or bond orbitals in
which the polarization is expressed as a sum of bond po-
larizabilities. " ' ' 2 ' 3 This is an empirical approach
that depends on a number of experimental parameters as
a meaningful input and does not need accurate wave
functions for the electron states. The method is useful for
studying general trends among a class of materials with
similar bonding characteristics, rather than for a specific
crystal. It may break down for systems where the assign-

ment of the bond is not possible.
The other approach is the sum over the actual elec-

tronic states of the crystal, or the full band-structure ap-
proach. It does require the explicit wave functions of the
electronic states. This approach is theoretically more
rigorous but computationally much more demanding.
Since the requirement for extremely accurate wave func-
tions has rarely been met in the past, the method may not
necessarily yield better results than the empirical ap-
proach. Aspnes studied y( '(0) of nine semiconductors
with zinc-blende structure using a constant-band-gap
model and a constant momentum-matrix-element (MME)
approximation. ' Fong and Shen (FS) (Ref. 21) were the
early ones to use a band-structure approach using the
empirical pseudopotential method, but obtained a result
that was an order of magnitude smaller than the mea-
sured data. Recently, a more fundamental full band-
structure approach has been advocated by Moss, Sipe,
and van Driel (MSV) and used to calculate the
frequency-dependent nonlinear susceptibilities in cubic
semiconductors. MSV had concluded that the severe
underestimation from the result of FS is due to their
failure to account for accurate MME, not the local-field
effect as claimed by FS. However, MSV used a less accu-
rate empirical tight-binding (ETB) model, and also the
minimal-basis semi-ab-ini tio linear-combination-of-
atomic-orbitals (LCAO) method as discussed in the
preceding paper [hereafter referred to as paper I (Ref.
26)]. The band structures were not self-consistent and
the number of conduction-band (CB) states included in
the calculation were inadequate. So, in spite of rather ex-
tensive calculations of both the second- ' and
third-harmonic generations for a number of cubic semi-
conductors and their interfaces, ' the degree of agree-
ment with the measured data was less than desirable.
More recently, Levine and Allan (LA) have used the
first-principles pseudopotential method in the local-
density approximation (LDA) with local-field correc-
tions ' to study the zero-frequency limits y' '(0) of
AlP, A1As, GaP, and GaAs and obtained values in good
agreement with experiment. However, the approach used
by LA appears to be unsuitable for the study of the fre-
quency dependence of the harmonic generations; presum-
ably, the formulation is restricted to longitudinal
response only. ' Ma et al. (MCKH) have also calculated
nonlinear optical parameters for GaAs using a self-
consistent pseudofunction method in the LDA approxi-
mation. 34

As discussed in paper I, the band theory is itself a one-
electron approximation and may involve further approxi-
mations, depending on the specific method and computa-
tional strategy chosen. We consider the band approach
to be a more fundamental approach that is capable of
providing a deeper understanding of the nonlinear optical
properties of the materials, even though the results ob-
tained from using the band approach may not always be
better than simpler empirical methods. Because of the
recent progress in computational band theory based on
density-functional theory and great interest in materials
with electro-optic applications, calculation of nonlinear
optical properties in semiconductors using the band-
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structure approach has gained much impetus. Recent re-
sults for GaAs appear to become more consistent provid-
ed the underlying electronic structure and the optical
transition-matrix elements were rigorously calculated,
and a sufficient number of CB states are taken into ac-
count.

In this paper, we describe a systematic and detailed
calculation of the SHG for 15 non-centro-symmetric
compound semiconductors with zinc-blende structure,
namely, the III-V compounds AlP, A1As, A1Sb, GaP,
GaAs, GaSb, InP, InAs, InSb; and the II-VI compounds
ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe. The nonlinear
optical-response calculation follows the full band-
structures approach without local-field correction as was
formulated by MSV (Ref. 22), but using the self-
consistent orthogonalized-linear-combination-of-atomic-
orbitals method (OLCAO) as described in paper I. We
emphasize the importance of using accurate self-
consistent band-structure results. It is much more mean-
ingful to perform calculations on all cubic semiconduc-
tors using a single computational method, to compare
and contrast the results obtained, and to observe the gen-
eral trends. In the paper to follow, the results of the cal-
culation for the third-order susceptibilities in 18 semicon-
ductors will be presented. Preliminary result for GaAs
using this approach has already been reported.

The plan for this paper is as follows. In Sec. II, we
outline the computational method used for calculating
the SHG in some detail. The main results of g' '(0) and
y~ '(co) are presented in Sec. III. Section IV is devoted to
a discussion of these results with emphasis on possible
correlations that may exist, and in comparing with the
available experimental data. Also discussed is the validi-

ty of the Miller's rule based on the calculated results for
semiconductors. The last section gives a brief conclusion
of the work completed.

II. METHOD AND APPROACH

The simplest nonlinear optical materials are the cubic
semiconductors. For crystals that are centrosymmetric
such as Si and Ge, the dipole SHG y; k(co) =0 (or for any

(2)

tensor of odd rank) due to inversion symmetry. For non-
centro-symmetric compounds such as GaAs and ZnS
with a cubic group symmetry, only one independent
nonzero element [g',z3(co)] exists out of a total of 18 ten-
sor elements in y', k(co). For the y' '(co) tensor, it can be
shown that only two independent elements y'&&'&&(co) and

(3) 10y, z, i(co) are nonzero.
In this paper, we will discuss only the calculation of

the complex dispersion y, 23(co) for the SHG using the(2)

band-structure approach. We start with the electronic
structure of a crystal calculated using the first-principles
self-consistent OLCAO method, and calculate all the
relevant momentum-matrix elements at the regularly
spaced k-point mesh in the irreducible portion of the
Brillouin zone (BZ). The imaginary part Im[g' '(co)] is
evaluated first and the real part Re[y' '(co)] is then ob-
tained from the imaginary part by the Kramers-Kronig
(KK) transformation

Re[y' '(co)]= PJ — Im[y' '(co')]des' .
0 Q) Q)

The use of (4) to obtain the real part of y' '(co) from the
imaginary part is guaranteed from the causality condi-
tion. The static limit y' '(0) can be calculated separate-
ly and checked against the one obtained from the real
part of y' '(co) at co=0. The end result is the absolute
dispersion ~y' '(co) ~, which is the physical observable that
can be compared with experimental measurements. In
the actual calculation, the simpler y' '(0) is calculated
first as a function of CB cutoff to determine the level of
CB-state convergence needed, which will then be used in
the much more time-consuming calculation of the disper-
sion relations.

Analytical expressions suitable for theoretical compu-
tation can be derived using the standard perturbation
theory within the density-matrix formalism of quantum
mechanics. Apparently, different forms of analytical
expressions exist. According to MSV, the form using the
minimum-coupling scheme is the most amenable to the
band theoretical approach. The general expression for
g' ' for crystals with cubic symmetry takes the form

~(p)(
)

i e

2 me@

3
CWC dk [p„p„p, , ]

1

BZ 4~ (E,„—2A'co)(E, , —A'co) (E, , +2fico)(E„+fico)

+
(E,„+A'co)(E...—%co)

where v stands for a valence-band (VB) state and c, c' two difFerent conduction-band (CB) states, E„(k)=E,(k) —E,(k)
is the difference in band energies between two states c and v, and P„=—iA' f 'P, (k, r)V%'„(k, r)dr is the corresponding
MME. It should be noted that in many nonlinear optical calculations with molecular systems, the dipole matrix
e jg, (r)ry (r)dr is usually evaluated instead of the MME P. The dipole matrix element is ill defined for Bloch states of
the crystal. In the band approach for the nonlinear optical properties, accurate MME between Bloch states is a neces-
sary prerequisite.

We follow MSV (Ref. 22) in writing the Im[y' '(co) ] for crystals with cubic symmetry as

(E, „2E,„)5(E,, Ace) — 165—(E„—2A'co)
(6)
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This form has the advantage of separating the
Im[g' '(co)] into two terms, the co term and the 2' term,
each with a 6 function in the numerator. The presence of
the 6 function facilitates the calculation of the dispersion
relation similar to the linear optical calculation in paper
I. In Eq. (6), three states are involved. For the virtual
electron process that dominates excitation, one is a VB
state U and the other two are the CB states c and c'. The
three-state MME product therefore involves the CB-CB
matrix element P". In the virtual-hole process, the VB-
VB MME may be involved. However, the virtual-hole
contribution is found to be negligible and is therefore
omitted from Eq. (6). It is the presence of P" in the vir-
tual electron process that makes the calculation of SHG
very difficult. First, the CB states in semiconductors are
generally very extended, which makes the CB-CB MME
large. Second, the large CB-CB matrix effect affects
Im[y' '(co)] at any frequency, including co=0, not just
the high-frequency region. This is because the MME
product is an overall multiplicative factor to terms with 6
functions. The overall convergence of (6) is determined
by the competition between the energy denominator
which goes as E, and the increase in the CB-CB MME
when higher and higher CB states are included. Eventu-
ally, the high power energy denominator wi11 win and the
whole expression converges. For this reason, all non-
linear optical calculations in which only a few CB states
are taken into account cannot be trusted. We will return
to this point in Sec. III A.

The k-space integration in (6) is performed numerically
over the irreducible wedge of the BZ in conjunction with

I

the linear-analytic-tetrahedron method similar to the
calculation of y"'(co) in paper I. For linear optical calcu-
lation, 89 k points in the —,', of the BZ is more than ade-
quate for a well-converged result for g"'(co). This is not
the case with the SHG and THG calculations, because
the energy denominators in the expressions for y'2'(co)
and y' '(co) contain singular factors in addition to the
strong k dependence of the MME. We have tested the
calculation by using 89, 505, and 3345 k points in the —,',

of the zone (corresponding to dividing the I -X axis into
8, 16, and 32 equal divisions). We find that the difference
between using 505 and 3345 k points is about 5% on
average. However, calculation of Im[y' '(co)] using 3345
ab initio k points for a large number of crystals becomes
prohibitively expensive; we have to settle for using 505 k
points in the —', of the zone in both the g' '(co) and y' '(co)
calculations with the understanding that the k-space con-
vergence is estimated to be about 5%. In the actual eval-
uation, the singularity in Eq. (6) is avoided by deleting
the contribution from those k points where the energy
difference in the denominator is 1ess than 0.001 eV. The
MME product contribution to each tetrahedron micro-
zone is taken as the average value of the products at the
four corner points of the tetrahedron. With a reasonably
large number of tetrahedron zones employed in the
present calculation, such a scheme combines efficiency
with accuracy.

While the zero-frequency limit g' ~(0) can be obtained
from Re[y' '(co) ], it can also be calculated directly from a
separate formula:

3

(2) 3 eh ' ' dk
yI23(0) = —— g I Im[p "p"p,' '] E, , (2E, „+E„)—E,„(2E„+E,, )

4 4 (7)

This expression is much easier to evaluate than (6) be-
cause the denominator is nonsingular and is calculated by
direct summation over the BZ with appropriate weight-
ing factors for each k point. The two different ways of
calculating y' '(0) serve as a check for the accuracy of
the calculation. We find a difference of no more than 5%
in y' '(0) using the two different approaches for the same
number of k points used. The internal consistency of the
calculation removes any doubt about the possible diver-
gence in (6) as co goes to zero which was the subject of
controversy some 20 years ago. ' The minor discrepancy
comes mainly from the numerical procedure for the
Kramers-Kronig conversion. We have calculated g' '(0)
according to Eq. (7) as a function of CB energy cutoff E,r
for each crystal to check for the adequacy of the number
of CB states included. We will present the results in Sec.
III.

As pointed out in paper I, the LDA calculation for
semiconductors underestimates the band gap. Since the
role of the band gap becomes even more important in
nonlinear optical properties, and calculation beyond the
LDA theory is generally very complicated even for linear
optical properties (see discussion in paper I), we decided
to use the simplest form of scissor operator to enlarge the

l

band gap for each crystal to its reported experimental
value, which is listed in Table I. This strategy is partly
justified by the fact that quasiparticle calculation on
several semiconductors shows a rather uniform upward
shift in the CB and apparently with no appreciable
change in the CB wave functions. Although a more ela-
borate form of scissor operator has been suggested, we
feel the uncertainty involved in other considerations such
as CB convergence, accuracy of the MME, and the ade-
quate number of k points, etc. , may be more important
than a slightly more elaborate form of scissor operator.
Furthermore, considering that the present work involves
the calculation of a large number of semiconductors, the
use of the simpler form of the scissor operator is compu-
tationally more expedient. Had no scissor operators been
applied, as in the case of yI "(co) in paper I, our calculated
y' '(0) values would be 30—50% larger, but still of the
same order of magnitude.

We have neglected other many-body effects such as ex-
citonic effect, local-field effect, and finite-temperature
effects, etc. as discussed in I. Even in ionic insulators,
where the local-field effect is expected to be more impor-
tant, a study by Lines shows its effect on the y' '(0) to
be quite small with the correction factor close to 1. The
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TABLE I. Calculated second-order nonlinear optical properties of cubic semiconductors. Parentheses following the experimental
data indicate either the finite frequency, or w, which implies the. data are for the wurtzite structure; zzz, zxx, etc. specifies the tensor
element for wurtzite crystal. For data from other calculations, Refs. 21 and 22 use the band approach and are underlined. For data
from Ref. 22, the first number was obtained using the semi-ab-initio method, followed by the number in parentheses obtained using
the ETB method with MME determined separately. References 32 and 34 use the LDA approach and are in bold type. See text for a
more detailed explanation.

Crystal E„(eV) Present calc.
g' '(0) {10 ' esu)

Experiment Other calculations
6(0) (10 esu)

Alp
A1As
A1Sb
GaP

GaAs

GaSb

InP
InAs

ZnS

ZnSe

ZnTe

Cds

CdSe

CdTe

40
40
40
40

40

40

40
40

40

40

40

40

35

40

40

4.8
11.0
24.6
32.2

60

152.9

28.4
174

466

4.8

3.8

14.6

7.4

23.7

27.6

23.4' (at 1.6 pm)
34.3' (at 1.6 pm)
28' (at 1.6 pm)
52m

19.8~

28q
91' (at 1.6 pm)
171' (at 1.6 pm)
176'
9Qm

64"
43~
72q

2QQm 3QQm

68.5'
200"
2ppm

780"
267"

17' (at 1.6 pm)
14.6'
7.8~ (w)
22' (at 1.6 pm)
37 4'
73' (at 1.6 pm)
44"
21' (zzz)

12.6' (zxx)
13.8' (xxz)
54' (zzz)
26" (zzz)

13.6' (zxx)
14.8' (xxz)
26 {zzz) (at 1.6 pm)
80"
28.2 (at 28 pm)
28.2"

50 47b 72c
142 64 7 2
111' 70', 85'
85 140,75g 62"
45', 56', 24, 26'
41",10.4(38)', l7'

1.22, 190,108,100"
98', 85' 38" 46', 61"
4 Qs 24 9(96 )0 4l c 2Oot

235" 16Qf 193g 360"
115a 155j 7pk 1041

108",82.2(230)'
106" 280, 68', 65"
157d 41Qf 17]g 24Q"
96', 112',64",82'
100",1.0', 155(450)'
282, 650,286g 400"
101', 198",110 158'
183",3.0', 360(920)'
16cl 43g 17h 198

35" 10k 11 ( )'

19d 63g 3Ph 27a 533

15k 131 34n 4 4b

53d 112g 73" 51~ 90j
29",28', 64",7 3

19' (w)

20' (w)

27 134,71",60', 132'
33k 35~ 84" 24 8b

0.9
1.8
1.8
1.2

1.0

2.6

2.1

4.2

4.2

0.8

0.7

3.6

4. 1

4.9

0.9

'Reference 16.
Reference 27.

'Reference 32.
Reference 12.

'Reference 8.
Reference 13.

gReference 14.
"Reference 15.

'Reference 51.
'Reference 17.
"Reference 18.
'Reference 19.

Reference 53.
"Reference 20.
'Reference 22.
~Reference 56.

Reference 58.
"Reference 52.
'Reference 21.
'Reference 34.
"Reference 54.
'Reference 55.
"Reference 57.
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excitonic effect may be important if one focuses on the
optical nonlinearity near the semiconductor band edges.
We feel that for nonlinear optical properties, it is more
important to establish a consistent set of results for a
large number of semiconductors using the simpler LDA
formalism that can be compared with experimental data
without the necessity of relying on empirical calculations.

(a)
Q3

IO

OC 0 'I 0

~ ~
~ ~ 0 0 ~ ~ ~ ~

~ 0 ~ ~ ~ D ~ ~
0

~ 0 ~0

III. RESULTS OF CALCULATION (b)

10 30

A. y' '(0) and test for conduction-band convergence

From Eq. (6), it is clear that y' '(co) depends on the
CB-CB MME, which may be quite large because of the
extended nature of the CB Bloch functions. This may
lead to the divergence of y' '(co) as higher and higher CB
states are taken into account. However, the overall con-
vergence depends on its competition with the energy
denominator in (6), which goes as E where E is the ener-

gy separation between the VB and the CB states. Ulti-
mately, the high power dependence of E in the denomina-
tor should win and the results of y' '(co) converge. On
the other hand, because the OLCAO-LDA band calcula-
tion follows a variational principle, the accuracy of the
calculated Bloch function at excessively high CB energy
for a specific crystal cannot always be guaranteed. It is
possible that the MME diverges faster than the counter-
balancing effect of the energy denominator due to accu-
mulated errors. It is therefore extremely important to
determine a CB energy cutoff E,f in order to obtain an
accurate and converged result for y' '(co). To this end,
we calculate y' '(0) as a function of increasing E,&

for
each crystal using the simpler expression of Eq. (7) before
we proceed with the more difficult and time-consuming
calculation of the complex dispersion relation y' '(co).
This problem is not encountered in the linear optical cal-
culation because the MME involved are always between
the VB and CB states.

In Figs. 1 —5, we present the results of y' '(0) plotted
against the E,f for each series of the 15 compound semi-
conductors. In studying these results, the density-of-
states (DOS) diagrams of Figs. 8 —13 of paper I should be
consulted. For most crystals, g' '(0) converges for E,f
less than 35—40 eV. Some crystals show large fluctua-
tions in y' '(0) before reaching stable values. However,
for GaP, GaAs, and, to a lesser extent, A1Sb, y' '(0) ap-
pears to increase, and for CdS and CdSe, to decrease after
staying relatively Bat for a range of frequency. We inter-
pret this as due to the fact that for these crystals, the
CB-state wave functions are not sufficiently accurate at
E )50 eV, which results in erroneous CB-CB MME. We
therefore set the E,f for these crystals to the energy
where y' '(0) is relatively stable. The E,&

values adopted
for calculation are listed in Table I. In a less rigorous
non-first-principles type of calculation, a maximum of
four CB's is likely to be included and even these four
bands may not represent the lowest-lying CB's because of
significant band crossing, as is evident from the band dia-
grams shown in paper I. It is very likely that the severe
underestimation of y' '(0) by FS using empirical pseudo-
potential band structure is due to the insufficient conver-
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FIG. 1. Calculated g' '(0) as a function of CB cutoff: (a)
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gence in E,f, and not exclusively due to the inaccuracy of
the MME as concluded by MSV. Confusion often arises
when other arbitrary parameters (such as the size and
magnitude of the MME) were adjusted in order to come
up with a reasonable y' '(0) value without identifying the

0—----————6
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source of the problem. It should be cautioned that the
choice of E,f is not only guided by the convergence con-
sideration and the accuracy of the CB wave functions,
but also by the computational practicality of the evalua-
tion of the frequency-dependent dispersion relations. For

example, in InAs, it is sufhcient to use E,f =20 eV while
for GaSb, a minimum of 40 eV should be used for E,f.
We are reasonably confident that the cutofF' values listed
in Table I give sufhcient convergence while retaining the
accuracy of the CB-CB MME. It should also be noted
that the structures in the g~ ~(co) curves are mainly deter-
mined by the energy separation E,- between the CB and
VB states while the amplitudes of the structures depend
on E,~. Our calculated y' '(0) values, together with the
results from other calculations and the measured
data for the 15 semiconductors, are summarized in
Table I.

B. y( )(a)) resu1ts

The frequency-dependent g' '(co) describes the dynam-
ic nonlinear excitations. Unlike the linear optical proper-
ties discussed in paper I, in which the imaginary part of
g'"(co) can be directly compared with experimental mea-
surements, the nonlinear dispersion manifests itself as the
absolute value of the dispersion that depends on both the
real and the imaginary parts. The structures in the
~y' '(~)~ curve will be quite different from either of
Re[y' '(co)] or Im[y' '(co)] alone. However, in order to
understand the nonlinear optical process at a more mi-

croscopic level, it is desirable to investigate the frequency
dependency of both Re[g' '(co)] and the Im[g' '(co)].
Since the former is obtained from the latter via KK con-
version, and the Im[y '(co)] consists of two contribu-
tions, the co term and the 2' term, it is informative to
present the results for each contribution as well. In order
to be able to make intercomparisons among crystals, we
again group the calculated results into each series. In
Figs. 6—8, the contributions from the co term and the 2'
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term to Im[y' '(ni)] in the Al, Ga, and In series of the
III-V compounds are shown. Similar results for the Zn
and Cd series are shown in Figs. 9 and 10, respectively.
Our general observations of these dispersion relations are
(1) both the n/- and 2'-term contributions can be positive
or negative; (2) the 2' term usually dominates in the

low-frequency region and is positive. It is this feature
that ultimately determines the sign and magnitude of
g' '(0) discussed in Sec. III A above. The leading peak in
the final ~y' (n/)~ spectrum originates from the 2' reso-
nance term; (3) the co term is also important in determin-
ing the overall structure in Im[y( '(ni)]. It is not negligi-
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ble; (4) the threshold energies in the 2' term are roughly
half of the direct gaps at I, as are generally expected for
the SHG process; (5) in the low-frequency region, the
structure in the 2' term will ultimately determine the
structures in the Re[y' '(co)] and in ~y' '(co)~. This is
particularly important for crystals with small band gaps

such as InAs and InSb; (6) in the high-frequency region
above 5 eV, the cu- and the 2~-term contribution tend to
cancel each other.

The Re[y' '(co)] and Im[g' '(co)] for the 15 semicon-
ductors in the five series are shown in Figs. 11—15, re-
spectively. For most crystals, prominent structures are
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for (a) A1P, (b) A1As, and (c) A1Sb. Experi-
mental data, Ref. 5.

generally limited to the frequency region below 6 eV be-
cause of the cancellation of the co and the 2' terms in
Im[y' '(co) ]. There are exceptions. For example, in GaP,
ZnS, and CdTe, substantia1 structures in both
Re[y' '(to)] and Im[y' )(co)] up to 10 eV are present. We
are unable to provide an explanation for such exceptions
other than that they must be related to their fundamental
electronic structures. Structures in y' )(co) above 6 eV

are generally less reliable because the higher CB wave
functions may be less accurate, as discussed in Sec. III A.

The ~y' '(co)
~

calculated from the Re[y' '(co)] and
Im[y' '(co)] for the 15 crystals are displayed in Figs.
16—20. It is the dispersion curve ~y' '(co)

~
that will be ul-

timately compared with whatever measurements are
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available. For GaP, GaAs, GaSb, InAs, InSb, and ZnTe,
available experimental data for ~y' '(co)

~
are also plotted.

For the Al series, where experimental data are nonex-
istent, the structures in ~y' )(co)~ are surprisingly simple
and limited to the energy range below 6 eV. For the Ga

FIG. 20. ~y' '(co)
~

for (a) CdS, (b) CdSe, and (c) CdTe.

series, the low-energy structures below 4 eV consist of a
double peak. For the In series, the structures are much
more complicated and consist of multiple peaks. For the
II-VI compounds, the main difference between the Zn
series and the Cd series seems to be that the former con-
sists of double peaks and the latter triple peaks. We also
note that within each series, the main peak moves to-
wards lower frequency as the Z number of the second ele-
ment increases. These results are further discussed in the
next section in comparison with experiment and some
other current calculations.

IV. DISCUSSION

In Table I, we have listed the calculated'
and measured values for y' '(0) for comparison.
The experimental data listed are roughly in chronological
order and there are large variations among them. The
more recent data are believed to be somewhat more reli-
able. Some of the data were taken at finite frequencies
and are indicated as such. Among the 15 semiconductors
studied, we find no experimental data for A1P and A1As,
and the data for CdS and CdSe were for the wurtzite
structures. We find excellent agreement with our calcula-
tion in six crystals (AISb, GaP, GaAs, InAs, CdSe, and
CdTe), and good agreements with similar orders of mag-
nitude in GaSb, InP, InSb, ZnS, ZnTe, and CdS. Only in
one crystal, ZnSe, does the calculated y' '(0) appear to be
an order of magnitude smaller than the available data.
We note that for crystals where the agreements are mar-
ginal, the data are relatively old and may not be reliable.
Given the fact that the experimental data are rather old
and scattered, the order-of-magnitude agreement between
the calculated and measured y' '(0) values is what one
can realistically hope for. We are unable to locate the
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more recent data for g' '(0) or ~y' '(co) for the cubic
semiconductors. In Fig. 21, we plot the calculated y' '(0)
vs the measured values that are judged to be more reli-
able. The overall agreement is quite satisfactory.

For g' '(co) at finite frequency, the data are much more
scarce. For GaAs, InAs, InSb, GaSb, and ZnTe, some
limited data are available. For A1Sb, GaP, ZnS, and
ZnTe, single data points at finite frequencies exist. We
have plotted these experimental data on the ~y' '(co)~

curves. It can be seen that the agreement is surprisingly
impressive. For GaP, the four data points fall right on
the calculated curve. For GaAs, the peaks at 1.4 and 2.4
eV with a deep valley at 2.0 eV are well reproduced by
the combination of the data set, although it appears that
the peak at 2.4 eV is slightly below the measured data of
Bethune, Shmidt, and Shen. ' Likewise, in InAs, the
peaks at 1.2 and 2.0 eV with a deep valley between are
well reproduced by three sets of experimental data.
For ZnTe, the data of Chang, Ducuing, and Bloember-
gen below 2 eV are consistent with the calculated result.
In InSb, the measured data appear to be below the calcu-
lated ones, but the general profile of the spectrum seems
to be in good agreement.

Also listed in Table I are the calculated values for
y' '(0) from other groups. We have compiled the
theoretical values for y' '(0) since 1969. Although
several calculated values on the list are in apparent good
agreement with experiment, the empirical nature of these
calculations makes it less meaningful. We will compare
our results with the more recent calculations using the
full-band approach. MSV have studied the nonlinear op-
tical susceptibilities of GaP, GaAs, GaSb, InAs, and InSb
for photon frequencies up to 4 eV. Ghahramani, Moss,
and Sipe later extended the calculation to include ZnSe,
ZnTe, and CdTe. Although MSV used a more rigorous
full-band-structure approach and provided detailed
dispersion curves, their results based on the semi-ab-initio
band structure were too small and were not in good
agreement with the measured data. As pointed out ear-
lier, this could be due to the insufficient number of CB
states included in the calculation. By using an ETB mod-
el with separately fitted MME, they have improved the

agreement with experiment. However, this later ap-
proach is rather arbitrary in nature and the quality of
such a calculation is difficult to assess. In general, our
first-principles results are in much better agreement with
the measured data for both y' '(0) and y' '(co), especially
with the GaP, GaAs, InAs, and InSb crystals.

LA used the first-principles pseudopotential method in
the LDA to calculate the y' ~(0) for four semiconductors,
A1P, AlAs, GaP, and GaAs. They have also obtained
good agreement with experiment and also with our re-
sults. They have argued that inclusion of local-field
effects and the renormalization of the velocity operator is
important. The former can change g' '(0) by 8 —13 %.
The latter can change the value up to a factor of 2. We
have performed test calculations in the GaAs case in
which the scissor operator is applied in conjunction with
the velocity operator renormalization. We found that the
change in y' '(0) is quite marginal, no more than 12%.
We can attribute this difference to the two different
methods of electronic-structure calculations as well as the
different ways the y' '(0) are evaluated over the BZ.
Most likely, the electronic-structure results calculated by
the LDA-OLCAO method have larger gaps and are
therefore closer to the experimental values than the work
of LA. This, in turn, makes the correction less impor-
tant. It is dificult for us to estimate how severely this
difference will affect the final result. Given the large ex-
perimental uncertainty in the nonlinear optical parame-
ters at this time and the complexity of the calculation in-
volved, this question is best left for future studies.

MCKH had calculated the y' '(0) for GaAs (Ref. 34)
using the pseudofunction method of band structure.
Their result is a factor of 3—5 greater than ours and that
of LA. Since details of their calculation and the informa-
tion on the electronic structure were not provided, the
source of this discrepancy cannot be speculated on. They
have also concluded that the correction to the local-field
effect should be no more than 3%.

With the 15 compound semiconductors studied, it is
feasible to explore any correlations between the NOP and
other physical parameters of interest. In Fig. 22, we plot
the calculated values of y' '(0) (in logarithmic scale) vs
the direct band gap E at I . In spite of a rather large
scattering of the data, an approximate linear relationship
in Fig. 22 can be established. The general trend is that
the smaller-gap semiconductors have larger g' '(0). This
fact, of course, had been recognized in the early 1960s
and was the basis of many empirical calculations of
y' '(0). In Fig. 23, we plot y' '(0) (in logarithmic scale)
vs the calculated dielectric constant E(0) from Table I of
paper I. Again, we can identify an approximate linear re-
lationship in Fig. 23 that correlates the larger E(0) with
larger y' '(0). This correlation is not independent of that
of Fig. 22 since there is an intimate relationship between
the band gap and the dielectric constant E(0) of a materi-
al. We have to caution the reader that the correlated
studies in Figs. 22 and 23 are intended for general trends
only, since both the calculated and measured values of
y' '(0) are not of absolute accuracy at this time. What
emerges from Figs. 21 —23 is the indisputable fact that the
calculated and measured values of y' '(0) for the 15 semi-
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conductors are in good agreement and consistent with the
general trend.

In 1964, Miller suggested that the second-order suscep-
tibility y' '(co) of a crystal can be related to the linear sus-
ceptibility y' '(co) through the following relation based on
the analysis of data on a large number of nonlinear opti-
cal materials:

g;,q(2~) =&(2~)g;; (2~)g,'J"(co)gkk(~),

where A(co) is supposed to be a slowly varying function of
co and b, (0) a universal constant. Combining the results
of y'"(co) of paper I and y' '(co) of this paper, we are in a
unique position to check Miller's rule based on the first-
principles results. The results for b, (co) are shown in Fig.
24 for the following five representative crystals from each
group: (a) AlAs, (b) GaAs, (c) InP, (d) ZnS, (e) CdS. The
h(co)'s for other crystals exhibit a similar trend and are
not shown. It can be seen that in the low-frequency
range below the threshold of Im[g' '(co)], A(co) is approx-
irnately constant. %'ithin half an eV of this threshold,
b(co) can be considered a slowly varying function of co,

and beyond that region, b, (co) varies rather rapidly.
Therefore, Miller's rule may not be adequate to predict
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FIG. 24. Check on the Miller's rule for (a) A1As, (b) GaAs,
(c) InP, (d) ZnS, (e) CdS.

y' '(co) of a material at finite frequencies above the ab-
sorption threshold based on the linear optical properties
alone. The b, (0) for the 15 semiconductors are listed in
Table I and also plotted in Fig. 25. They vary between 1

and 5 and therefore can hardly be considered a universal
constant. But as pointed out by Miller, the y' '(0) for
many nonlinear optical materials can vary over several
orders of magnitude; the 6(0) result for the 15 semicon-
ductors shown in Fig. 25 at least lend partial support for
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FIG. 23. Calculated y' '(0) vs calculated E(0).
FIG. 25. Calculated Miller's constant 5(0) for the 15 semi-

conductors.
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Miller's conviction. Finally, we need to point out that
the above estimation is not very precise because the
y'2'(co) calculation here is gap corrected while the y"'(co)
calculation of paper I has no gap correction and this
could cause some errors in A. However, because of the
general correlations between E, y"'(0), and y( '(0) as
discussed above, we believe our assessment of the validity
of Miller's rule is still qualitatively valid.

V. CONCLUSION

We have used the first-principles OLCAO method of
band-structure calculation to study the second-order non-
linear susceptibility, or the SHG in 15 cubic compound
semiconductors. Results are presented for both the
frequency-dependent y' '(co) and its static limit g( '(0).
Good agreement with experimental values has been ob-
tained on almost all the crystals in spite of the variations
over two orders of magnitude. Our calculation has re-
vealed the importance of taking sufficient numbers of CB
states in the sum-over-states, full-band-structure calcula-
tion for nonlinear excitations because of the large CB-CB
MME's. The calculated results are correlated with other
physical constants such as the direct band gap and the
dielectric constants. The much-celebrated Miller's rule
introduced more than 20 years ago is checked and found
to be only partially valid.

While the present work demonstrates that the first-
principles band-structure method is a very viable ap-
proach to studying the nonlinear optical properties of

materials, and that the self-consistent OLCAO method,
in conjunction with a "naive" gap-correction procedure,
is very effective for such complex calculations, there are
still several areas for future improvement. This includes
the proper extension beyond the LDA theory and to ac-
curately account for other many-body effects that may
become important in nonlinear excitations, especially
those that involve highly excited states. Nevertheless, the
present result and that of the calculations on the third-
order nonlinear susceptibilities in the paper to follow give
us great confidence that the nonlinear optical properties
of some very complex inorganic crystals or polymers may
be investigated using this approach. In contradiction to
the empirical methods, the first-principles approach has
more predictive power and further systematic improve-
ments are possible. Of great excitement is the possibility
of applying the present method to systems involving sur-
faces, interfaces, superlattices, and microstructures. Such
studies will definitely facilitate the proper materials
design and applications in a variety of electro-optical
technologies.
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