
PHYSICAL REVIEW B VOLUME 47, NUMBER 15 15 APRIL 1993-I

First-principles calculations of solubilities and doping limits: Li, Na, and N in Znse
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We present a comprehensive theoretical approach to determine concentrations of dopant impurities
in semiconductors. The formalism is applied to the problem of acceptor doping in ZnSe. Formation
energies and concentrations of impurities and native defects are expressed as a function of chemical
potentials, for which experimentally accessible ranges are calculated. We show that limitations in the
achievable hole concentrations can be explained by two mechanisms: one is the competition between
various substitutional and interstitial configurations (compensation), the other is the solubility limit
imposed by formation of other phases. Nitrogen is most promising among the dopants examined.

I. INTRODUCTION

Limits to semiconductor doping have been widely dis-
cussed both in III-V and II-VI compounds. In wide-band-

gap semiconductors the problem is particularly acute
because typically one type of conduction (n-type or p-
type) is very difficult to obtain. Detailed understand-
ing of these phenomena has been lacking. In this paper
we present a formalism that allows the determination of
defect concentrations, impurity solubilities, and doping
levels. It includes a unifying treatment of the various
interactions of the dopant with the host lattice (in sub-
stitutional or interstitial sites), the role of native defects,
and the factors that determine solubility. The key quan-
tities that enter this formulation can be obtained from
first-principles electronic-structure calculations.

Our formalism entails the following steps.

(1) Calculation of the total energies of all native defects
and of the various configurations that can be assumed by
the impurity in the crystal, including lattice relaxations
and different charge states.

(2) Application of thermodynamics to express the rel-
evant equilibrium concentrations at the temperature of
interest, and determination of the resulting Fermi level
from the condition of overall charge neutrality for all im-
purity configurations, native defects, and free carriers.

At this juncture the results remain functions of two chem-
ical potentials (one for the host crystal, which controls
the stoichiometry, and one for the impurity) which are
free parameters to be fixed by growth conditions. The
physical meaning of these chemical potentials and the
way in which they enter the formalism will be discussed in

detail. Thermodynamics imposes bounds on the exper-
imentally accessible range of these chemical potentials;
the bounds result from the last step of the formalism:

(3) Calculation of the heats of formation of competing
phases that can be formed out of the constituents (i.e. ,

the impurity and the component elements of the serni-
conductor).

By imposing these bounds we obtain limits on impurity
concentrations, i.e. we can calculate solubilities.

We illustrate the approach with the technologically im-
portant example of ZnSe, in which n-type doping poses
no difficulties, but well-conducting, reproducible ~type
doping has been very hard to achieve. Despite some im-
pressive recent experimental advances, ~ 5 the cause of
the doping problem has remained unclear. Lithium was
the first dopant to yield reproducible, well-conducting p-
type ZnSe, with a net acceptor concentration of about
10 cm 3. More recently, N doping up to 10 cm
was achieved and led to the fabrication of a blue semicon-
ductor laser. In the case of Li, our results will demon-
strate quantitatively the competition between substitu-
tional and interstitial impurity configurations, 7 and iden-
tify a regime where the desired substitutional form dom-
inates (earlier works that proposed this competition as
the source of compensation did not recognize the exis-
tence of such different regimes). Our results will also
show that there is a second overriding cause that limits
doping, namely the overall solubility which is constrained
by the formation of a Li2Se phase. g These conclusions
agree with experimental observations on Li-doped ZnSe;
more importantly, they provide guidelines for optimizing
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growth conditions.
Our investigations of Na indicate qualitative similari-

ties to Li, but significant quantitative difFerences which
render Na unsuitable for p-type doping of ZnSe. Indeed,
its low solubility explains the failure of doping attempts
with Na. 0 Nitrogen, finally, does not exhibit a substitu-
tional/interstitial competition and, in addition, has the
highest solubility.

One of the strengths of the formalism is that it treats
native point defects (vacancies, self-interstitials, and an-
tisites) and dopant impurities on an equal footing, allow-
ing us to investigate whether native defects can form a
significant source of compensation. We find that under
appropriate growth conditions the native defect concen-
tration is usually so low as to be unimportant. We previ-
ously arrived at this conclusion from a study of native de-
fect concentrations as a function of Fermi-level position,
in which the exact nature of the dopant impurities was
left unspecified. Our current results confirm that native
defects do not form a generic source of compensation in
ZnSe. We also present more detailed information on de-
fect concentrations under various growth conditions.

The present investigation of acceptor impurities in
ZnSe relates to an experimental problem of high current
interest due to the impact on a blue semiconductor laser;
however, we stress that the formalism is a general one
that can be applied to the study of doping in any semi-
conductor system.

II. METHODS

A. Total-energy calculations

In this section we describe how to calculate concentra-
tions of defects and impurities in the semiconductor. In
order to obtain quantitative results, one needs reliable
values for the total energies of defects and impurities; we
have obtained such values from first-principles calcula-
tions. The calculations are based on density-functional
theory in the local-density approximation, and ab ini-
tio pseudopotentials. Scalar relativistic efFects are in-
cluded in the pseudopotentials, but spin-orbit splitting
is neglected; our calculated bands are therefore averages
over the states which would be split due to spin-orbit
interactions. The spin-orbit splitting can be introduced
as a perturbation. The Fermi-level positions which we
will discuss should still be interpreted as referred to the
top of the valence band (I"s). We use a mixed-basis ap-
proach, ensuring an accurate description of the structural
properties by explicitly including the d states of the Zn
atoms. The basis set contains plane waves with kinetic
energy up to 9 Ry, and pseudoatomic orbitals on the Zn
and N atoms. In order to achieve a proper description
of Li and Na we implement a nonlinear core exchange-
correlation correction.

The defect calculations are performed in a supercell
geometry, with 32-atom supercells providing adequate
accuracy. Relaxations of up to two shells of neighbors
are included. Additional details about the calculational
approach are given in Ref. 16. We have used this ap-
proach to obtain total energies for the dopant impurities

(Li, Na, and N) which are the subject of this study, in
their various configurations in the lattice. Our calcula-
tions are typically carried out for the charged (positive or
negative) state of the dopant. To avoid divergence of the
long-range Coulomb terms, the G=O terms in the total
energy are always calculated for a neutral system. A jus-
tification of this self-consistent approach to treat charge
states of impurities was given in Ref. 17. Because of the
extended nature of the wave function the neutral charge
state of a shallow impurity is difficult to treat within the
supercell formalism; instead, we use experimental acti-
vation energies to determine the formation energies of
the neutral charge state. Finally, we make use of our pre-
viously calculated energy values for native defects in
all relevant charge states.

B. Formation energies, concentrations,
and chemical potentials

The equilibrium concentration of an impurity or defect
D, is given by

Eform (+i )
[&i] = Nsi~es exp (2.1)

where N„&„is the appropriate site concentration [e.g. , for
substitutional Li (Liz„), N„&„ is the number of substitu-
tional Zn sites in the crystal, 2.2x10 cm ], and Eform is
the formation energy The en. ergy appearing in Eq. (2.1)
is a Gibbs free energy, which should include a pressure-
dependent term; however, this term can be neglected for
the solid phase. The Gibbs free energy also contains an
entropy contribution; these terms are generally small, 12

and they also tend to cancel when comparing relative
free energies. The assumption of thermodynamic equi-
librium, which underlies the formalism, is expected to
be satisfied, particularly in light of the high mobility of
various defects and impurities studied here.

Before we give a general definition of the formation
energy of an impurity or defect in the compound semi-
conductor, we illustrate the concept with the example of
a Li atom on a substitutional Zn site:

Er„(Liz„)= E(Lizn) &r ~ + I"z —EI: . (2.2)

p(Liz„) is the calculated energy of a supercell contain-

ing the Liz„ iInpurity, minus the energy of a reference
cell containing the pure bulk semiconductor. These ener-
gies are obtained from first-principles calculations, which
are described in Sec. II A. The other terms in Eq. (2.2)
contain chemical potentials, the physical significance of
which we now discuss in some detail.

pL; is the chemical potential of Li. This term enters
because the formation energy is the difference between
the energy of Li as an impurity, and its energy in a refer-
ence state. The reference corresponds to a reservoir of Li
atoms, whose energy (at T=O) by definition is the chem-
ical potential. This chemical potential depends on the
abundance of Li under the relevant growth conditions.
For an element in thermal equilibrium with the gas phase,
the chemical potential can be related to the partial pres-
sure of the gas; for an ideal gas with partial pressure
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PZn + PSe = PZnSe. (2.3)

In an elementary semiconductor, this condition would
uniquely determine the value of the chemical potential;
additional freedom exists, however, in a compound semi-
conductor. We will therefore explicitly present our re-
sults as a function of chemical potentials. Equation (2.3)
fixes ps, once pz„ is chosen; alternatively, ps, could be
chosen as the free variable, leading to a fixed p,z„.

The last term in Eq. (2.2) is the Fermi level E~, i.e. , the
energy of the reservoir delivering the electron responsible
for the negative charge on the impurity.

In general the total energy Etot (D, ) for a defect D, will
be determined from a calculation for a supercell contain-
ing nz" Zn atoms, nse Se atoms, and n,"' Li atoms (we
continue to use Li as a sample impurity, but the formulas
are valid for a general impurity). The defect formation
energy Eg«(D, ) is then

Eform(Di) = Etot(Di) n~ pzn nr' pse

= C (D, ) —An, pzo —n,"'pL; —n,'E~, (2 4)

~(D') = Etot(D') n' pz se

Z n, =n'" n', —
2

(2.5)
(2.6)

where n,'. is the number of excess electrons in the defect,
and Ln, is the number of extra Zn atoms that must be
added to form the defect (e.g. , +1 for Zn; and Vs„—2

p one has p, = p, —kTlnp. In the literature one of-
ten finds studies of defect concentrations as a function
of partial pressures. We prefer to work with chemical
potentials for the following reasons: (a) Chemical po-
tentials are thermodynamically defined as energy values,
which can be directly related to the energies which we
calculate from first principles. (b) Although the assump-
tion of thermodynamic equilibrium is likely to be satis-
fied within the solid, allowing the use of expressions such
as Eq. (2.1), it is uncertain to what extent equilibrium
is established between the solid and a surrounding gas
under experimental conditions such as molecular-beam
epitaxy (MBE). Knowledge of the chemical potential in
the gas may therefore not necessarily reHect the relevant
chemical potential for the solid. (c) Even if thermody-
namic equilibrium with the gas is assumed, the relation-
ship between ehemieal potential and gas pressure is not
well known since the gas sources used in MBE do not
obey simple ideal gas laws. While this preeludes a quan-
titative determination of chemical potentials in terms of
experimentally accessible quantities, we will see that the
chemical potentials are subject to rigorous bounds that
can be directly related to experimental conditions.

The Zn chemical potential pz„appears in Eq. (2.2)
because, in order to make room for the substitutional
impurity, a Zn atom has to be removed to its reservoir.
It is very important to realize that pz„should be treated
as a variable; indeed, in a compound semiconductor only
the sum of the chemical potentials of the constituents is
fixed, and equal (at T=O) to the energy of a two-atom
unit of the material:

for Sez„, etc.). Here, we treat p,z„as an independent
variable and use Eq. (2.3) to remove use from the ex-
pression for Eg, (D,); alternatively, we could treat use
as independent and eliminate pz„.

C. Self-consistent solution

An expression based on Eq. (2.4) can be written down
for all configurations of the impurity, in their various
charge states, as well as for all native defects. Once the
formation energy is known, the concentration of a spe-
cific defect or impurity can be obtained from Eq. (2.1).
At this point, all concentrations are still functions of the
chemical potentials (pz and pL;), as well as of the Fermi
level (E~). The chemical potentials, as explained above,
are independent parameters; we will therefore express
all our results as functions of these chemical potentials.
The Fermi level, however, is not an independent variable,
since it is determined by the condition of charge neutral-
ity:

net charge = 0 = p —n —) n,'[D,], (2.7)

NSe —Nzn

~S.+ &Z

—Q,. An, [D,]
2~si~es

(2.8)

where Nz„and Ns, are the total numbers of Zn and Se
atoms in the crystal. Only deviations from stoichiome-
try due to native defects are included here. X is positive
for Se-rich material and negative for Zn-rich material. In
this paper, we express all our results in terms of chemical
potentials. Alternatively, we could present the results as
a function of the stoichiometry parameter, but because
of the one-to-one correspondence between chemical po-
tential and stoichiometry no new information would be
obtained.

D. Bounds on the chemical potentials

Now we discuss how the relevant range of the chem-
ical potentials is determined. For this purpose one has
to consider the various phases that can be formed out

where p and n are the hole and electron densities, respec-
tively. These free-carrier densities are determined from
the standard semiconductor equations. The charge con-
servation equation provides for an interaction between
the concentrations of all charged defects through their
inHuence on the Fermi level. For example, a positively
charged defect produces extra free electrons that raise the
Fermi level; the higher Fermi level, in turn, increases the
concentrations of all negatively charged defects and low-

ers the concentrations of all positively charged defects.
As pointed out by Zhang and Northrup, this "negative
feedback" reduces the sensitivity of the final results to
possible inaccuracies in our first-principles energies. Us-

ing this prescription, all of the defect formation energies,
and hence the concentrations [D,], are unique functions
of pz„, pL;, and the temperature T.

The choice of the chemical potential pz„also deter-
mines the stoichiometry; the stoichiometry parameter X
can be defined as
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of the constituents. For instance, p,z„ is bounded
from above by the energy of a Zn atom in Zn metal:
p,z„——p, z„~b„jk~. Indeed, if one would try to raise p,z„
above this level, Zn metal would be preferentially formed.
Similarly, ps, has an upper bound imposed by bulk Se.
Furthermore,

Pznse = Pzn(bulk) + O'Se(bulk) + + f ( n ) ~ (2 9)

where AHy(ZnSe) is the heat of formation of ZnSe
(AHf is negative for a stable compound). Combined
with Eq. (2.3) this expression can be used to impose
a tower bound on the Zn chemical potential, given by
Pz„'" ——Pzn~bulkl + AHy (ZnSe). A lucid discussion of
similar arguments, in the context of surface recontruc-
tions, has been given in Ref. 19. The Zn chemical poten-
tial can thus vary over a range corresponding to the heat
of formation of ZnSe.

To find an upper bound on the chemical potential of
the dopant we explore the various compounds that the
impurity can form in its interactions with the system.
For Li, a possible upper bound on p~; is of course im-
posed by Li (bulk) metal. However, the most stringent
constraint arises from the compound Li~Se, which leads
to the following constraint on the chemical potentials:

2P'I i + PSe = PLigSe

2P'Li(bulk) + use(bulk)+&Hf (Li2Se). (2.10)

Numerical results for the heats of formation, as well as
practical applications of the bounds on the chemical po-
tentials, will be given in the following section.

III. RESULTS AND DISCUSSION

A. Lithium

Configurations of Li in the lattice

We have analyzed various possible configurations and
charge states of the lithium impurity in the lattice. The
substitutional acceptor Liz„ induces virtually no relax-
ation of the surrounding host atoms. For the lithium in-
terstitial (Li, ), which is a shallow donor, we find the Td
site surrounded by Se atoms (Tdse) to be 0.2 eV lower in
energy than the T&" site. For the interstitials, the energy
gained by relaxation of the host atoms is smaller than 0.1
eV. We have also studied other interstitial positions, al-
lowing us to estimate that the barrier for migration of
the interstitial is less than 0.5 eV (i.e. , a Li interstitial
can move readily, even at room temperature). Finally,
we have also investigated Li on a substitutional Se site,
but found this configuration to have a prohibitively large
formation energy.

2. Contour plots of total Li concentration

Our results are presented in the form of contour plots,
which allow us to explicitly show the dependence on
the chemical potentials p,z„and pg;. As explained in
Sec. II C, there is no explicit dependence on Fermi energy,
since it is determined by charge neutrality. Figure 1(a)

shows a contour plot for the total concentration of Li in
ZnSe, at T = 600 K, which is a typical temperature in
MBE growth of ZnSe:Li 2 4

We first discuss the contour lines themselves. The to-
tal Li concentration ([Li]) increases with increasing pL;,
because it becomes more favorable for the impurity to
dissolve in the semiconductor as the energy of the reser-
voir rises. Similarly, [Li] increases with decreasing pz„,
which is the energy of the reservoir to which Zn needs to
be removed in order to accommodate Li on Zn sites.

8. Competition between interstitials
and substitutionals

The formation energy for Li in a substitutional location
was given in Eq. (2.2). For the interstitial site, where Li
is a shallow donor, we have

&l'orm(L', ) = ~(L'i ) PLl+ @F.

E(Li+) is the calculated energy of an interstitial Li at its
most stable site, which is at the tetrahedral interstitial
site surrounded by Se atoms. Inspection of Eqs. (2.2)
and (3.1) reveals that as the Fermi level moves down

(i.e. , as the material becomes increasingly p-type), the
formation energy of the acceptor species rises, whereas
the formation energy of the donor species goes down.
This predicts the existence of a limiting Fermi-level po-
sition (maximum hole concentration), which can be ob-
tained by equating the two formation energies. Attempts
to push the Fermi level lower would result in preferential
formation of donors, which would push the Fermi level
back up. Incorporation of additional Li leaves the Fermi
level unchanged, as each substitutional acceptor is imme-
diately compensated by an interstitial donor.

The position of the Fermi level (at 600 K) is shown
in Fig. 1(b); Li interstitials are responsible for the flat-
tening of the contour lines on the right-hand side of the
plot. For a fi~ed value of p,z„, the Fermi level saturates as

p~; is raised, even though the total Li concentration still
increases [see Fig. 1(a)]. If no interstitials could form,
the contour lines would continue to rise with the same
slope as in the left-hand side of the plot. The intersti-
tials cause compensation and limit the achievable hole
concentration. Their presence has been experimentally
observed. 2 s A contour plot of the Li interstitial con-
centration is shown in Fig. 1(c).

The position at which the Fermi level saturates due to
interstitial compensation still depends on the Zn chem-
ical potential, as can be noted in Fig. 1. Our results
dier markedly from those of Ref. 8, where it was con-
cluded that compensation by Li interstitials would always
dominate. The authors of Ref. 8 did not recognize that
the level of compensation depends on the Zn chemical
potential, and hence on the growth conditions. This de-
pendence explains the experimental observation that the
degree of compensation by Li interstitials varies widely in
di8'erent samples. ~ Our results actually provide a guide-
line for optimizing the growth conditions: low values of
pz„ lead to lower compensation, as well as higher Liz„
concentrations.
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g. Bounds on chemical potentials —solubilities

In order to determine solubility limits, we need to use
the information about bounds on the chemical potentials
discussed in Sec. IID. The bounds on the Zn chemical
potential are shown as the horizontal lines in Fig. 1. For
Li, the chemical potential is limited by formation of the
compound Li2Se. Formation of Li2Se on the growing
ZnSe surface in MBE has actually been experimentally
observed in the case of heavy Li doping. z The compound
LizSe leads to the line with slope +2 in Fig. 1, which was
defined in Eq. (2.10). The point where this line intersects
the lower bound on pzn is given by pz, ; ——pr, ;&b„ik& +
&AHy(LizSe). Our calculated heats of formation for the
various compounds are listed in Table I. For comparison,

we also list experimental values. The deviations are in
line with the expected accuracy of the method.

Our calculated contours, together with the bounds on
the chemical potentials, provide important insights in the
ability to dope ZnSe with Li. We note that, over much
of the range of the Li and Zn potentials, the maximum
Li concentration is slightly higher than 10 cm . The
fact that the slope of the contours in this region coincides
with the slope of the Li2Se boundary in Fig. 1(a) is acci-
dental, caused by the fact that in this region the removal
of one Zn atom leads to the incorporation of two Li atoms
(one substitutional and one interstitial). The highest Li
concentration (and lowest Fermi level, i.e. , highest hole
concentration) occurs in the lower right-hand corner of
the accessible region, for pz„= pz„'" and pL; = pr;. The

ZIl

max
Zn ZIl

min
Pzn

min
ZIl

0
Li P 1.i

io
Li PLi

Pzn
max
Zn

min
ZH,

I

Li

FIG. 1. Contour plots of (a) logy p [Li], where [Li] is the total Li concentration in cm, (b) Fermi level (in eV, referred to
the top of the valence band), and (c) logqp [Li;], where [Li,] is the interstitial Li concentration in cm, at 600 K in ZnSe:Li,
as a function of Zn and Li chemical potentials. Solid lines indicate bounds on p,z and pg;.
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TABLE I. Theoretical and experimental (Ref. 25) heats
of formation (in eV per formula unit) for various materials
containing Zn, Se, Li, Na, and N. Also listed is the minimum
formation energy for the neutral substitutional acceptor in

ZnSe, and the corresponding minimum Fermi-level position
(in eV, referred to the top of the valence band), at 600 K.

I znl

Solubility-limiting compound
~HCheor ~Hexptf f

min
@form

ZnSe
ZnSe:Li
ZnSe:Na
ZnSe:N

Li2Se
Na2Se
Zn3N2

-1.39
-4.12
-3,13

-1.69
-3.96
-3.54
-0.24

0.46
1.08
0.38

0.13
0.44
0.09

-2

-6

min $p
2Il

-14

14-

——22-
corresponding formation energy of the neutral acceptor,
and the self-consistently determined Fermi level are also
listed in Table I. At this point of highest Li incorporation,
the total Li concentration is 1.7 x 10 cm 3; fewer than
3% of these Li atoms occur in the form of interstitials.

S. Discussion

FIG. 2. Contour plot of logic [Sez+], the Se antisite con-
centration in cm, at 600 K in ZnSe:Li, as a function of Zn
and Li chemical potentials. Solid lines indicate bounds on p, z
and pz i.

Our calculated differences in formation energies and
heats of formation have an estimated error margin of
+O.l eV. At a temperature of 600 K, 0.12 eV roughly
corresponds to an order of magnitude in concentration.
Also, contours with values of [Li] higher than 10is cm
are probably inaccurate because Eq. (2.1) is only valid for
dilute concentrations; however, these contours fall out-
side the physically accessible range anyway. While these
uncertainties should be kept in mind when considering
plots such as Fig. 1, the qualitative and even quantita-
tive insights are still clear. Some additional conclusions
can be drawn. First, even though all native point defects
were explicitly included in the calculations, their concen-
trations are very small over the whole of the accessible
range in Fig. 1. The effect of native defects is notice-
able for low pz„values, causing bending of the contour
lines; however, their concentration would only become
important if pz„( pz„'", which is physically not allowed.
The dominant native defect is the Sez„antisite, which
is a donor. Figure 2 shows a contour plot of the Sez+
concentration. At the point of highest Li incorporation,
the concentration is [Sez„]=2.6 x 10 cm s, which is
two orders of magnitude smaller than the Li concentra-
tion. Clearly the native defect concentration is too low
to play any significant role in compensation. However,
the concentration may be high enough to be detectable
experimentally. Other native defects have concentrations
significantly smaller (by more than four orders of magni-
tude) than the Sez„antisite.

The contour plots presented here were made for a tem-
perature of 600 K, which is typical for MBE growth of
ZnSe. The qualitative features of the plots do not change
when we change the temperature (within physically rea-
sonable limits). To illustrate the quantitative effect of
temperature changes, as we lower the temperature from
600 to 500 K, we find that the total Li concentration is
reduced by a factor of 5; the concentration of interstitial
I i drops by more than an order of magnitude; and the

concentration of the dominant native defect (Sez„) drops
by almost two orders of magnitude.

A final point relates to doping of ZnSSe alloys with
Li (alloys containing 6'%%uo S are commonly used to obtain
lattice matching with GaAs substrates): since Li2S is
even more stable than Li2Se (larger

~
AHf ~), the bound

on p,L; in the ZnSSe:Li system will lie even lower, leading
to reduced solubility in the alloy.

6. Complex formation

So far we have only talked about isolated point de-
fects and impurities. In principle we should also consider
complexes. Although our formalism is general enough to
include any possible complexes, an exhaustive treatment
is computationally prohibitive. Inspection of expressions
for formation energies actually shows that a complex will
only occur in appreciable concentrations (i.e. , concentra-
tions on the order of or larger than those of the individual
defects out of which it is formed) if the binding energy
exceeds the larger of the two formation energies of the
individual components of the complex. This considera-
tion makes it less likely that complexes would play an
important role.

The only complex we have investigated as part of the
current study is one consisting of a Li interstitial and a
Li substitutional. Formation of such complexes seems
plausible, since the interstitial is quite mobile, and the ac-
ceptor and donor are Coulombically attracted. Details of
the structure will be published elsewhere. The binding
energy of this complex is 0.3 eV. This value is small
enough so that these complexes are largely dissociated
at a growth temperature of 600 K (in other words, their
concentration is small compared to the concentration of
the individual components, as discussed in the preced-
ing paragraph). If we assume, however, that the con-
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centration of Li substitutional and Li interstitial atoms
is determined at the growth temperature, and remains
axed as the sample is cooled down, then the concentra-
tion of Liz„-Li; pairs will increase as the temperature is
lowered. The presence of such complexes should be taken
into account in analyses of Fermi level positions and car-
rier concentrations at room temperature and below. ~3 ~7

B. Sodium

We now address Na, another column-1 impurity which
has been considered as an acceptor dopant in ZnSe. io The
contour plots for the ZnSe:Na system are shown in Fig. 3.
They are qualitatively similar to those in Fig. 1, but ex-
hibit important quantitative differences. The relevant
bound on the Na chemical potential is imposed by the

compound Na2Se. The most important result is that the
solubility of substitutional Na is significantly lower than
that of Li —the maximum concentration obtained from
the contour plot is lower than 10 s cm s. At these lower
concentrations, very few Na interstitials are present; we
also Bnd that the barrier for migration of the Na inter-
stitial is much higher than for Li;. Experimental doping
attempts with Na have been unsuccessful; our results
clearly show that the solubility limit is the culprit, rather
than, e.g. , compensation due to foreign impurities in the
source.

C. Nitrogen

Finally, we discuss N in ZnSe. Nitrogen on a substitu-
tional Se site (Ns, ) is a shallow acceptor. The surround-

Pzn Zn 7
max

P-zn

- 0.80

0.60

min
Z11

min

l

Na
'o

Na

(a) (b)

min
Zn ( /

Na

FIG. 3. Contour plots of (a) logyp [Na], where [Na] is the total Na concentration in cm, (b) Fermi level (in eV, referred to
the top of the valence band), and (c) logqp [Na, ], where [Na, ] is the interstitial Na concentration in cm, at 600 K in ZnSe:Na,
as a function of Zn and Na chemical potentials. Solid lines indicate bounds on pz„and p,~ .
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ing Zn atoms undergo a significant inward relaxation, re-
ducing the Zn-N distance to 2.1A.. This distance is very
close to the Zn-N distance in the compound Zn3N2. We
have also investigated other configurations, such as the
substitutional Zn site and interstitial sites, and found
those to be much higher in energy than the substitu-
tional Se site. Thus, N does not suffer from the sub-
stitutional/interstitial competition associated with the
column-I elements, so that the saturation of the Fermi
level which we observed in Fig. 1(b) does not occur here.
In this work, we have not investigated any relaxation of
the impurity away from the ideal lattice site. Accord-
ing to Ref. 29, in the case of N such relaxations would
not interfere with the shallow acceptor character of the
dopant; if any relaxations do occur, they would there-
fore simply lead to a lower formation energy (and hence
enhanced concentration) of the shallow acceptor state.

Two bounds on the N chemical potential arise in this
case: N2 molecules and the Zn3Ng compound. The com-
pound Zn3N2 has the bixbyite structure, which con-
tains 80 atoms in the unit cell. This exceeds the capa-
bilities of state-of-the-art first-principles calculations; we
have therefore resorted to calculating a higher-symmetry
structure, whose energy closely approximates that of
the real compound. With regard to the other bound,
our application of N2 molecules as a solubility-limiting
phase does not imply that we assume equilibrium be-
tween ZnSe:N and N2 gas outside. Rather, we envision
formation of some condensed phase involving N2; such as
in a void or in a chemisorbed state. Because of the diK-
culty in obtaining converged results for the N~ molecule
with an acceptable basis set, the energy difference be-
tween Nq and Zn3Nq was taken from experiment.

Our results are displayed in Fig. 4. The bending of
the contour lines in the upper part of Fig. 4(b) is due
to native defects. Indeed, the N concentration is very
low here [less than 10 cm; see Fig. 4(a)], and a small
concentration of native defects suKces to pin the Fermi
level. However, native defects play only a minor role if
the right conditions (chemical potentials) are present for
high N dopant concentrations. At the point of highest N

incorporation, the calculated N concentration is 6.4x 10
cm 3.

The native defect concentration once again increases as
we approach the lower end of the accessible region (low

ps„ i.e. , Zn-rich conditions). The dominant native de-
fect is the Zn interstitial; its concentration as a function
of chemical potentials is shown in Fig. 5. The compen-
sation due to this native defect is still small enough not
to pose any threat to the doping. We have verified that
this conclusion remains true even if our calculated forma-
tion energy for the native defect would be off by several
0.1 eV. The reason the results are not very sensitive to
such inaccuracies is the "negative feedback" mechanism
discussed in Sec. IIC, acting through the coupling of all
defect and impurity concentrations via the charge neu-
trality condition. In addition, the Zn, concentration falls
ofF rapidly (faster than the N concentration) as the Se
chemical potential is raised, away from its lower bound.
Other native defects have concentrations four orders of
magnitude smaller than the Zn interstitial. Although our

calculations indicate Zn interstitials shouM be present in
N-doped samples in concentrations high enough for ex-
perimental observation, other factors have to be taken
into account. One such factor is the high mobility of the
Zn interstitial, which may cause it to move into the
substrate or towards the surface. It is also conceivable
that Zn interstitials (donors) would form complexes with
substitutional N acceptors.

Once again, we have investigated the effect of temper-
ature on our results. Lowering the temperature from 600
to 500 K decreases the total N concentration by a factor
of 4; simultaneously, the concentration of Zn interstitials
drops by a factor of 20.

Pseud

Pse

min

N(N&) O,N

Pset
max

min
Pse

(b)

N(N2) O' N

FIG. 4. Contour plots of (a) log&p [N], where [N] is the
total N concentration in cm, and (b) Fermi level (in eV,
referred to the top of the valence band) at 600 K in ZnSe:N.
Since N is substitutional on a Se site, ps, (rather than pzn)
is chosen as the variable here. Solid lines indicate bounds on

use and pN.
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A comparison with Fig. 1 show that N has a solubility
significantly higher than Li, which is consistent with ex-
perimental results. The failure of nitrogen doping start-
ing from Nq is due to the large kinetic barrier for break-
ing up the molecule; a plasma source or other technique
for obtaining N in an atomic state, or at least Nq in an
excited state, is required. s Once one succeeds in incor-
porating atomic (as opposed to molecular) nitrogen into
the lattice, N should act as a good acceptor, allowing
hole concentrations high enough for useful device appli-
cations.

IV. SUMMARY

We have presented a formalism that enables us to cal-
culate impurity concentrations and doping levels in semi-

FIG. 5. Contour plot of logio [Zn,.+], the Zn interstitial
concentration in cm, at 600 K in ZnSe:N, as a function of
Se and Li chemical potentials. Solid lines indicate bounds on
use and pN.

conductors. The technologically important case of accep-
tor doping in ZnSe was discussed in detail; however, the
formalism is quite general in nature and can be applied
to any semiconductor and any impurity for which reli-
able erst-principles calculations can be carried out. The
computed total energies of impurities and defects allow
us to write down formation energies as a function of the
atomic chemical potentials and of the Fermi level; the
latter is then determined by imposing charge neutrality.

The results are presented in the form of contour plots,
which refiect the dependence on chemical potentials. Al-
though the latter are free parameters, which vary with
the growth conditions, they are subject to thermody-
namic bounds corresponding to formation of other phases
(e.g. , formation of Li2Se in the case of ZnSe:Li). Impos-
ing these bounds determines the maximum achievable
impurity incorporation. In addition, our results provide
insight in how variations in growth conditions can pro-
rnote incorporation of the dopant in the desirable confi-
guratio.

For acceptors in ZnSe, we have reached the following
conclusions: Although Li suffers from a competition be-
tween interstitial and substitutional configurations, ap-
propriate growth conditions can be chosen to suppress
interstitial formation. The limited solubility of Li (im-
posed by formation of Li2Se) is a more severe obstacle to
the success of Li as a p-type dopant. Sodium suffers from
this type of solubility problem to an even greater extent.
Nitrogen, finally, emerges as the best choice among the
dopants examined here.
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