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The electronic structures and the linear optical dielectric functions of 18 cubic semiconductors are
studied by the first-principles orthogonalized linear-combination-of-atomic-orbitals (OLCAO) method in
the local-density approximation. The crystals studied include the group-IV semiconductors C, Si, and
Ge; the III-V compounds AIP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, InSb; and the II-VI semicon-
ductors ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe. Results are presented for the band structures, for the
density of states, and for the real and imaginary parts of the linear dielectric functions for photon ener-
gies up to 12 eV. The results are compared with other existing calculations and experimental data.
Some interesting correlations and trends among the 18 semiconductors studied are pointed out, and pos-
sible problems with the optical excitation calculation are discussed. These results provide the ground-
work for the calculation of nonlinear optical properties on these crystals using the full band-structure
approach in the two papers to follow. It is argued that optical excitations in semiconductors can be
efficiently carried out using the OLCAO method without resorting to empirical methods or model stud-
ies. The present calculation gives band gaps larger than the well-converged result of first-principles
pseudopotential calculations. The consequence of this difference on the optical properties is discussed.
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I. INTRODUCTION

The subject of optical excitations in elemental and
compound semiconductors has been the focus of many
experimental and theoretical studies for a long time.! ¢
Rarely are the linear response and the nonlinear excita-
tion treated at the same time and on equal footing.
Moreover, detailed measurements or rigorous calcula-
tions were usually carried out for one or a few semicon-
ductors at a time, limiting the scope of any correlated
analysis aimed at a coherent overall picture. In this
series of three papers, we present our first-principles
study of optical excitations in 18 elemental, III-V and II-
VI semiconductors. The crystals studied are C, Si, Ge,
AlP, AlAs, AlISb, GaP, GaAs, GaSb, InP, InAs, InSb,
ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe. Diamond was
included because of our interest in the nonlinear optical
properties of other C-related compounds and a-Sn was
excluded because it is generally considered as a semi-
metal rather than a semiconductor. In the first paper, we
discuss the results of electronic structure and the linear
dielectric functions as calculated by the self-consistent
orthogonalized linear-combination-of-atomic-orbitals
(OLCAO) method. Since reasonably accurate linear
dielectric function is a prerequisite for nonlinear optical
studies, it is necessary to focus at first on the methodolo-
gy of the electronic-structure calculation and to assess
the quality of linear optical results for the semiconduc-
tors. In the two following papers,”? results on the non-
linear optical calculations, namely, the second and the
third harmonic generations in these crystals, will be
presented. We hope that such a comprehensive study
based on rigorous quantum-mechanical calculation will
provide a more coherent understanding of the optical ex-
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citations in bulk semiconductors.

There are numerous previous theoretical investigations
of the linear dielectric functions of semiconductors.’*!
Earlier work was generally based on the empirical
methods, with limited accuracy. In recent years, exten-
sive application of density-functional theory**™** in the
local-density approximation (LDA) and local-spin-
density approximation (LSDA) (Ref. 45) made accurate
first-principles calculations of electronic structures of
many semiconductors a rather routine task. LDA itself
is an approximation that is valid only for a homogeneous
electron system in the ground states and it is generally as-
sumed that in a real crystal, the somewhat uneven elec-
tron distribution can be locally represented by its density.
However, in the case of optical excitation, one has to con-
front the serious problem of using the eigenvalues of the
unoccupied states obtained from the LDA calculation as
approximate excitation energies similar to the
Koopman’s theorem in the Hartree-Fock theory. There
have been many tenuous efforts to go beyond the LDA
theory to account for these effects in real crystals in order
to obtain results in closer agreement with experimental
measurements. However, in the present paper, we
confine ourselves strictly to the results obtained within
the context of the LDA theory and a very specific com-
putational scheme, and focus our attention on the possi-
ble correlations and trends among different semiconduc-
tors, and on the practicality of using the same approach
to study the nonlinear optical properties.

The plan for this paper is rather straightforward. The
method of calculation is succinctly summarized in Sec.
II. The calculated band structures and the density of
states (DOS) for the 18 semiconductors are presented in
Sec. III. The results on the linear optical properties are
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presented in Sec. IV. These results are further discussed
in Sec. V. The last section is a brief conclusion.

II. THE OLCAO BAND-STRUCTURE METHOD

The OLCAO method is one of the very competitive
modern methods used for electronic-structure calculation
in solids. Since the details of the method have been de-
scribed in many publications,*® it suffices to summarize
the essential elements of this method, which are listed
below.

(1) The method is an all-electron method based on the
density-functional theory in the LDA or the LSDA.

(2) Correction for the correlation effect is added, usual-
ly in the form of the Wigner-interpolation formula,*’ but
other variations are also possible.

(3) The crystal wave functions are expanded in terms of
Bloch functions constructed from the atomic or atomic-
like orbitals centered at each atomic site. The orbitals
are labeled by the principal quantum number and the or-
bital quantum number of the atom (and the spin quantum
number in the case of spin-polarized calculation). A
minimal basis consists of all atomic orbitals, occupied or
unoccupied, up to the shell of the principle quantum
number of the highest occupied valence electron. For an
extended basis, additional orbitals of the next empty shell
may be added. Further augmentation of the basis set to
increase the variational freedom can be achieved by add-
ing individual single Gaussians.

(4) Each atomic wave function is expressed as a linear
combination of s-type, p-type, d-type (or f-type, if neces-
sary) Gaussian-type orbitals (GTO’s) with a fixed set of
exponentials. The choice of these exponentials depends
on the size of the atom and the ionic nature of the crystal,
and is generally guided by pure atomic calculations*® or
more likely by past experience. The range is usually from
a minimum of 0.12 to a maximum of 2 500000 in a set of
about 14-26 GTO.

(5) The potential and the charge density of the crystal
are constructed in the direct space according to the LDA
or the LSDA. They are linearly fitted as sums of atom-
centered s-type GTO’s of varying numbers of terms. For
high-precision calculations (usually involve calculations
of total energies), additional Gaussians in the fitting func-
tion may be placed at strategically located positions in
the crystal. The accuracy of the calculation depends crit-
ically on the accuracy of the fitted functions and this is
monitored by comparing the actual number of valence
electrons in the crystal with the number of integrated
charge from the fitted functions.

(6) The two-center overlap and the three-center Hamil-
tonian (consisting of kinetic energy, Coulomb, and the
exchange-correlation terms) matrix elements at each k
point in the Brillouin zone (BZ) are calculated in the r
space. A direct lattice sum extending to nonzero interac-
tion integrals is performed. The use of GTO’s in both the
basis functions and the fitting functions facilitates the

MING-ZHU HUANG AND W. Y. CHING 47

analytical evaluation of multicenter integrals in the ma-
trix elements.

(7) An orthogonalization to the core procedure® is ap-
plied to eliminate the core states from the final secular
matrix. (As a rule of thumb, an atomic state with orbital
energy lower than the oxygen 2s level is considered a core
state.) The orthogonalized secular equation at each k
point is diagonalized to obtain the energy eigenvalues and
eigenvectors. The orthogonalization process for reducing
the size of the matrix equation is a very important feature
of the method for its effective application to complex sys-
tems, or to problems that require wave functions at a
large number of sampling k points without being compu-
tationally prohibitive.

(8) A self-consistent iterative procedure is instituted in
which the new potential and charge-density functions are
reconstructed from the crystal wave functions. A conver-
gence criterion is established, usually in the form of rela-
tive change in the potential function or in the energy ei-
genvalues. Twelve to twenty iterations are usually need-
ed to obtain a fully converged result at which the energy
eigenvalues change by less than 0.0001 eV. For semicon-
ductors, only a small number of special k points in the
BZ are needed to achieve very good convergence with
respect to the number of k points for the BZ integration.

(9) After the self-consistency is reached, the energy ei-
genvalues and vectors are recalculated at a large number
of regularly spaced k points in the irreducible portion of
the BZ to be used for calculations of optical excitations
or other physical observables. In general, a linear analyt-
ic tetrahedron method®®®! or similar scheme for numeri-
cal integration over the BZ is employed.

(10) Relativistic correction within the OLCAO scheme
has been properly formulated and tested.’> However, it
was not implemented in the present study.

Calculation of the linear optical properties of solids us-
ing the OLCAO method has also been described before.*®
The method has been successfully applied to a large num-
ber of insulating crystals, including some with very com-
plex crystal structures.”> % Very recently, the same
method has been applied to study the linear optical prop-
erties of all the existing polymorphic forms of silicon
dioxide with much more complicated crystal structures.%
In our approach, the frequency-dependent optical proper-
ties are calculated in the random-phase approximation
(RPA) based on the electron-gas result of many-particle
perturbation theory,®® but using the electronic structure
obtained from the LDA theory. Baroni and Resta?® had
discussed the improvement in the RPA within the frame-
work of the density-functional theory in the LDA. They
obtained a bulk dielectric constant for Si in very good
agreement with experiment. Their approach, which in-
volves the screening of the wave-vector-dependent dielec-
tric matrix, is more rigorous but is computationally far
more demanding. We must stress that in the present
work for the calculation of linear and nonlinear optical
excitation, LDA calculation refers strictly to the elec-
tronic structure only, and does not involve any additional
correction for the RPA.

The interband optical-conductivity tensor using the
Kubo Greenwood formula® is as follows:
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where #iw is the photon energy, f;(k) the Fermi distribu-
tion function. The Cartesian components of the momen-
tum matrix elements (MME) in (1), taken between the oc-
cupied valence-band (VB) state / with energy E;(k) and
the unoccupied conduction-band (CB) state n with energy
E,(k), are properly evaluated from the eigenfunctions.
The MME is found to be strongly k dependent and must
be evaluated at each sampling k point. The integration
over the BZ is carried out by using the linear analytic
tetrahedron method. Once the interband conductivity o
is calculated, it can be converted to the imaginary part of
the dielectric function &,(w) via o(w)=47e,(w)/w. The
real part of the dielectric function g,(®) is obtained from
the imaginary part using the Kramers-Kronig relation.
Other frequency-dependent linear optical constants such
as reflectance spectra, the electron-energy-loss spectra, or
the refractive index, etc., can be readily obtained from
the complex dielectric function.

It is well known that the LDA theory is only appropri-
ate for the ground-state properties of the solid. This is
reflected most commonly in the fact that the band gap of
a semiconductor calculated using the LDA theory is usu-
ally underestimated.”® Correction for band gaps in semi-
conductors beyond the LDA theory had been attempted
by many groups.”!~7’ Different schemes were developed
to address this problem in order to bring the calculated
gap value closer to the experimental value. Quasiparticle
calculation in the GW approximation’® addresses the gap
problem from a more fundamental point of view and the
results in several semiconductors appear to be in very
good agreement with experiment.””” 77 The self-
interaction correction (SIC) scheme aims at the elimina-
tion of the incomplete cancellation of the electron self-
interaction in the Hartree term of the LDA theory. The
SIC leads to the lowering of the VB states, thereby en-
larging the gap while totally ignoring the effects on the
CB states.”” 8! This approach has considerable success
in addressing the problem of gap underestimation in
wide-gap insulators.”” 8168 Carlsson’* had shown that
corrections to the CB and VB are equally important for
semiconductors. Simpler correction procedures’’® ap-
pear to yield equally good results for enlarging the gap
sizes in semiconductors. It is not clear at this stage
which approach is more appropriate and computationally
expedient; it may take several corrections to address the
gap problem. In the nomlinear optical calculation, we
plan to use the simplest approach by applying a ‘“‘scissor
operator” in which the CB states are given a rigid shift so
as to match the measured gap value. This is fully justified
for the present level of study, since quasiparticle calcula-
tions show a more or less uniform shift in the CB without
a substantial change in the CB wave functions,’"’* and
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the variation of the gap correction for transitions to
different CB states seems to be small.”® A more refined
self-energy-effect correction requires not only adding a
scissor operator to the usual LDA Hamiltonian, but also
renormalizing the velocity operator for the transition ma-
trix elements.*>#!

For covalently bonded semiconductors, many-body
effects beyond the one-electron theory also become im-
portant for optical excitations. The most important
ones are the local-field effect and the excitonic
effect.1%40.41.82=87 Both effects also affect the gap states
and the nature of carrier excitations in semiconductors.?’
Theoretical approaches to studying the effects of bond ex-
citons on the optical properties of semiconductors are
generally based on phenomenological models.’? 888 we
ignore all these effects in the present calculation.

III. ELECTRONIC STRUCTURES

In a previous paper,®® the band structures, the DOS,
and the effective masses of 32 semiconductors with dia-
mond, zinc-blende, wurtzite, rocksalt, and trigonal struc-
tures were studied using the OLCAO method. However,
that calculation was not self-consistent and minimal basis
functions were employed. The key point of that work
was to adjust the Slater exchange-correlation parameter®
in the potential such that, in conjunction with a minimal
basis, the correct experimental band gaps were repro-
duced. All the interaction integrals were calculated to
the furthest neighbors necessary. This method gives
quite accurate VB and lower CB states with only a simple
8 X8 matrix diagonalization for cubic semiconductors,
and does not involve any other adjustable parameters.
The method also provides wave functions that can be
used for studying other properties. The semi-ab-initio
method was designed to be a compromise between
rigorous self-consistent calculations and the much
simpler empirical studies. With a purely empirical
method such as the bond orbital method!®?3 or the
empirical tight-binding method (ETB),?? it is difficult to
have decent CB states and therefore impossible to obtain
good results for optical excitations at higher photon fre-
quencies. Indeed, Moss, Ghahramani, Sipe, and van Driel
(the Toronto Group) had adopted this semi-ab-initio ap-
proach to studying the nonlinear optical properties of a
number of cubic semiconductors and their inter-
faces.”! 7% Tt is also fair to say that our present study of
the linear and nonlinear optical properties of 18 semicon-
ductors using the first-principles OLCAO method is
mainly motivated by the work of the Toronto Group who
used the ETB and the semi-ab-initio methods.

While the semi-ab-initio approach is simple and
effective for a number of useful studies in semiconductors
such as with superlattices””®® and crystalline defect,”
and for the study of the electronic structures of various
polycrystalline phases of SiO,,!® it would be inherently
more satisfying if all the calculations could be carried out
as accurately as possible within the LDA formalism and
the adopted computational scheme. The rapid advance
of the computing technology and the fast development of
the methodologies associated with the first-principles cal-
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FIG. 1. Band structure of (a) C, (b) Si, and (c) Ge.
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FIG. 3. Band structure of (a) GaP, (b) GaAs, and (c) GaSb.
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FIG. 5. Band structure of (a) ZnS, (b) ZnSe, and (c) ZnTe.
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FIG. 6. Band structure of (a) CdS, (b) CdSe, and (c) CdTe.
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culations made the semi-ab-initio approach obsolete. The
usual arguments for the use of empirical models are no
longer valid. The present study of 18 cubic semiconduc-
tors using the fully self-consistent OLCAO method with
extended basis sets demonstrates the effectiveness of the
currently used first-principles techniques.

The calculated self-consistent band structures of the
group-IV semiconductors diamond, Si, and Ge are
presented in Fig. 1. For the III-V compounds, the band
structures for the Al series (A1P, AlAs, AlISb) are present-
ed in Fig. 2, the Ga series (GaP, GaAs, GaSb) in Fig. 3,
and the In series (InP, InAs, InSb) in Fig. 4. For the II-
VI compounds, the band structures of ZnS, ZnSe, and
ZnTe are shown in Fig. 5 and those of CdS, CdSe, and
CdTe in Fig. 6. These band structures are of comparable
quality - to other first-principles LDA calculations, with
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FIG. 7. Calculated vs experimental band
gap E,: (a) minimum gap; (b) direct gap at T".

the exception that the values of the band gaps may be
slightly different. It is not our intention here to make a
detailed analysis of the individual band structure in the
present paper. These band-structure results only serve as
the starting point for our investigation of the linear and
nonlinear optical properties in these crystals. The calcu-
lated band gaps for most of these crystals are smaller
than the experimental values,'®! as would be expected
from the LDA calculations. For InAs, the calculated gap
is actually slightly larger (by 0.13 eV) than the measured
gap, and for InSb the calculated gap of 0.24 eV is the
same as the measured one. This is true for both the
minimal gap E, and the direct gap E, at I'. The direct
band gap at I is of prime importance for both linear and
nonlinear optical excitations. It is one of the most impor-
tant parameters in the empirical type of study. In Fig. 7,
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we plot the calculated band gaps against the measured
values for the 18 semiconductors. We have noticed that
our OLCAO band gaps are generally larger and, there-
fore, in closer agreement with the measured data than
those obtained by other methods. For example, well-
converged state-of-the-art pseudopotential plane-wave
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calculations give gap values for Ge, GaAs, GaSb, and
ZnS of 0.0, 0.5, 0.1, and 1.82 eV compared to our values
of 0.44, 1.04, 0.80, and 2.34 eV for the same c:rystals.m2
We will discuss this point later, in Sec. VI. The calculat-
ed gap values are summarized in Table I. Also listed are
the lattice constants used in our calculation.
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The DOS of the 18 semiconductors corresponding to
the band structures shown in Figs. 1-6 are presented in
Figs. 8—13. The DOS are calculated using the linear ana-
lytic tetrahedral method®®’! based on the energy eigen-
values at the 505 regularly spaced k points in the % of
the fcc BZ. Use of a smaller mesh of 89 k points pro-
duces no discernible change in the DOS spectra. In these
DOS diagrams, the CB DOS up to 60 eV above the gap
are presented. In most published work on the electronic
structure of semiconductors, usually no more than 10 eV
of the CB DOS were presented. As will become evident
in paper IL,” the higher CB states turn out to be extreme-
ly important for nonlinear optical calculations. The ex-
tended basis set used in the present self-consistent
OLCAO calculation enables us to obtain sufficiently ac-
curate high-CB states, which would not be possible with
the semi-ab-initio minimal basis approach or with the
empirical approach.

For the group-IV elements, the DOS of diamond is no-
ticeably different from those of Si and Ge, since C can
hardly be viewed as a semiconductor with its large gap.
For the III-V compounds, the VB DOS are all very simi-
lar, while there are substantial differences in the CB DOS
especially in the high-energy range. Similar comments
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can be applied to the DOS of the II-VI semiconductors.
The VB widths for the II-VI compounds are much nar-
rower than those of III-V compounds, reflecting the in-
creased ionicity in the former. The highly localized
bands in Figs. 5, 6, and 7 correspond to the semi-core-like
d electrons in these crystals.

IV. LINEAR OPTICAL PROPERTIES

The linear optical properties of cubic semiconductors
have been studied by many groups in recent years.!* 4
We find that there were very few theoretical calculations
for the Al series in the III-V compounds and the Cd
series in the II-VI compounds. Chelikowsky and Cohen
made systematic studies of 11 semiconductors including
CdTe using nonlocal pseudopotentials as early as 1976."
More recent studies include those of Wang and Klein
(WK),'”” who used a method (linear-combination-of-
Gaussian-orbitals method) very similar to ours for Si, Ge,
GaP, GaAs, ZnS, and ZnSe. Among other more
comprehensive studies, Moss et al.?> used the ETB
method to study the linear optical response in ten group-
IV and III-V semiconductors by including interactions up
to third-nearest neighbors. Forouhi and Bloomer>! used

TABLE I. Calculated linear optical properties of cubic semiconductors.

Crystal lattice E, (eV) (expt.)

£,(w) peak positions (eV) £(0)

constant (A) direct indirect E, E, E; Calc. (Expt.)
Group IV
C 3.567 5.79 (7.1) 4.54 (5.47) 4.8 4.34 (5.7)*
Si 5.431 2.77 (3.4) 1.01 (1.13) 3.3 4.5 5.6 9.03 (11.4°
Ge 5.658 0.85 (0.98) 0.44 (0.76) 2.1 3.9 5.2 12.31 (153
III-V compounds
AlP 5.462 3.44 (3.63) 2.17 (2.50) 4.3 5.4 7.0 5.63 (8.0)°
AlAs 5.66 2.56 (3.22)  1.37 (2.3) 35 4.4 5.6 6.81 (8.16)¢
AlSb 6.135 2.46 (2.38) 1.23 (1.87) 2.8 3.8 4.7 7.21  (10.2)¢
GaP 5.451 2.04 (2.77) 1.22 (2.38) 3.1 4.6 5.9 9.29 9.1
GaAs 5.654 1.04 (1.52) 2.9 4.4 5.9 11.21  (10.9)°
GaSb 6.095 0.80 (0.81) 1.9 3.6 4.8 11.42  (14.4)¢
InP 5.869 1.39 (1.39) 3.0 4.5 5.7 7.92 (9.6)°
InAs 6.036 0.55 (0.42) 2.6 4.3 5.7 10.02  (12.3)°
InSb 6.479 0.24 (0.24) 1.8 33 4.5 13.51  (15.7)¢
II-IV compounds
ZnS 5.409 2.34 (3.80) 43 5.9 7.3 5.63 (5.2)8
ZnSe 5.668 1.65 (2.82) 3.8 5.8 7.8 5.56 (5.9)"
ZnTe 6.089 2.24 (2.39) 3.6 5.4 6.9 5.24 (7.3)}
Cds 5.83 2.15 (2.58) 4.3 6.4 7.9 505 (5.2
CdSe 6.084 1.48 (1.82) 3.6 5.3 7.2 5.68 (5.8
CdTe 6.48 1.24 (1.60) 2.7 4.2 5.4 9.02 (7.2)f

*Reference 106.
*Reference 107.
‘Reference 108.
dReference 109.
‘Reference 110.

fReference 111.
EReference 112.
"Reference 113.
iReference 114.
JReference 115.
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a parametrized scheme by fitting to the measured data to
produce the optical spectra of about ten group-IV and
ITI-VI semiconductors and also that of SiO, and SiC.
With the exception of WK, these approaches were
different from the present first-principles approach, in
which the only experimentally measured data used are
the lattice constants. More recently, Levine and Al-
lan*®*! had studied the linear responses in Si and Ge by
applying a scissor operator to represent the self-energy
correction, which yields excellent results for the dielectric
response of semiconductors. However, none of the previ-
ous studies included as many crystals as the present
study. A comprehensive study including as many crys-
tals as possible is important for correlated studies and for
the observation of general trends.

The calculated dispersion curves for the linear optical
response for the 18 crystals whose band structures have
just been presented in Figs. 1-6 are shown in Figs.
14—-19. Both the real and the imaginary parts of the
dielectric functions are plotted. The general agreement
between the calculated spectra and the available mea-
sured ones!? 719 has been reasonable. The experimental
curves are not reproduced in Figs. 14-19 because their
inclusion tends to diminish the visual clarity of the re-
sults, and also, not all crystals have the measured data for
inclusion. The range of frequency for display in our re-
sult is about 12 eV, except for diamond and the Cd series.
For C, the major absorption peak is near 12 eV, much
higher than in other crystals, and for the Cd compounds,

there are substantial optical-absorption structures above
12 eV. Our most significant finding is that the spectra for
each series are remarkably similar (with the exception of
diamond in the group-IV semiconductors). It turns out
that this is not the case with the frequency-dependent
nonlinear optical susceptibilities”® because of the impor-
tant role of the higher CB states in the nonlinear optical
excitations. In the empirical type of calculations, the
€,(w) curves in the same series can have large variations
in structures,?> an obvious artifact resulting from the
inaccurate CB states.

Like the fundamental band gap, the dielectric constant
in the static limit, €(0), is a very important physical quan-
tity for semiconductors. The ability of LDA theory to
predict the correct £(0) value in semiconductors has been
a subject of major interest. Generally speaking, the LDA
result for £(0) is much closer to experimental values than
those obtained by empirical calculations.!®?? However, a
considerable discrepancy remains that may require
theoretical treatment beyond the LDA theory. In Fig.
20, we plot the calculated €(0) values against the mea-
sured values for all the 18 semiconductors. The experi-
mental data are taken from Refs. 106—115. The overall
agreement is quite satisfactory. Of the 18 crystals, five
are very close to the experimental data (GaP, GaAs,
ZnSe, CdSe, and CdS) and two (ZnS and CdTe) overesti-
mate the experimental data. The £(0) values for the
remaining 12 crystals underestimate the experimental
values. It should be pointed out that the LDA calcula-
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tions generally tend to overestimate the £(0) value, de-
pending on the degree of underestimation of the gap.
Since the gap underestimation in the present work tends
to be less than other first-principles calculations, the cal-
culated €(0) values are correspondingly smaller. This
point will be discussed later, in Sec. IV. The calculated
€(0) values for all 18 crystals are also listed in Table I.
The ¢,(w) curves for the 18 semiconductors shown in
Figs. 14~19 are characterized by two major structures,
E, and E,, arising from the critical-point transitions, and
another smaller peak E| at a higher energy. The posi-
tions for the E,, E,, and E| peaks from our calculation
are listed in Table I. WK had made detailed comparison
of dielectric spectra with the experimental data for the
six representative semiconductors from group-VI (Si,
Ge), III-V (GaP, GaAs), and II-VI (ZnS, ZnSe) com-
pounds. Detailed analysis of the structures in g,(w) was
identified with transitions between bands at critical points
or along symmetry lines in the BZ. Both the critical-
point transitions and the BZ volume effect were found to
be important in shaping the structures. WK had also
simulated the effect of self-energy correction by including
a phenomenological relaxation time 7 in an empirical
scheme in their calculation. The relaxation time de-
scribes the lifetime broadening effect. The self-energy
correction was carried out by introducing an empirical
parameter A following the work of Janak, Williams,
and Moruzzi for metals'’® such that &(w)
=1/(1+A)e[w/(14+A)] where A’s were chosen by align-
ing the central E, peak with the experiment. Both of
these corrections did not change the spectra in any fun-
damental way. Since our linear optical results for Si, Ge,
GaP, GaAs, ZnS, and ZnSe are very similar to WK in the
sharp limit (r—0), and since the experimental data are
available for only some of these crystals, we choose not to
make any detailed crystal-by-crystal comparison as in
WK. Rather, we will summarize our major results as fol-
lows: (1) like WK and other first-principles calculations,
our results show that E; peaks are underestimated and
E, peaks are overestimated. Inclusion of excitonic effects
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may partially improve the agreement; (2) the onset transi-
tions, which correspond to the direct gaps at I', and the
positions of the peak structures from our calculation are
very close to those obtained by WK. The small difference
reflects the slight deviation in the band structures because
of the different ways the self-consistent potential was de-
rived, and possibly, a different range of Gaussian decay-
ing exponents in the basis functions; (3) our E, peaks are
generally of smaller amplitude than WK and, therefore,
in closer agreement with experiment. This, however,
does not indicate any fundamental improvement over
WK and is most likely due to the somewhat different
ranges of the basis functions.

Aspnes and Stundna (AS) (Ref. 103) measured the opti-
cal properties of Si, Ge, GaP, GaAs, GaSb, InP, InAs,
and InSb from 1.5 to 6.0 eV using spectroscopic ellip-
sometry. Pseudodielectric functions for the above eight
semiconductors with no corrections made for surface
overlayer or the substrate damage effect were obtained.
They had emphasized the importance of sample prepara-
tion, surface, and substrate effects in the experimental
determination of linear optical properties of bulk semi-
conductors. They had argued that for the same sample,
the optical constants for bulk semiconductor using
different experimental techniques should not differ by
more than a few percent. The pseudodielectric functions
presented by AS are in good overall agreement with our
calculated spectra. The E,; peaks in their result for Ge,
GaAs, GaSb, and the In compounds show double struc-
tures presumably due to the spin-orbit coupling effect,
which is not included in our calculation. In Table II, we
compare the peak positions for E,, E,, and E} from our
calculation with the values obtained by AS. The E|
peaks for GaP, GaAs, InP, and InAs in Ref. 103 were not
available because the maximum photon energy used was
6 eV. The overall agreement for the eight semiconduc-
tors is fairly good, taking into the consideration that our
LDA calculation underestimates the gap values and
therefore have lower peak positions.

There is less experimental and theoretical information
for the Cd series. Our results on CdTe is reasonably close
to Alouani, Brey, and Christensen? using the linear-
muffin-tin-orbital (LMTO) method, with the exception

TABLE II. Comparison of calculated peak positions in €,(w)
with that of Aspnes and Studa (Ref. 103) (in parentheses). The
values of E| for GaP, GaAs, InP, and InAs were not available
because of the photon energy limitation.

Crystal E, (V) E, (eV) Ej (eV)
Si 3.3 3.4 4.5 4.2) 5.6 (5.3)
Ge 2.1 (2.3) 3.9 (4.2) 5.2 (5.5)
GaP 3.1 (3.7) 4.6 (5.0) 5.9 (=)
GaAs 29 (3.1) 4.4 (4.8) 5.9 (=)
GaSb 1.9 (2.1) 3.6 (4.0 4.8 (5.3)
InP 3.0 (3.2) 4.5 (4.7) 5.7 (=)
InAs 2.6 (2.6) 4.3 (4.4 5.7 (=)
InSb 1.8 (1.9) 3.3 (3.9) 4.5 (5.2)
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that the E| peak in their calculation appears to be quite
weak. On the whole, the spectra for the Cd compounds
up to 8 eV resemble that of the Zn series, but substantial
absorptions are also present at frequencies above 10 eV.
This is related to the more complex CB structures in the
Cd compounds shown in Fig. 6.

V. DISCUSSION

In Fig. 21, we plot the calculated values of minimum
gap E, with the €(0) for the 18 crystals whose electronic
structures and linear optical properties were just present-
ed. Both the calculated and the measured values for €(0)
are shown. There is a general trend that for E; <2.0 eV,
a smaller gap corresponds to a larger €(0) value. This
trend is not evident for crystals with E,>2.0eV. It has
been recognized!®*%41:3 that precise £(0) values in semi-
conductors depend on several competing factors. The
LDA theory generally overestimates €(0) because of the
underestimation of the gap; the local-field effect tends to
reduce £(0), at least in Si; and the excitonic effects, which
should be present in all these crystals, will increase
£(0).7 Tt is therefore quite difficult to separate these
effects in each crystal. Godby, Schluter, and Sham”> had
investigated the €(0) in semiconductors by replacing
LDA-exchange-correlation potential with a nonlocal
self-energy operator in the spirit of the GW approxima-
tion,’® and found that the agreement with experiment is
actually even worse than the LDA result because the
self-energy effects were not included correctly. The work
of Levine and Allan*>*! indicates that adding a scissor
operator to the usual LDA Hamiltonian and simultane-
ously modifying the velocity operator improves the agree-
ment with experiment drastically. For Si and Ge, their
method improved the linear dielectric constant by almost
50% over the “naive” model. Their work underscores
the importance of having a correct gap to obtain good
linear and nonlinear optical constants. Whether or not
this is the case with all other semiconductors remains to
be seen.

As discussed earlier, our OLCAO-LDA results give a
somewhat larger gap and correspondingly smaller €(0)
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gap.
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values than some other first-principles LDA calculations.
Although our gap values are in better agreement with ex-
periment, thus facilitating the optical calculations, it
should not be interpreted as a better result. One of the
possible reasons for a larger gap in our calculation could
be due to the insufficiently complete basis set in the
present OLCAO calculation. However, test calculations
on GaAs show further augmentation of basis set leading
to only a very small reduction in the band gap. A desir-
able but more time-consuming approach is to obtain a
more converged OLCAO-LDA result and then applying
the scissor operator. In this work, we did not explore
this route because we intend to concentrate on the overall
trends of the linear and nonlinear optical properties for a
large number of crystals rather than a very precise calcu-
lation for a single material. Also, the scissor operator has
to be used irrespective of the actual calculated gap sizes.
It is more likely that the difference in the calculated gap
values comes from the different computational ap-
proaches to the electronic structure; especially with the
functional form in which the potential is represented and
the spatial extent of the basis function. A pseudopoten-
tial plane-wave approach can give quite different crystal
wave functions than the present all-electron approach be-
cause of the different treatments of core polarization.
Also, a method with some shape approximation to the
potential function such as the LMTO method%3% 16 will
give somewhat different results especially with the co-
valently bonded semiconductors with open structures.
Erwin, Pederson, and Pickett!!” had carefully tested the
accuracy of the linear-combination-of-Gaussian-orbitals
(LCGO) method against the linearized augmented-plane-
wave method in three different systems: diamond, vana-
dium, and the diamond/Ni [001] interface with exactly
the same potential functions. They have obtained almost
identical results for the.two methods. Their calculated
values of E,=4.79 eV and E,=5.57 eV for diamond are
quite close to our result of 4.54 and 5.79 eV, respectively.
The small difference can be attributed to the different
forms of the basis functions (LCAO vs LCGO) and the
different numerical procedures for the self-consistency.
An interesting case is the a-quartz. The electronic struc-
ture calculated by the self-consistent-field—OLCAO
method with a full basis set similar to this work® gave an
indirect minimal gap of 5.59 eV and a direct gap of 5.91
eV at I'. This is very close to the well-converged first-
principles pseudopotential calculation of Binggeli
et al.,''® who obtained an indirect band gap of 5.8 eV.
More recently, Allan has claimed!!® to have obtained the
most accurate pseudopotential calculation to date on a-
SiO, with an indirect gap of 5.602 eV and a direct gap of
5.925 eV at I'. This is almost identical to the values ob-
tained by the OLCAO calculation. It is highly desirable
to carry out similar comparative tests for other crystals
under very carefully controlled conditions.

The present calculation neglects relativistic effects,
especially the spin-orbital coupling which definitely will
affect the gap and the €(0) values for semiconductors in-
volving fourth- or fifth-row elements of the Periodic
Table. For those crystals with large Z atoms, WK (Ref.
19) had found that the inclusion of the relativistic effects
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actually worsens the agreement of the gap values with the
measurement. The inclusion of these effects probably will
also reduce our gap values and increase the €(0) values
for some crystals by an estimated 5—10 %. However, the
present work focuses more on complete coverage of the
large number of semiconductors, and on providing a
reference base for the much more complicated calcula-
tion of nonlinear optical excitations. Inclusion of relativ-
istic corrections greatly complicates the calculation and
makes such an endeavor computationally unfeasible.
With these considerations, we feel the use of the simpler
form of the LDA calculation is justified.

There are several effects in semiconductors that are
beyond the usual LDA treatment of electronic theory and
affect the optical excitations. Apart from the band-gap
underestimation, the other most important one is the
local-field effect. In a crystal, the local field at the ion (or
the atom) site is different from the average field within
the cell. This will induce charge polarization to the ions
which, in turn, contributes to the fields at other ion sites.
The mutual interaction of the fields among the ions im-
plies that the problem has to be solved in a self-consistent
manner.®3  Louie, Chelikowsky, and Cohen find
significant increase in the g,(w) values at higher energies
in Si due to the local-field effect.!’

The second effect of considerable importance is the ex-
citonic effect. In semiconductors and also in large-gap in-
sulators, an excited electron in the CB and the hole left
behind in the VB give rise to excitonic states near the
band edge. Transitions to the excitonic states can greatly
affect the optical properties of semiconductors near the
absorption threshold, depending largely on electron-hole
concentration. Extensive research work exists in this
area.’”8® The theoretical approach used is generally
empirical in nature, relying very much on experimentally
measured parameters, and is usually confined to bands
near the top of the VB and the bottom of the CB. A
first-principles type of treatment for the excitonic effect
in semiconductors is extremely difficult because the
ground state obtained from the LDA calculation is no
longer adequate and the matrix elements of transition
must be evaluated between site-specific many-particle
states constructed as the linear-combination-of-single-
particle states.

Another important effect not included in the present
calculation is the electron-phonon interaction, which may
be significant at higher temperatures. Many optical data
involve extrapolations near the threshold region.
Phonon-assisted transitions may introduce weak absorp-
tion tails in the low-frequency region where direct transi-
tion may not be possible. Most likely the effect of
phonon-assisted transition may be negligible in the ener-
gy range of electronic excitation. There has been some
recent work on the study of temperature dependence of
optical absorptions in semiconductors, taking into con-
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sideration phonon-assisted transitions.’* In the present
study of optical excitations in semiconductors, we assume
that we are dealing with the interaction of light with a
covalently bonded medium without the complication of
the exciton formation and without phonon emission and
absorption. It is possible that in future studies, excitonic
effects may be added to the LDA results based on some
plausible models.

VI. CONCLUSIONS

The electronic structures and the linear optical proper-
ties of 18 cubic semiconductors are calculated by the
first-principles OLCAO method based on the LDA for-
mulation. The assumption that the excited states of the
crystal are taken from the eigenstates of the ground-state
Hamiltonian in the sense of Koopman’s theory works
reasonably well. The overall agreement of our calcula-
tion with experimental data and other first-principles cal-
culations is quite satisfactory. Our calculated gap values
are found to be larger and therefore in closer agreement
with experiments than the well-converged pseudopoten-
tial calculations. This disagreement is probably due to
the limited basis expansion in the present calculation or
other aspects of differences in the computational ap-
proaches. Further improvement within the present
simpler form of LDA formalism is possible. For exam-
ple, we may further optimize the use of atomic orbitals
used in the basis expansion and in the fitting functions for
the charge density and potential, or by implementing
some simpler procedures for gap correction. However,
we must stress that most of the problems have to be ad-
dressed by more sophisticated treatments beyond the
local-density theory and the one-electron model in gen-
eral.

The present study forms a solid starting point for the
calculations of nonlinear optical properties in the same
18 semiconductors in the two papers to follow. Our
comprehensive study shows that a straightforward, accu-
rate OLCAO-LDA calculation can provide a reasonably
accurate description of optical excitations in semiconduc-
tors. Since no adjustable parameters, fitted or experimen-
tal (other than the fundamental gap treated by scissor
operator), enter into our calculations, this first-principles
LDA-OLCAO approach can be effectively applied to sys-
tems whose properties or structures are less well known
without resorting to empirical or semiempirical methods.
This greatly increases the versatility and the range of ap-
plication of the theoretical tool to materials of practical
interest.
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