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By accurately fitting tight-binding parameters to ab initio band structures from 14 different tetra-
hedral volumes, tight-binding parametric formulas have been developed for silicon and germanium.
The distance dependences for these orthogonal, nearest-neighbor parameters range from r~2° to
r~33, Repulsive potentials are added in order to reproduce the total energies for a number of bulk
structures. It is found that the repulsive potential needed has the simple form of a pairwise inter-
action multiplied by a structure-dependent constant. Transferability is shown with good bulk and

cluster results.

I. INTRODUCTION

Elemental semiconductors, particularly silicon, due to
their technological importance have been the focus of
much research. Understanding and predicting their prop-
erties has been the goal of a number of models that have
been proposed. Classical potentials typically provide a
quick analysis of a system. However, their transferability
from one type of system to another is often questionable.!
For the best accuracy, a fully quantum-mechanical treat-
ment of the entire system is possible with ab initio cal-
culations. These calculations carry the cost of extremely
high computational demand as the number of atoms in-
creases. One recent calculation of the Si(111) 7x 7 surface
required “several hundred hours” on a massively parallel
computer.? There still exist systems that are too large to
be handled by ab initio calculations. To study these sys-
tems, a tight-binding method augmented with a classical
potential for the total energy will be most suitable.

The tight-binding (TB) calculation usually reduces the
quantum-mechanical treatment to the valence electrons,
the electrons which are involved in bonding. The tech-
nique which is discussed in more detail elsewhere® uses
parametric representations of interactions so as to obtain
approximate solutions to the electronic bonding behav-
ior. Typically, these parametrizations are based on ab
initio or experimental data. Calculations may range from
first-nearest neighbor (NN), orthogonal, and valence or-
bitals (s and p for Si and Ge) only, to third nearest neigh-
bor, d orbitals, and nonorthogonal sets.™®

Early analysis!® suggested a gy behavior for the tight-
binding parameters. This was assumed based on the
interpretation of experimental data compared to tight-
binding calculations of various systems with different
constants and also was derived by comparing tight-
binding bands to free-electron calculations. Most previ-
ous parametrizations have used 31; or no distance depen-
dence. There are exceptions.?11713 Notable among these
is the tight-binding model for silicon based on pressure-
dependent comparisons of tight-binding and ab initio
work.'2 This work used two ab initio band structures,
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one under pressure and one at zero pressure, to deter-
mine the distance dependence for a five orbital model
(sp3s*). Deviations from the J; behavior were quite no-
ticeable. With some approximations this was reduced to
sp3 and used for a total energy model.!3 However, a de-
tailed examination of the distance dependence of these
parameters by comparing with the ab initio band struc-
ture has not been performed.

TB calculations only provide the electronic informa-
tion, which is not sufficient to explain all of the bond-
ing behavior; the ion-ion repulsion and a correction for
overcounting of the electron-electron interaction are also
needed. This extra information is quite often provided
by a classical potential. One such potentiall'®15 yses a
linear and square term dependent on the change in the
distance of bonds to provide the fitting. This scheme for
Si has been widely used. For the bulk, there is also a
bond-dependent term, while for surface calculations ad-
ditional bond-dependent terms are needed. The values
of the parameters for the extra terms are given by fitting
to the energy of various surfaces as found from ab initio
work.'® A number of other repulsive potentials have been
used with certain success.!”™2® Some recent TB total-
energy models appear to give reasonable accuracy for a
number of silicon structural phases.!!:!3 In one case, the
tight-binding parameters and the repulsive potential have
been fitted simultaneously so that the total energy results
are good.!! However, when other crystal structures are
tested, the transferability is not quite satisfactory.?! The
results indicate the importance of constructing a repul-
sive potential that depends on the local environment.?!

In the present work, parameters that are required by a
transferable total energy model are systematically stud-
ied. First, the band structures for silicon and germanium
are fitted over a very wide range of compressions and ex-
pansions to ab initio results to determine the distance de-
pendence of the interaction parameters. This represents
a significant extension over previously published work for
silicon, especially by the inclusion of expanded lattices.
Such work for germanium seems to be completely new,
having only been hinted at in previous silicon results.
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For the ease of future applications in large systems, we
consider only orthogonal orbitals with nearest-neighbor
interactions. The distance dependence of these param-
eters is found to range from r—2% to r—33. Second,
the appropriate form for the repulsive potential to re-
produce the energy versus volume curve is investigated.
A multiplying constant that depends on the local envi-
ronment is found to be needed for the pairwise potential.
The current total energy model for silicon gives improve-
ments over other models. This paper is set up as follows:
Sec. II deals with the development of the tight-binding
parametrizations, Sec. III deals with the development of
the repulsive potentials, and Sec. IV discusses a num-
ber of test cases and the transferability of the current
parameters.

II. TIGHT-BINDING PARAMETERS

The emphasis for modeling the electronic structure of
Si and Ge was placed on the most important form (tetra-
hedral) of the elements. In order to limit the compli-
cation of the fitting and further calculations using the
parameters, it was decided to use an orthogonal basis
set so as to reduce the number of matrices (no overlap
matrix) and the complication of the eigenvalue problem.
The parameters are determined by a fitting to the valence
electronic eigenvalues found from ab initio calculations.
The motivation for doing this comes from the fact that
the ab initio results are usually in excellent agreement
with experiment and many more k points are available
from ab initio calculations than from experimental data.
By accurately reproducing the ab initio band structure,
the correct electronic contribution will be made to the
binding energy. Furthermore, by using the ab initio re-
sults as the starting point, the self-consistency present in
the ab initio calculations will be, to some extent, built
into the new parameters.

The main objective was a distance dependence deter-
mined by the parameters. Instead of working with sev-
eral different structures? or by using only one pressure
point,!? the distance dependence was found by calculat-
ing the parameters across 14 volumes (or pressures) for
the tetrahedral structure and then fitting the change in
the values to the change in distance. A calculation for
fcc in silicon was also tried. These values will not be used
in any of the following formulations. The decision to not
use the fcc values was based in part on their reduced ac-
curacy and on the fact that since the atomic orbitals are
changed from their equilibrium state, the values of the
orbital interactions differed from the tetrahedral values.
Therefore, it is hoped that the effect of having a different
local environment on the total energy can be absorbed
later in the structure-dependent repulsive potential.

The NN distance examined ranges from 2.14 to 2.91 A;
this range was chosen so as to cover sufficiently small dis-
tances and to cover what some researchers?? have found
in amorphous silicon (via molecular-dynamics simula-
tions) to be the largest distance for a first NN. These
distances correspond to volumes that range from 75%
of the experimental value to 190% of it. Within these
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boundaries, only first nearest neighbors for the tetrahe-
dral structure exist, but for other structures second near-
est neighbors exist and must be prevented from interact-
ing. A cutoff function will take care of this.

In order to obtain a sufficiently accurate description
of the valence bands the parameters were fitted for each
volume to 13 k points. Three of these points, special
high symmetry ones, are the I', X, and L points, and the
other ten are the points that are commonly used in car-
rying out the Brillouin-zone summation for the diamond
structure. Since the local-density approximation (LDA)
does not produce an accurate band gap and the major
concern here is the total energy, only valence bands are
used in the fitting. The fitting then includes 52 eigen-
values from the ab initio calculations using norm con-
serving pseudopotentials.?® As input the lattice length of
each crystal was varied in accordance with the volume
(or pressure) change.

The Ceperley-Alder (CA) exchange correlation?* term
for the silicon calculations and the Wigner correlation?®
for the germanium calculations were used. Other input
such as the atomic pseudopotentials and the cutoff energy
for the plane waves used in the calculations were taken
from the work of Yin and Cohen.26

No distance dependence was forced thereby preventing
any preference from weakening the results. Initially, six
parameters were allowed to vary for each volume, those
six parameters being sso, spo, ppo, pp, so, and py.3 The
freedom of sp and po seemed to cause too many prob-
lems and trial and error was used to assign a value to the
separation of these two. With this value set, five parame-
ters were then calculated where the fifth value so allowed
for any reference level movement in the ab initio calcu-
lations; later this value was fixed, with the hope that
the variations can be included in the repulsive potential
term. The fittings were performed five times; the sets
that produced smooth curves as a function of distance
were used for the final distance dependence.

It was found that a poor choice for the so-py separa-
tion would not only give bad results in fitting to certain
volumes, but could also quite easily cause the I" valence
triply degenerate values to switch too soon with the con-
duction singly degenerate values. After trying a variety
of energy values for the sgp-pp separation ranging in en-
ergy from 3 to 10 eV, 5.3 eV was found to be the largest
value that still gave the correct ordering for the I' triple
and single in silicon. It was noticed that as this value in-
creased the fitting for all but the very low volume set was
improved, but the upper limit was set by the I" behavior.
For germanium sp-pg is 6.2 eV. These separations for Ge
and Si are towards the low end of their equivalent val-
ues from other determinations; for example, Chadil41%
gives values for sg-po to be from 5.9 to 7.2 eV for silicon
(6.2 eV being the most widely used) and 7.35 to 8.41 eV
for germanium, while another study® also gives 6.24 eV
for silicon. The actual value of sq is of little importance
due to the fact that the prime concern is cohesive en-
ergies and not absolute energies. This means that the
atomic energy must be subtracted from the band energy
FEys which removes all sensitivity to sg.

The rms error for the final silicon calculations ranged
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from 0.33 eV for the low volume (75% of the tetrahe-
dral equilibrium volume) to 0.12 eV for the large volume
(190%). For the volumes in between, the error dropped
through this range. The sum of errors stayed consistently
around 0.5-1.0 eV for the 40 eigenvalues used to evalu-
ate the band energy Eps. Germanium fitting behavior
differed little from silicon and the errors are much the
same. This represented a very good fitting especially for
five parameters as can be compared to similar errors for
other works?*® with more free parameters; the residual
error will be corrected in the repulsive term.

For the four interaction parameters, three were found
to have very similar distance dependences for silicon.
These three are sso, ppo, and ppr, the parameters which
do not mix s and p shells. This result is similar to the
finding of Harrison for his universal parameters.?2 Even
though these three had similar distance dependences, an
attempt to try to make all four of the orbital parame-
ters have the same distance dependence significantly in-
creased the error in the fitting so that different distance
dependences had to be allowed.

The distance dependence for the parameters differed
significantly from the 317 formulation. The overall values
for the orbital parameters in silicon and their distance
dependence are compared to ;}; in Fig. 1. It is similar for
germanium. The new parameters drop much faster than
had been assumed by previous works and are somewhat
similar to the results obtained from one high-pressure
state.'?13 The sets of values were fitted to a distance
dependence function. For the best fit, the dependence
had the following form:

ar=h

P=1rac—o

where P denotes the parameter. Table I lists the values
for a, 83, ro, and pu. As the NN distances grew, the values
for all of the parameters except spoc began to drop faster
than r~8, requiring the addition of the Fermi function
cutoff.

The power in the exponential u for silicon is about
twice that for germanium, while the distance rg for silicon
is 0.23 A smaller than germanium’s value. If the CA
exchange-correlation is also used for germanium, ro for
silicon is nearly the same as it is for germanium, showing
the difference that the correlation can make in the band
structure. The actual value for p varied some from one
parameter to another, but for simplicity it was set to one
single value as much as possible. This same idea applies
to the rg value which for silicon is about 3.35 A and
for germanium about 3.58 A. The spoc parameter still
maintains its uniqueness by having a u equal to zero in
each set.

An attempt was made to force these parameters to
follow a a%g formula in the fitting, but this worked only
with large errors. At one point second nearest neighbors
were allowed and this produced better results, but at
about 120% volume, the second nearest neighbors are at
the distance of the third nearest neighbors (about 4.05
A) for the 75% volume. A good fit for both 120% and
75% could not be found in third NN calculations when
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FIG.1. Distance dependences of the tight-binding param-

eters for silicon. Comparison with the standard ;1-; depen-
dence is shown. The parameter values for the 317 curves were
made to coincide with the present values at the zero-pressure

nearest-neighbor distance (2.35 A).

the 4.05 A value of one was used for the other volume
or vice versa. Trying to force the second NN values to
zero before 120% volume did not work due in part to
spo’s dropping off slowly in the second-nearest-neighbor
range. This meant that each “rank” of neighbors would
need its own set of parameters, more than was wanted
for simplicity.

The actual band structures for silicon and germanium
are shown in Figs. 2 and 3. Overall the valence-band fit
is excellent. There are a few points that showed some
problems. One is the flatness in the W-X direction (Z
direction); this has been attributed to the use of first NN
parameters.?” In addition, along the ¥ direction partic-
ularly near I', the top valence band seems to be flatter

TABLE 1. Tight-binding parameters of silicon and germa-
nium obtained from fitting to the band structure of ab initio
calculations.

a (eV) B ro (A)  w(A7Y)
Silicon
sso —24.0595 3.06275 3.35 4.5
spo 35.4233 2.50265 3.35 0.0
ppOo 23.7901 2.94507 3.35 4.5
ppT —14.8426 2.99327 3.35 4.5
Germanium
sso —34.3736 3.27888 3.58 2.0
spo 54.3302 2.86020 3.58 0.0
ppo 29.9416 2.95436 3.58 2.0
ppT —14.4741 2.86134 3.58 2.0
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FIG. 2. The valence part of the silicon band structure (at

zero pressure) obtained from the present tight-binding param-
eters for Si.

than the ab initio bands. This is probably due to the par-
ticular parameters chosen since they were seen to change
this behavior. It could also be an artifact of first NN
parameters. The conduction band is only approximately
fitted producing its worst behavior around X and I'. At
X the conduction bands are too high, while at I’ they
are too low. The I values changed with different pa-
rameters, but it has been known®28 that more orbitals
(first NN or otherwise) are needed to obtain reasonable
conduction-band results.

It is interesting to note which orbitals have the
strongest and weakest distance dependence. For every
fit, the sso parameter had the strongest dependence on
distance. This is somewhat unusual since these orbitals
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FIG. 3. The valence band of germanium obtained from
the present tight-binding parameters.

are nondirectional and could be assumed to have a free-
electron-type behavior which would lead to a 31; depen-
dence. Yet the weakest distance dependence occurs for
the spo interactions, while the pp interactions are similar
to sso for silicon and spo for germanium.

A possible explanation exists in the extent of neigh-
bor interactions in ab initio calculations which in princi-
ple include all of the neighbors. Therefore, the changes
that occur in the ab initio calculations with more distant
neighbors would have to be included in the NN tight-
binding parameters; this could lead to differently varying
behavior among some of the parameters. The fact that in
the germanium results the variations of two or three or-
bitals are much weaker compared to sso than they were
for silicon might support this since germanium can be
thought of as more metallic and therefore more depen-
dent on distant neighbors. However, sso for germanium
is more strongly dependent on distance than it was for
silicon. It seems unlikely that any concrete conclusions
can be drawn about the specific origins of the varying
distance dependences.

III. REPULSIVE POTENTIAL AND TOTAL
ENERGY

To calculate the total energy, extra terms represent-
ing the ion-ion interaction and a correction for the over
counting of the electron-electron interaction will need to
be added to the band energy. The form for these cor-
rections is usually repulsive and can be quite simple or
very complicated depending on the need for accuracy and
flexibility. The repulsive fitting provided for many more
options than the fitting of the E}; sum did. Forms using
distance only, bond number, angles, and charge trans-
fer have been presented by others.!»17"20 Many of the
forms give very good results for only a few structures
or give limited results for a larger set of structures. Of
interest here was obtaining a formulation that covers a
much wider group of structures with a very high degree
of accuracy.

The Ep; was provided by the new parameters for each
structure that was included in the fitting. In order to
insure that the Ey, values were accurate 216 k points in
the Brillouin zone were used to obtain the band-structure
energy for all crystals except for the tetrahedral form.
This number of k points showed convergence to about
0.04 eV for the body-centered-cubic (bec) structure and
to less than 0.04 eV for the simple cubic (sc) and face-
centered-cubic (fcc) structures.

To do the fitting a data base of total energies for the
tetrahedral, 8 tin, sc, bce, and fcc was needed. Tetra-
hedral energies came from the same LDA calculations
where the electronic eigenvalues were obtained. The
other energies were taken from plots made by Yin and
Cohen?® for f tin, sc, bee, and fec. In addition, energy
curves of silicon dimer and trimer were taken from ear-
lier calculations.'®2° Si, had a minimal contribution to
the fitting; the repulsive potential needed for a good fit
was found to be about 15% greater than the tetrahedral
repulsion. Similarly, the Siz repulsion was found to be
about 7% greater than the tetrahedral repulsion. These
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approximate repulsive strengths were the only data from
the clusters that were included in the fitting. This re-
sulted in 60 fitting points across the five structures for
silicon (with some idea of how Si; and Si; differed from
the crystals) and in 54 points in five structures for ger-
manium (the trend found for silicon clusters was used
in germanium). Once the total energy and the Ej, are
known the repulsive potential can easily be found for each
structure. A least-squares fitting routine was then used
to find a formulation for the repulsive energies.

For silicon the repulsive values divided by the num-
ber of nearest neighbors are shown in Fig. 4. It can be
seen that the repulsive strength drops off as a function of
distance and of structure (increasing coordination). The
axial ratio for 3 tin has, except in the test cases, been set
to 0.5516 for silicon and 0.5512 for germanium.3° This
gives four nearest neighbors plus two more 6% further
away. Typically this has been taken to mean that S
tin has six nearest neighbors, suggesting that the only
difference from sc is a distance change for two nearest
neighbors and bond angle changes. To check this the
number of nearest neighbors for 8 tin was determined by
observing the changes in the Ep; when the contribution
of symmetric pairs of atoms were removed from the
tin structure. If the pairs all have the same contribution,
then they should produce similar results when removed
compared to the unaltered structure. The E}; did not in-
dicate this. Instead it showed that the removal of two of
the four nearer-neighbor contributions produced nearly
twice the effect as the removal of the two more distant
neighbors did. Therefore, 8 tin was assumed to have
the equivalent of more than five but less than six nearest
neighbors (5.5 were assumed) of roughly equal distance
for this particular plot and axial ratio.

By considering only the regions of interest around the
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FIG. 4. Silicon repulsive energies per nearest neighbor cal-
culated as the difference of the ab initio binding energy and
the tight-binding Ej, divided by the number of nearest neigh-
bors. As discussed in the text, the number of nearest neigh-
bors for 3 tin is taken as 5.5.
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minimums of each structure a similarity to the tetrahe-
dral repulsion per neighbor might be seen. When the
values shown in Fig. 4 are divided through by the tetra-
hedral repulsive energy per neighbor, nearly flat and
straight lines result. By connecting the lines at the mini-
mum energy nearest-neighbor distance, an S-shaped line
appears. Each repulsive curve shown can be described
by a constant times the tetrahedral repulsive energies.
The values for these constants in silicon versus nearest-
neighbor distance are shown in Fig. 5. The equilibrium
nearest neighbor distance for each structure is marked
in the figure. Superimposed on the lines is a curve that
goes through the equilibrium NN distance. The lines
shown are actually the structure-dependent terms used
in the final fitting for silicon as shown in Fig. 6. From
this, it can be seen that a two-body interaction alone is
not sufficient to describe the binding, but that a simple
structure-dependent constant combined with the tetrahe-
dral two body potential would be more appropriate. This
constant fell off in silicon from the tetrahedral value of
one to about 0.97 for 8 tin to 0.92, 0.80 and 0.76 for sc,
bee, and fee, respectively. For Si; there was a noticeable
difference in curvature between the true curve and the
curve given by a percentage of the tetrahedral two body.
This difference can probably be associated with the fact
that in Si; multiple bonding takes place which would
strengthen the bond but also give it a much stronger dis-
tance dependence than that of a single bond system. For
Siz the curvature difference was also present, although it
was much less noticeable.

For germanium, the results are all very similar, as can
be seen in Fig. 7. The lines shown are the structure-
dependent terms used in the final fitting for Ge as shown
in Fig. 8. The S-shaped curve for germanium is not as
steeply descending as the one for silicon (Fig. 5) was.
This might be due to a number of things, including
the more metallic nature of germanium and the fitting-
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FIG. 5. Ratio of the repulsive energies shown in Fig. 4

with the diamond structure as the reference.
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FIG. 6. Comparison of the total energies from the present
model for silicon to the ab initio values fitted for.

dependent positioning of sc and bcec. The more metal-
lic nature of germanium can be seen in the fact that the
metallic phases and the tetrahedral phase have all moved
closer to one another than they were in silicon. Cer-
tainly germanium has more distant bonds less localized
and centered on the central atom than does silicon and
this would seem to make the transition from the semi-
conducting state to the metallic state less pronounced.
The final form for the repulsive energy is

1 Z a
—daTis
Erep = 5 C’ijwijrijle 2Tig
i3
i#tj

where w is a symmetric function (w;; = wj;) which is

1.10
=
k-] diamond
8 1.00 —H
£
B uin
z s
Q
o
g 90 —
£
=
b
o
;‘;f’ bee
= .80 —
g
a
fcc
.70
I I T I
2.1 23 2.5 2.7 29 3.1

Nearest-Neighbordistance( ;\)

FIG. 7. Same as Fig. 5 for germanium.

Volume/atom

FIG. 8. Comparison of the total energies from the present
model for germanium to the ab initio values fitted for.

dependent on the local environment. The pairwise in-
teraction r;!e~?2" is determined by the diamond curve.
The S-shaped function w is given by

b1 b2
1 — bge—¢ii—bs 1 + ebabii—bs "
The structure-dependent variable ;; is then based on a
symmetrized sum involving bond angles over the nearest
neighbors as

{,‘j =0.5 (E F,;jk(I)ijk + erikq)jik)
k k

with ®;;, given by

Wi =

1 1
1+ b3e_b° cos(B;5x—7/6) + 1+ b3e—b6 cos(6ijk)

Dk =

The convention used for ;. is that the central atom is 3
and the atom to be considered for bonding with 7 is 7 and
that k are the other atoms in the system. The function
T

1
1+ (ecr(rir/rij—1)—c2)2

Tijr =

serves to limit second-nearest neighbors in the summa-
tion over k. While the cutoff function C;; prevents second
NN contributions to Erep,

1

Cij = PEnpCIa L

where I'}; differs from I';;x and is given by

’ C2
Iy = ; 1 4+ ecr(rij/ric—1) "

The two-body potential for silicon is identically fitted
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to the tetrahedral structure so that w is 1. All other
forms were then fitted by adjusting the parameters in w
and £. The denominator in the first part of w is for the
lower coordinated structures where an increase in the re-
pulsion per bond is needed. This part was not strictly
fitted, but rather the general idea of w being about 1.15
for Siy was kept in mind. The parameters are tabulated
in Table II. In germanium, the original tetrahedral fit
(0.0049 eV rms) was at least twice as good as the same
fit for silicon (0.014 eV rms, shown in Fig. 6). Since the
error bars for this calculation are on the order of 0.01
eV, the two-body term for germanium was fitted to both
the tetrahedral and 8 tin form raising the error for tetra-
hedral germanium to 0.011 eV rms and it is this fitting
that is shown in Fig. 8. The error in the other structures
roughly increased with increasing coordination. Bind-
ing energy errors were determined by taking the differ-
ence between the ab initio and present calculations at
the ab initio minimum volume. Minimum-energy error
was found by taking the difference between the lowest
energies for both ab initio and present work. By com-
paring the minimum-energy volume from ab initio and
present work the volume errors were found. These errors
are listed in Table III. For germanium, the errors were
higher in the cubic structures than they were for silicon.

The comparison for silicon to the ab initio energies is
quite good over all of the structures. The transition re-
gion of B tin and the diamond structure are virtually
identical to the ab initio values. sc and fcc are also very
well fitted, while bce shows more noticeable error. The
fitting actually went out to 190% of the diamond struc-
ture for all of the models, but is not shown in the figures
in order to emphasize the higher coordinated structures.
For germanium, the tetrahedral structure is very well fit-
ted as is the B-tin structure particularly in the lower
volume region from which it makes a transition to the
diamond structure. The cubics for Ge presented some-
thing of a problem and, although reasonably well fitted,

TABLE II. The parameters of the repulsive potentials for
silicon and germanium in the total energy expression.
Silicon
a1=—1.772632 az;=-—1.904299
b1=973.63688 eV b2,=317.05143 eV
b3=0.25 bs=1.25
b5=9.92 be=12
¢c1=>50.0 c2=6
c3=35
Germanium
a1=0.704324 a;=—2.975697
b1=1940.6717 eV b2=648.2367 eV
b3=0.355 ba=1
bs=8.15 be=12
¢1=50.0 c2=6
c3=33.3
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are not as accurate as the two lower energy structures.
The form of the potential is only a little more in-
volved than many classical potentials for silicon (and

germanium).3!736 By stating that all formulas apply only
to first-nearest neighbors, the cutoff functions could read-
ily be removed, producing a much simplified version. In-
deed, the number of parameters in the repulsive potential
is similar to some classical potentials and in some cases
are far fewer than other classical potentials.3”

A note should be made about the total energy for the
minimum energy structures. As seen in Fig. 6, the lowest
energy for silicon is 4.92 eV /atom taken from the ab ini-
tio calculation which is well below the experimental value
of 4.63 eV /atom.?6 The data for the higher coordinated
structures came from calculations using the Wigner ex-
change correlation; the value for diamond silicon with
this correlation is about 4.67 eV /atom.?® It was neces-
sary therefore to move the higher coordinated structures
down by about 0.3 eV/atom so that they maintain their
relation to the lower diamond value. This would mean
that the silicon results should be moved up by about 0.3
eV/atom. However, since this shift originated out of the
ab initio work and not with any of the fitting, it will not
be made here. The shift will be kept in mind when other
energies for test cases come out too low.

As intended the crystal structures all are fitted very
well with this formulation. The main areas of interest
are the structures which have coordinations similar to
the minimum-energy structure. However, even outside
of this tetrahedral region the fitting seems to provide the
most accurate binding information available within the
framework of orthogonal tight-binding models. In agree-
ment with the work of others,':29 a simple two-body
term is sufficient to give good tetrahedral repulsive ener-
gies. Perhaps the most interesting part of the repulsive
fitting is that the other structures can be described well
by a constant percentage of the tetrahedral repulsion. It
has been suggested3! that the change from the tetrahe-
dral structure to the more metallic phases should be a
discontinuous or first-order phase transition which would
produce an S-shaped curve microscopically and this is
what was found for the value of w as the coordination
increases. A simple interpretation of w is that it serves
as a shielding term as though the electrons were blocking
the full repulsion of the ions as in a screening effect.

The range of extremely good fitting for silicon is much
larger than that for germanium due most likely to the fact
that the d orbitals should play a larger role in germanium
and have not been included in the calculations. This
becomes more important in sc and bec which have regions
of poorer fitting. For fcc, the Ep, and E,p are sufficient
to cover the lack of d orbitals to get a good minimum
energy and volume but the curvature is far from perfect.

As mentioned, a total energy TB model!3 was devel-
oped for silicon using approximate pressure-dependent
distance dependences.'? Some aspects of that model are
similar to the present work and the two give similar vol-
ume accuracies. By using distances to determine the co-
ordination, the previous model'? is simpler in form, al-
though it goes out to different neighbor rankings for dif-
ferent structures. The structure dependence there and
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TABLE III. Errors in the fitting for different crystal structures.
Diamond B tin sc bcce fec
Binding energy error (eV)
Silicon 0.014 0.015 0.030 0.030 0.041
Germanium 0.009 0.017 0.079 0.058 0.033
Minimum energy error (eV)
Silicon 0.001 0.006 0.002 0.018 0.016
Germanium 0.000 0.011 0.002 0.024 0.023
Volume error
Silicon 0 ~ 0 +4% —5% -1%
Germanium 0 —-1% +4% —-5% —5%

here is a weighted count of the number of neighbors.
The simpler structure dependent form, though, can cause
problems. When this weighting is based solely on dis-
tance as in the previous model, the values can change
quite a bit for 8 tin, depending on the axial ratio. How-
ever, the Ej; does not change at the same rate. In fact,
when the axial ratio is about 0.516, then all of the first
NN in B tin are at the same distance indicating a sixfold
system which would give a repulsive strength per neigh-
bor similar to sc. This sc repulsive strength for 3 tin is
too weak to offset the Ep;. Certainly, if 8 tin were not
important then the simpler form would be quite good.
However, 8 tin is one of the few higher pressure forms
for silicon that has actually been produced experimen-
tally and accuracy regarding it would be well worth the
slightly more complicated form presented. The present
results for 8 tin and bcc volumes are better, and it is un-
likely that there would be any structure problems with 3
tin. The sc and fcc volumes are slightly poorer, but are
still extremely good.

Other works have attempted to use the Sis repulsive
potential for all of the structures.!819 This was also at-
tempted with the present TB model. The use of the
Siy repulsive form for the crystals definitely produced
far worse results than using the tetrahedral repulsion.
This could, in general, be expected since Si; is a multi-
ply bonded system not at all like the crystals. Using the
tetrahedral repulsive potential then would be in question
for Siz, but as presented shortly the results were still
quite good showing a better transferability from tetrahe-
dral to other structures than from those structures back
to tetrahedral.

IV. TEST CASES

It is certainly important to test the form for any po-
tential that is produced so as to judge its validity in the
systems that it may later be applied to study. Other
forms tried were thrown out because of a large error in
one or more of the test cases. Here a number of results
will be given indicating the strengths and weaknesses of
the present models.

A. Clusters

The energies and bond distances for silicon and germa-
nium clusters are shown in Table IV along with ab initio
and experimental values.??:38746 The fitting for the Siy
molecule is quite good for the minimum-energy bond dis-
tance and gives an acceptable value for the energy min-
imum itself. When applied to Siz, the minimum-energy
bond distance of 2.15 A is in excellent agreement with the
ab initio value of 2.17 A.29 The minimum-energy central
bond angle of 86° is found to agree well with the ab initio
values. The bond angle represents a small error from the
value that Jones®® gives of 85° and a larger error for the
value of Raghavachari at 77.8°.2°

Germanium clusters produced very similar results.
Ge, was found to have a bond distance of 2.50 A, again
in reasonable agreement with ab initio valuesi*42 and

TABLE IV. Comparison of the cluster results with ab ini-
tio calculations and experiment.

Present ab initio Expt.

Cluster binding energies (eV)
Siy 3.7 4.3, 2.6° 3.2¢
Sis 9.2 6.4,> 8.8° 7.7¢
Gez 3.0 4.1,° 2.5° 2.88
Ges 7.8 6.4F 6.5'

Bond lengths (&)
Siy 2.24 2.26,> 2.23° 2.24°
Si3 2.15 2.17,» 2.27¢
Gez 2.50 2.34,° 2.43f 2.440
Ges 2.27 2.298
Angle (deg)

Sis 86 78,P 85°
Ges 88 85!

fReference 42.
gReference 43.
hReference 44.
IReference 45.
JReference 46.

2Reference 38.
PReference 29.
°Reference 39.
dReference 40.
°Reference 41.
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the energy is found to be —1.5 eV per atom. Ges also
has very good results for the bond angle and for the bond
distance.® Thus, although the fitting did not include the
cluster values in strict detail, the results are quite reason-
able.

B. Phonons and defects

These models were tested also to see how well they
reproduced some of the dynamic and defect properties.
Wang, Chan, and Ho?° found that using tight-binding
techniques and a distance-dependent repulsive form was
sufficient, at least with their values, to give good results
for the phonon frequencies. They also checked shear con-
stants and found low but, perhaps, reasonable results.
The values for the phonon frequencies obtained with the
present models are shown in Table V and can be com-
pared to ab initio and experimental values.4”™49 Silicon is
in good agreement with ab initio values, but the germa-
nium values are noticeably high. No reasonable way of
reducing the germanium values was found. Based on the
results for silicon, the tight-binding method can produce
good phonon results. The most likely reason for the ger-
manium discrepancies lies with the fact that germanium
has some small contributions from sources outside of the
s and p orbitals and the first NN interaction.

The value for cy1-c12 for silicon is rather low. This
apparently is a common behavior of tight-binding calcu-
lations that have produced good phonon results.’® While
the germanium values for the phonons were too high, the
value for cji-c12 is, on the other hand, too small. Cer-
tainly it might be reasonable to question tight-binding
abilities to produce these values while maintaining ac-
curacy elsewhere. The energy scale used to determine
the phonons and shear is extremely small so that even
a small difference could produce seemingly large errors.
What is more interesting is what it might take to get

TABLE V. Silicon and germanium phonon and shear val-
ues as compared to density-functional theory (DFT) (Refs. 47
and 48) and experiment (Ref. 49). Phonon values are in THz
and shear value is in erg/cm?3.

Present DFT Expt.
Silicon
LTO(T") 14.7 15.2 15.5
LOA(X) 11.2 12.2 12.3
TO(X) 14.4 13.5 13.9
TA(X) 4.5 4.45 4.49
C11-C12 5.02 9.8
Germanium

LTO(T") 10.6 8.9 9.1
LOA(X) 10.6 7.1 7.2
TO(X) 12.1 7.8 8.3
TA(X) 4.3 2.4 2.4
ci1-C12 4.23 8.5
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good phonon values and shear constants for these struc-
tures since the distortion due to shearing to find c1;-c12 is
somewhat similar to one of the phonon modes [LOA(X)].
The defect energies for silicon are in excellent agree-
ment with ab initio calculations. The vacancy has a
value of 3.76 eV for formation, the T interstitial has a
value of 4.95 eV, and the X interstitial has a value of
5.76 eV. The corresponding ab initio values are 3—4 eV
for the vacancy, 5-6 €V for the T interstitial, and 4-6 eV
for the X interstitial.33:51 The defects were relaxed with
Hellmann-Feynman forces.1%20:52 The vacancy showed
almost no movement, which disagrees with some recent
calculations indicating an inward (toward the vacancy)
relaxation.?3:5¢ A possible reason for the almost nonex-
istent relaxation might be due to the fact that the for-
mulation is limited to nearest-neighbor distances, which
would not allow interactions across the vacancy. It has
been suggested that it would be better to allow more
distant interactions.! To test this, a cutoff of 4.0 A was
used. In this calculation, the atoms around the vacancy
moved toward the vacancy suggesting that more distant
interactions would be useful for such calculations.

C. Bulk structures

Certain tests were also performed for bulk structures.
One of the most important ones was the 3-tin relaxation
test that served to eliminate an otherwise good poten-
tial. The formulation that has been presented above was
worked out so that this would not happen. Thus the
B-tin relaxation is expected to be extremely small, indi-
cating that it is very near equilibrium at the axial ratio
given by ab initio calculations and experiment.26:30

Another test case is the BC8 structure for silicon.5®
This is a fourfold coordinated system in which the atoms
have been rearranged from the tetrahedral form. With
the present formulations the minimum energy is correct
to approximately 0.015 eV per atom and that the mini-
mum volume per atom is about 2.5% off of the ab initio
values.%% A final bulk test was conducted on BCT5, a
new structure proposed for silicon in which the atoms
are fivefold coordinated.’® The equilibrium volume per
atom came out to be about 7% in error while the two
internal parameters agreed well with the ab initio values;
however, the minimum energy came out to be slightly
above sc when it should be roughly coenergetic with
tin.

Although the BCT5 structure may have large strain
regions, which could lead to errors in the present model,
the phonon and shear results would indicate that if this
were the cause of the error it would produce too low of
a value for the minimum energy. There is some possi-
bility that the error in minimum energy could be due to
the differences between the ab initio calculation used in
the BCT5 work and the ab initio work used to generate
the present model. This would allow the good agree-
ment with the BC8 work since that ab initio calculation
should differ little from the ab initio calculations used for
the present work. However, this does not seem likely to
explain the magnitude of the difference in energy and an-
other suggestion seems appropriate. The formalism used



47 TIGHT-BINDING TOTAL-ENERGY MODELS FOR SILICON . .. 9375

here is strictly sp3; certainly for the tetrahedral structure
this is sufficient for most concerns. As the coordination
increases other orbitals, specifically d, orbitals become
more important.

While this model produces excellent results for sili-
con in all of the structures fitted, it is noticeable from
the germanium calculations that there are some regions
where sp® may represent a good approximation but does
produce noticeable error. For silicon this region proba-
bly occurs around the BCT5 structure. Although it has
only five nearest neighbors, they are oriented such that
one neighbor is very close to the central atom while the
other four are pressed more towards one another. This
is not completely different from a surface situation and
as has been found!® some of the surface bonding is more
strongly d orbital dependent.

V. CONCLUSION

We have performed a thorough tight-binding fitting to
ab initio band structures for both silicon and germanium

over a number of pressures. It is found that the distance
dependence for the tight-binding parameters ranges from
=25 to 733, This differs significantly from the previ-
ously assumed 317 behavior. Total energy models based
on the tight-binding work and on an S-shaped function
multiplied by the tetrahedral pairwise repulsive poten-
tial produce very good fittings over a number of struc-
tures. Furthermore, test cases show reasonably good
agreement with bulk and cluster properties, indicating
the high transferability of the models.
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