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Theory of effective g factors and effective masses in diluted magnetic semiconductors
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We derive an expression for the effective g factor in the presence of magnetic impurities. The expres-
sion is suitably modified as to make it applicable to diluted magnetic semiconductors. We calculate the
effective g factors and effective masses in Pb

&
Mn Te and Pb& Mn Se using a k m band model

developed and used previously for nonmagnetic ternary semiconductors by us. It is found that, while the
exchange interaction between the conduction electrons and the magnetic impurities contributes
significantly to the effective g factor, the exchange effects are marginal in the case of effective masses.
Both quantities are calculated for the band edges, as well as for different carrier concentrations, as func-

tions of magnetic-impurity concentration. The calculated results and trends obtained are in overall

agreement with experimental results where available. The expression for the effective g factor derived is

general in the sense that it can be applied to other diluted magnetic semiconductors with suitable
modifications.

I. INTRODUCTION

Diluted magnetic semiconductors (DMS) form an im-
portant class of magnetic materials. These are semicon-
ducting alloys whose lattice is made up in part of substi-
tutional magnetic atoms. A typical DMS is represented
by the chemical formula A, „M B, where AB
represents a binary nonmagnetic semiconductor and M is
a magnetic-impurity atom that enters the lattice substitu-
tionally replacing the A atom of the AB semiconductor.
Although the effect of magnetic impurities on semicon-
ductors was studied as early as the early 70s, ' only re-
cently the study of these semiconductors is intensified, as
evidenced by the large number of articles published in re-
cent years. Among these semiconductors, the systems
of type A", Mn B ' are the most extensively studied
and most thoroughly understood ones. However, the
physics of the semimagnetic semiconductors involving
IV —VI compounds has recently attracted considerable at-
tention. A lot of experimental work is now available
on these systems which include Pb, Mn Te,
Pbi Mn Se, Pb& „Gd Te, Pb& „Eu Te, Pbi Mn S,
etc. On the other hand, very little theoretical work has
been done on these systems. ' '

It is well known that the subject of magnetic impurities
in metals is rich, fascinating, and well investigated. In
contrast, the magnetic-impurity problem in semiconduc-
tors is of recent origin. But the experimental data on
these materials indicate that the physics of semimagnetic
semiconductors would be equally interesting and intellec-
tually satisfying. It has been found that, with the change
of Inagnetic content x over a wide range, some of these
systems exhibit different magnetic states like diamagnet-
ic, paramagnetic, spin glass, and anti-ferromagnetic
states, in succession. '

In order to understand the physics of these interesting
magnetic materials, we have undertaken an investigation
in this work of the effective g factors and effective masses

in Pb, „Mn Te and Pb, Mn Se. The lead salts are
narrow-gap multiband systems with a large spin-orbit in-
teraction. These semiconductors are highly diamagnetic
and have large g factors compared to the free-electron g
values. It has also been seen that g values are enhanced
when these semiconductors are alloyed with tin tellu-
ride. We are interested in seeing how these g factors are
modified with an increase in magnetic impurities in these
semiconductors.

While expressions for the effective g factor exist for
nonmagnetic semiconductors, ' the g factors in the di-
luted magnetic semiconductors are calculated using
simplified and intuitive formulas. Since the mean
magnetic moments of the impurities are functions of tem-
perature and change with magnetic field, in a diluted
magnetic semiconductor the effective g factor is an essen-
tially temperature-, magnetic-field-, and magnetic-
component-concentration-dependent quantity. Further-
more, the strong temperature and the magnetic-field
dependence of the g factor is believed to be responsible
for the exotic temperature dependence of the quantum
oscillation amplitude in the DMS's. In view of the
importance of the effective g factor in the understanding
of different phenomena in the DMS's, we present in this
work a careful analysis of the effective g factors by first
deriving an expression for the effective g factors in the
presence of magnetic impurities and then applying it to
Pb& Mn„(Te, Se). We also derive expressions for the
effective masses and cyclotron mass anisotropies for these
semiconductors.

This work is organized in the following way. In Sec.
II, we derive an expression for the effective g factor in the
presence of magnetic impurities. In Sec. III, we present
our calculations of the effective g factors in
Pb, „Mn (Te,Se) and study the effects of the exchange
interaction between the carriers and magnetic impurities
on the effective g factor. The g-factor variation with car-
rier densities is also analyzed in the same section. The
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aforesaid calculations and analysis were done using a k.m.

band model previously developed and used by us. In Sec.
IV, we derive expressions for the effective masses and cy-
clotron mass anisotropies and calculate these quantities
for the above-mentioned systems. A summary of the re-
sults followed- by an appropriate conclusion is presented
in Sec. V. In the Appendix, we present an alternative
derivation of the effective g factor from the expression for
the Knight shift in the presence of magnetic impurities.

,'x—N,(J") cr"d(r), (2.6)

where x is the fraction of magnetic ions in the DMS lat-
tice and N, is the number of unit cells in the unit volume.

p represents Cartesian components and repeated indices
here and elsewhere in the paper p implies summation.

Following the standard procedure in the crystal
momentum representation, we obtain the effective equa-
tion of motion in k space:

II. THEORY OF EFFECTIVE g FACTOR &(a)P(k) =EP(k), (2.7)

The one-electron Hamiltonian in a periodic potential
V(r), spin-orbit interaction, uniform magnetic field B,
and exchange interaction &„is

'2

p+ —A + V(r)1 e
2m c

J where

+—'g pciB "o"+,' xN. , ( J—")cr"cF, (2.8)

where &(ic) is the effective Hamiltonian,

&(a)= (p+A'a) + V+ cr"VVX(p+iria)1

2m 4m c

e+ g TVX p+ —A
4m c C

a =k+ih XV|„h=eB/2fic . (2.9)

where

+
2 g poBac+r&'e„ (2.1)

Using Eq. (2.9) in Eq. (2.8) and retaining terms first order
in the magnetic field, we obtain the effective Zeernan
Hamiltonian &', (k):

&,„=—,
' gd(r —R, )J, o .

R,.
(2.2) &(a)=&0(k)+&; (k),

where &0(k) is the unperturbed Hamiltonian:

(2.10)

In Eqs. (2.1) and (2.2), A (r) is the vector potential, go is
the free-electron g factor, po is the Bohr magneton, o is
the Pauli spin operator, d is the exchange interaction
function, J; is the total angular momentum operator of
the ith magnetic ion, and r and R, define the coordinates
of the band electron and the ith ion, respectively. The
other symbols have their usual meanings. The eigenfunc-
tions of the unperturbed Hamiltonian (B=0,&,„=0)are
the Bloch functions

~(r) =e'"'U„„ (ir), (2.3)

where Unk is a periodic two-component function, n is the
band index, k is the reduced wave vector, and the index

p,p=1,2, distinguishes the two independent eigenfunc-
tions g„l, , and g„k z which belong to a general wave
vector k and energy E„(k) if the crystal has inversion
symmetry.

Since the Bloch functions form an orthonormal com-
plete set, the wave function for an eigenstate of our prob-
lem, P(r), can be expanded as

&',~(k) = ,'gop()B "o—" i h i3vr
—V~+ 'xN, (J")o"—cP .

In Eq. (2.12),

h~p =e~p„h",

(2.12)

(2.13)

where e &„ is an antisymmetric tensor of third rank and
we follow the Einstein summation convention.

The effective Zeeman Hamiltonian for the nth band is

~eF ] + eff, pg p
znp np 2 nn 7 (2.14)

where g„'„'" is the pth component of effective g factor for
the nth band. Also, from Eq. (2.12), we obtain

&0(k)= (p+Ak) + V+
2

o"V VX(p +'iiik)
2m 4m c

(2.11)
and

g(r)= gg„„p(r)P„p(k), (2.4) ~;„~„~(k)= 2gop+ "o"„~„~(k—) i h .
&(m Vf)—„„

nkp

where P„z(k) are the expansion coefficients and are
periodic in k. g(r) satisfies the equation

&P(r)=EQ(r) . (2.5)

Since band electrons interact simultaneously with a
large number of magnetic ions, the operator J; can be re-
placed by its thermal average ( J,. ) in the molecular field

approximation. Moreover, the large extension of the
Bloch function makes it possible to write Eq. (2.2) in the
virtual crystal approximation as

+ ,'xN, (J")(cr"cf)„— (2.15)

h ci(~ Vk)„„=—i g (, nplir imp'&
m m 2Ac

mWn

X (mp'lVflnp),

(2.16)

Using the completeness property of the U„k 's and Eqs.
(2.9) and (2.13), the second term of Eq. (2.15) can be writ-
ten as
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which, using the identity

I

&mp'~Vf~np&=
m F.„

can be written as

L„,(&, @)

Ls~ (c|:,P ) Cq
6

3

L~)(cc, P )
L~ s(ec, P)

i —h p(vr Vf)„
m

P
np, mp' mp', np

m mp' mn

Using Eq. (2.17) in Eq. (2.15), we obtain

(2. 17) Ls((&, 5)
Ls(((g, P )

L~~(K, P )

+ 2l np, mp mp, np

m mp' mn
mWn

+xN, (aug) ~p& Jp)
PP"

Comparing Eqs. (2.14) and (2.18), we obtain

(2.18)

L gs(~& P)
Lss (oC, P)

2

L~ s(&i @)

L'(K, )s)

2l
m

mp

+xN, (crp(g)„
&»)
POP

np, m p'~m p', np

(2.19)

This is an expression for the effective g factor in the pres-
ence of magnetic impurities. In the absence of magnetic
impurities, it reduces to the familiar expression for the
effective g factor, g„'„'g(k), derived earlier by one of the
authors. Thus, Eq. (2.19) can be written as

PbSe PbTe

L6, a=cosO Z 1 —sinO X+ $,

FIG. 1. Energy level diagrams at the L point for PbTe and
PbSe. —and + signs represent conduction and valence bands,
respectively.

g„'„~(k)=g„'„g(k)+g„'„',"(&),
where

g„'„'P(k)=xN, (o "8)„&J)
PP"

(2.20)

(2.21)

L5 a= —( —X J, +iX+1),1

2

Lqq =ai sOnZT+cosO X+ $,
L 6+, a = i cosO—+R 1 —sinO+S+ J, ,

(3.1)

Thus is the effective g factor due to the interaction of the
conduction electrons with the magnetic impurities.
Equation (2.20) is same as the formulas used previous-
ly ' ' but derived in a more systematic way. In the Ap-
pendix, we give an alternative derivation of Eq. (2.19)
from the expression for the Knight shift, ' thus show-
ing the dependence of this quantity on the effective g fac-
tor.

III. EFFECTIVE g FACTQRS
IN PbMnTe AND PbMnSe

Lead salt semiconductors (PbTe, PbSe, and PbS) crys-
tallize in rock-salt crystal structure and the rninimurn en-
ergy gap in these semiconductors is direct and occurs at
the L point of the Brillouin zone. The energy level dia-
grams at the L point for PbTe and PbSe are shown in Fig.
1. These levels are described by the Mitchell-%'allis
(MW) basis wave functions and we list below one of
Kramer's conjugate pairs for each level:

L5+a= (S 1+iS+ 1 ),1

2

L62a=i sinO+R 1'+cosO+S+ l,
where cos0+—and sinO —are the amplitudes of single group
wave functions in the double group wave functions. The
spatial parts of these basis functions have the following
transformation properties about Pb: R transforms like an
atomic s state, X+ and Z transform like atomic p func-
tions with m, =+1 and 0, and S+ transform like atomic
d functions with m, =+1. The ordering of the levels is
followed from Bernick and Kleinman.

We follow a k m band model to evaluate the g factors.
In this approach the band edge states are treated exactly
and the far band efFects are considered using perturbation
theory. The details of these methods are discussed in our
earlier works. ' The dispersion relations for the
conduction and valence bands are
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AkE, , (k) =e, , + + ,'E—G(W' —1)+M„,k +M~, ,k,
5= &s, I@Is &/n, ,

p[~ (z I Pl z ) /Ao

(3.12a)

(3.12b)

(3.12c)

where

+ +Ms...
W(1+ W) W

+
W(1+ W) W

(3.2)

(3.12d)

Qp is the unit-cell volume. In the PbMnTe case, L 6, a is
replaced by L62a in B'. The values of A' and B' for
PbMnSe are taken from Ref. 17 and the same parameters
for PbMnTe are used from Ref. 39. The exchange pa-
rameters are

W='1/ 1+ak +Pk, ,

A2$2
cx =2

2E 2
G

At
m EG

(3.3)

(3.4)

(3.5)

for PbMnSe: A'=( —0.08+0.01) eV,
8'=(0.02+0.01) eV,

for PbMnTe: A'= —0.45 eV,
8'=0.29 eV .

(3.13)

(3.14)

and

k =k +k
p x y

s=(L,+, al~+IL62p) =(L,+, pin IL62a),

(3.6)

(3.7)
A2p=p'+ p — (3' F)
2m

(3.15)

The chemical potential is calculated, using a self-
consistent method from the expression

t = —(L~+~alrI IL62a) =(L,+~pl+IL~, p& . (3.8)
where

L, ,p are the K—ramers conjugates of L, ,a. Eo is the-

band gap at the L point; c and u in Eq. (3.2) denote the
conduction and valence bands except in the third term in
which case these are denoted by + and —signs. M& to
M8 are complicated functions of momentum matrix ele-
ments and energy gaps at the L point.

The variation of the energy gap with Mn concentra-
tions in Pb, Mn Te is considered using the formula

dEG =0.048 eV/%Mn, 0(x (0.04 (3.9)

and in Pb& Mn„Se from a graphical analysis in Ref. 17.
In both cases, at a given temperature, the energy gap in-
creases with Mn concentration. While in the PbMnTe
case, the variation is monotonic as seen in Eq. (3.9), in the
PbMnSe case, it is almost monotonic up to x =0.02, then
it slows down. '

In order to calculate the effective g factors, the single
group momentum matrix elements are used from Ref. 37,
which were calculated within the framework of a
psuedopotential band calculation. The energy levels
and sinO —and cosO —are taken from Bernick and Klein-
man. The exchange interaction matrix elements occur-
ring in Eq. (2.21) are given below for the band edge states
in PbMnSe:

F= If[E, ,(k) —p]d k
(2m. )

(3.16)

A2p'= (3m. n)
2m

(3.17)

and

&s"&=&s &=0, (3.19)

where Sp is the maximum value of the spin, and

The factor 8 in Eq. (3.16) accounts for the spin degenera-
cies of the energy levels and the four L valleys of the Bril-
louin zone; p' is the free-electron chemical potential and
n is the concentration of carriers. Cylindrical coordi-
nates are used for the evaluation of the integral in Eq.
(3.16) and the integration is done numerically.

The details of the calculation of g„'„f (lt) in Eq. (2.20) is
discussed in Ref. 20. In order to evaluate g„'„'P(k) we use
the wave functions [Eqs. (3.7a) —(3.7d)] of Ref. 20 to
evaluate (o."8)„„.When the field is along the Z direc-
tion, we have for Mn +

(3.18)

& ' = ( L ~, a I
o'd ( r ) I L ~, a ) =g cos 8 —5sin 8

and

&'= &I ~)ala'+(r)ILg)a&

=plcos 9 pepsin 0

(3.10)

(3.11)

2S+1 2S+1 1 1
B,(y) = coth y — coth y2S

with

(3.20)

(3.21)

where g; and S being the Lande g factor and the spin of the im-
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purity ion, respectively. The effective g factors are calcu-
lated for band edge states and for different carrier densi-
ties as a function of manganese concentrations using the
formula

42

4Q

geff 1geff, I+ 2geff, t+eff, z
nn 3 nn, O 3 nn, O nn, i (3.22)

where l and t represent the components of the effective g
factor along crystallographic [111] and [1 12] or [110]
directions, Z represents [001]. The conduction-band and
valence-band effective g factors are given, respectively, by

(3.23)

and

35

t 30

E, „(k,ki) —@=0 (3.25)

where g, o and g, o are the g factors in the absence of ex-
change interactions and are given in Ref. 20. The band
edge values are calculated for k =0 and k, =0. For ar-
bitrary carrier densities the g values are calculated by
substituting k, by its Fermi surface value kI, which is ob-
tained by solving the equation

CJ

25

20 i

1

I I

5 6
& (10 cm 3)

9 10

for k =0.
In Table I, we have listed the band edge g values for

different values of x. In both n- and p-type Pb, Mn„Se,
the g values without exchange decrease with an increase
in x. However, while the exchange contribution to the g
factor for the p-type system is +Ue and increases with x,
thus causing an overall increase of g values with x, the
same contribution for the n-type system is —Ue and in-
creases with x, thus, reducing the overall g values with
increase in x. A comparison of calculated values and ex-
perimental results, ' where available, shows fairly good
agreement. In Fig. 2, we have plotted the g values, for
different Mn concentrations, as functions of the carrier
density. For fixed values of x the g values decrease with

TABLE I. Band edge effective g factors for Pb& „Mn„Se
(only magnitudes). Top: Valence band (4.2 K). Bottom: Con-
duction band (4.2 K).

FIG. 2. Effective g factor (magnitudes only) vs carrier con-
centration for (1) p-type Pb& Mn„Se at x =0.01; (2) p-type
Pb& Mn Se at x =0.005; (3) n-type Pb& „Mn Se at x =0.005;
(4) n-type Pb& „Mn„Se at x =0.02, at T =4.2 K.

an increase in carrier density. However„unfortunately,
we are not aware of any experimental values for compar-
ison. All these calculations are done at 4.2 K since the
variation of the energy gap with x is available only at this
temperature. '

In Table II, we have listed our calculated band edge g
values in Pb, „Mn Te. The variation of the effective g
factor as a function of x shows that it increases with x for
the valence band and decreases with an increase in x for
the conduction band. These trends are as found in the
Pb, „Mn Se case. Therefore, we believe that our results
are reasonable despite lack of experimental results for

(Without
exchange)

(Exchange
contribution)

(With
exchange)

(Expt. )

(Ref. 17)

TABLE II. Band edge effective g factors for Pb& „Mn„Te
(only magnitudes). Top: Valence band (30 K). Bottom: Con-
duction band (30 K).

0
0.005
0.0063
0.01
0.015
0.0175
0.02

0
0.005
0.0063
0.01
0.015
0.0175
0.02

31.635
28.042
27.230
25.143
21.633
22.284
20.656

32.784
29.192
28.380
26.292
22.782
22.284
21.806

0
6.376
8.034

12.752
19.129
22.317
25.505

0
—0.708
—0.893
—1.417
—2.125
—2.480
—2.834

31.635
34.419
35.265
37.895
40.762
43.451
46.161

32.784
28.483
27.487
24.875
20.657
19.804
18.972

31

34.923
38.615

32

27.46
23.846

0
0.005
0.01
0.015
0.02

0
0.005
0.01
0.015
0.02

(Without
exchange)

25.769
22.414
19.734
17.545
15.722

26.063
22.708
20.028
17.839
16.017

g
(Exchange

contribution)

0
5.045

10.099
15.150
20.199

0
—3.254
—6.509
—9.763

—13.017

(With
exchange)

25.769
27.463
29.834
32.695
35.922

26.063
19.453
13.519
8.076
2.999

g
{Ref. 46)
(Expt. )

29.23

29.16
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comparison. A careful analysis of the results shows that
the exchange contribution to the g factor becomes
significant as x increases. As in the case of PbMnSe, here
also the exchange contributions are positive in the case of
the valence band and —ve for the conduction band. In
order to test the accuracy of results and chosen experi-
mental exchange parameters, we calculate, in the next
section, the effective masses and their anisotropies in

Pb& Mn Te and Pb& „Mn Se and compare them with
available experimental results.

IV. EFFECTIVE MASSES
IN Pb& „Mn„Te AND Pb& „Mn„Se

In this section, we shall calculate the effective masses
and mass anisotropies in the lead-salt-based diluted mag-

netic semiconductors. Using perturbation theory, we
have

@,,(k) =E, „(k)+(c,u &,„~c,v)

+
mac, v

(4.1)

where 6, „(k) is the total energy of the conduction and
valence bands including the exchange interaction. Using
Eqs. (2.2) and (3.2), and Eqs. (3.7) and (3.8) of Ref. 20 for
the wave functions and energies in Eq. (4.1), we obtain,
after a straightforward algebra, the conduction-band en-
ergy

Zm Z
' " ~ "' W(1+W) W ~ W(1+W} W

W 1+W W

I

B'+2 (t k —'s k )—
28 m EG W(1+ W)

x 2~2( Sz)2
+— [t k (B'—A') +—' k (A'+B') ]4 m E 8G

(4.2)

The expression for the valence-band energy 6, (k) can be obtained by replacing e2 by e, in the first term, the + sign

by the —sign in the third term, the index c by U and by interchanging A' and B' in Eq. (4.2). The longitudinal and
transverse effective masses, m,', and m,' „are obtained by the following formulas:

2M', ,(k, k, )

A Bk, k =O, k =k
p ' z I

(4.3)

Za@„(k,', k, )

a'ak'
P

k =Ok =k
p ' z I

(4.4)

From Eqs. (4.2) —(4.4), we obtain

pE

m,'
—Pk M +M

(1+W)

1 xN, (S') pB 2A' p(1+2W)t kl+
W 2 F. (1+W)

2t28 2

1+8'

1 x2+,2(S')2
+ — [2t ' W'(B ' —A ')' —2P(B ' —A ')'t 'k,']

4 ~5E3 (4.5}

and

1 ~EG=1+ +2Mi, —
m,' 2$'

o.k4 k M1+28' + I
'

7c

(1+W)' " " W 1+W

1 x&.(S ) aB' 2A' s W a(1+2W} 2 2+ + t2k)2-
W 2 EG 1+W (1+W)

1 x'X,'(S')'
[( A i+Bi)2 2W2 3(BI A i )2t2k2]

4 E,'W' (4.6)
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The corresponding quantities for the valence band are ob-
tained by changing EG to —EG, replacing c by v, and in-
terchanging A' and B' in Eqs. (4.5) and (4.6). In Eqs.
(4.5) and (4.6), 8'=Ql+Pki.

In order to compare with experiment, we calculate the
anisotropy of the cyclotron effective masses, which are
given by

where

m,', [I+A.', ,p, „!EG]
m,' „I 1+b, ', ,p, , /EG ]

(4.7)
CLo

~ re s

o
Ul

z 10

gt tO
C&V C7V m'f

C, V

lO 1
CVCV If

mc, v

1

m'f
V, C

mtf
V~C

(4.8)

(4.9)

th

zo 8-
lX

o
D 7

In Eqs. (4.7)—(4.9), m,', and m,', are the longitudinal and
transverse effective masses for the conduction (c) and
valence (v) bands, respectively. The superscripts 0 and f
denote the contribution due to band edge and the far
bands including the free carrier contributions, respective-
ly. p, is the chemical potential for the n-type system and
p, for the p-type system.

We have plotted the band edge transverse effective
masses of electrons and holes in Fig. 3 as functions of Mn

0-06

5
0& 3 4

n (19 cm )

FIG. 4. Cyclotron mass anisotropy vs carrier concentrations
for p-type Pb& Mn Te at x =0.02 (curve 1), x =0.01 (curve 2),
and x =0.0 (curve 3), respectively, and for n-type Pb& Mn Te
at x =0.02 (curve 4), x =0.01 (curve 5), and x =0.0 (curve 6),
respectively. The curves for finite x values are plotted for
T=30 K. A (Ref. 45) and + (Ref. 44) represent experimental
points for p-type Pb& „Mn Te (x =0.0) and D (Ref. 43) and 0
(Ref. 46) represent experimental points for n-type Pb& Mn Te
(x =0.0).

—005
4J

cS
Cl

I

Cl~0.03

CO

I

0-01
I

OQ2

I

003 044

concentration. For p types of Pb& Mn Te, the agree-
ment with experiment' is good. However, for n-type
Pb& Mn„Te, the experimental values ' are somewhat
less than our values. Within experimental errors, we be-
lieve the agreement between our calculations and the ex-
periments is reasonably fair. In contrast to the effective g
factors, where the exchange interactions are significant,
in the case of effective masses, the exchange contribution
accounts for only less than 5%%uo of the nonexchange value.
This is due presumably to the fact that the effective g fac-
tors are affected significantly by the magnetic polariza-
tion due to impurity atoms, while the effective masses are
not. In Fig. 4, we have plotted the cyclotron mass aniso-
tropies as functions of carrier density for different values
of x. It is observed that, for a fixed x, the mass anisotro-
py increases in p-type Pb, Mn Te and decreases in n-

type Pb& Mn„Te. However, for a fixed carrier density,
the mass anisotropy increases with x. Our results for
x =0 in both n- and p-type Pb& Mn Te are in good
agreement with experimental results.

FIG. 3. Band edge transverse effective mass (magnitudes
only) vs manganese concentration at T =30 K for (1) p-type
Pb& „Mn Te and (2) n-type Pb& Mn„Te. Open circles (0)
denote experimental points (Ref. 16) for p-type Pbl Mn Te
and solid circles (~ ) for n-type Pb& Mn„Te (Ref. 41).

V. SUMMARY AND CONCLUSION

This work presents a systematic derivation of an ex-
pression for the effective g factor in solids in the presence
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of magnetic impurities. The expression is suitably
modified so as to make it applicable to the diluted mag-
netic semiconductors. As an example, we calculated the
effective g factors in Pb, Mn Se and Pb& „Mn Te.
The calculations are based on a k m band model
developed and used by us in our previous works. Apart
from the band edge g values, the g values were calculated
as functions of carrier concentrations and magnetic im-
purity concentration. The agreement with experiment
where available is good. We have also derived the
effective masses for the afore-mentioned systems. The cy-
clotron mass anisotropy was calculated and studied by
varying the carrier concentration and magnetic impurity.
It was found that while the exchange interaction between
the carriers and magnetic impurities contributes
significantly to the effective g factor, its effect is small on
the effective masses. This is due presumably to the
reason that, while the exchange interaction affects drasti-
cally the polarization of carriers in the presence of a mag-
netic field, thus contributing significantly to the effective
g factor, its effect is less on an electronic parameter like
the effective mass. We have compared our results with
experiment where available and within the experimental
errors our calculations agree well with experimental re-
sults.

In conclusion, we would like to state that in this work
we have made a serious effort to calculate and analyze the
effective g factors and effective masses in the IV —VI-
based diluted magnetic semiconductors. However, our
derivation of the effective g factor is general in the sense
that it can be applied to other diluted magnetic semicon-
ductors, with suitable modifications.

—l'(k —k').R .
,Xe "+c.c.

f (E„k)
X

n'k' nk
(AS)

g, " is the Curie-Weiss susceptibility tensor of the impuri-
ty at site i, y is the nuclear gyromagnetic ratio, and g, is
the g factor of the impurity atom.

Since wt: are interested only in the intraband g factor
and the term in Eq. (AS) for which k =k', we have, after
a little algebra,

glPO'V j3

~ji X Xjnp, np' inp', npf (Enk) (A6)

From Eqs. (Al), (A2), (A4), and (A6) we obtain

Kjs zoo g Xjnp, np
k

X [g„"„(k)o"„„+2X,„~„X;"]
Xf '(E„k), (A7)

from which we obtain the effective g factor

the indirect exchange interaction coupling between the
nucleus at the jth site and the magnetic impurity at the
ith site and is given by

gjPong
3

ji
1

X nkpn ,k p''n''k'p', nkp
gi k, k'
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= g "h'+ 2X;:...X,'", (AS)

Here we present an alternative derivation of the
effective g factor from the expression for the spin Knight
shift ' at the jth nuclear site

+js +js cond ++js loc

where

(A 1)
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APPENDIX

where g„'„'g' denotes the first term in the square bracket of
Eq. (A7) and is given by

a P
~np, mp'~mp', np2l

g„'„'g ( k ) =g o."„„p+ ep„g-
m, p'
mWn

(A9)

and in the second term of Eq. (AS) we have considered
the diagonal matrix element of X; both in band and spin
indices. Assuming

(A10)

—,'Po g X;.,..g.".(k) "..,.g'(E.k)
k

(A2)
the second term of Eq. (AS), which we denote as g„'„',", be-
comes

with

X = cr5(r, )
8m

g„'„ f'(k) = Xi„' „(Mt'),= 2

where we have used the relation

(Al 1)

and

3(o"ri )rj 2r (m+e A/c)

rj r,' Ar.
(A3) pe =

jPP

Now

(A12)

( —l)A
~~p l Jl l

(A4)
Pog; 'V j&

In Eq. (A4) repeated indices imply summation. g., is

( Mt') = —g,.iMO( Jf'), (A13)

and assuming only the contact type of interaction be-
tween the electron spin and the magnetic impurity spin,
we have
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X/'= cr"5(r —R; ) .8~

Using Eqs. (A12) —(A14) in Eq. (Al 1), we obtain

geff, P(k)

(A14)

where

(A16)

N, (Jf') — g;po2cr"6(r, )
Boa np, np

(A15) 8(r)= —
g, po5(r) .16m

(A17)

where N, is the number of impurity atoms which we can
express as N;=xN, . N, being the number of unit cells
per unit volume. Equation (A15) can now be written as

Equation (A16) is same as Eq. (2.21). Thus, we have de-
rived the eff'ective g factor from the expression for the
Knight shift in the presence of magnetic impurities.
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