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Theory of cyclotron-resonance line shapes based on the isolation-projecfion technique
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The density operator for a system of many electrons in interaction with the background is expressed in
a diagonal-plus-nondiagonal form, which is useful for calculation of the ensemble average of physical
quantities. Starting with this form and with the help of the isolation-projection technique, the
cyclotron-resonance-line-shape function for electron-phonon systems is derived. The dominant part is
shown to reduce to the expression of Badjou and Argyres [Phys. Rev. 8 35, 5964 (1987)] for quite weak
interactions.

I. INTRODUCTION

The study of cyclotron-resonance line shapes is known
to be a powerful tool for investigating the electronic
structure of solids, since absorption line shapes are very
sensitive to the type of scattering mechanisms afFecting
the behavior of the carriers. So far, various theoretical
studies' have appeared regarding the dependence of
the absorption line shapes on the magnetic field and the
temperature in three-dimensional' and two-
dimensional systems.

To our knowledge, most of the theories presented so
far are based on the well-known relation that the absorp-
tion coefFicient is proportional to the transition probabili-
ty, ' the imaginary part of the dielectric constant, ' or
the real part of the electric conductivity. " In these
formalisms, with extremely few exceptions, the absorp-
tion coefticient is given by

p(co i') ~ g 2 —(a)[i(co—co, )+ I (co i ri) iq]— —

where A (a) is a function of the one-electron state index
a, cu is the microwave frequency, cu, is the cyclotron fre-
quency, I (co —ig) is the complex line-shape function, g
is an arbitrary positive infinitesimal constant which is
taken to be zero in the final stage, and A' is taken equal to
1. For weak interactions, the line-shape functions are
usually expanded in powers of the scattering strength A,

as

tained the function to order of A, by means of the integral
equation with an infinite subset of divergent terms. Fur-
thermore, most theories have adopted the approximation
that the total Hamiltonian of the system is replaced by
the noninteraeting part in calculating the trace for the
scattering potential in the exponential form, which con-
tains nondiagonal elements. This approximation results
in ignoring the line shift of the absorption spectrum due
to the self-energy of the electron-phonon system.

In this paper, we will derive a general line-shape func-
tion for electron-phonon systems by utilizing the so-
called isolation-projection technique. In Sec. II, we first
present a diagonal-plus-nondiagonal form of the density
operator using the integral equation. This transformed
density operator has the nondiagonal part including the
scattering potential, which is separated from the ex-
ponential form, so that we can calculate straightforward-
ly the ensemble average and also make a suitable approxi-
mation based on our condition for the scattering poten-
tial. In Sec. III, we derive the general form of the line-
shape function for electron-phonon systems by using the
isolation-projection technique, which combines the isola-
tion operators and the projection operators. Then we
show that the line-shape function cannot be expanded in
powers of A, , although the scattering interaction is weak.
Finally, we make a careful approximation for small A. and
obtain the dominant terms of the line-shape function
without taking the usual expansion. We also show that
the transformed density operator recovers the line shift
due to the self-energy. The last section is devoted to the
conclusion.

I (co —ig) ~ i h(a)+ g—A,"I'"'(co—iq),
7l =2

(1.2)
II. CYCLOTRON-RESONANCE ABSORPTION

POWER FOR THE ELECTRON-PHONON SYSTEMS
where h(a) is the line shift due to the self-energy of the
system which contains the electron-phonon or the
electron-impurity interactions and I' '(co i t) ) is the-
nth-order line-shape function in powers of A, . The func-
tions obtained in most theories are given up to only X for
extremely weak interactions.

These theories, however, have some controversial
points on the validity of the expansion. Argyres and
Sigel' "showed that the correct expression for the line-
shape function cannot be given in powers of A, and ob-

When a time-independent magnetic field B is applied
along the z axis the Hamiltonian of the system of many
electrons in interaction with phonons in equilibrium is
given by

H, =HO+V,

HO=H. +H

where H„H, and V, respectively, are the Hamiltonians
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corresponding to the dynamically independent electrons,
the background phonon field, and the scattering potential
due to the electron-phonon interaction given by

H, =ye ata (2.3)

q

(2.4)

V= g g C p(q)a tap(b +b+ ) .
q a, P

(2.5)

X exp(iyk»+izk, ),
e = (N + 1/2) co+ k, /2m *,

(2.6)

(2.7)

where N is the Landau index, k the electron wave vector,
m * the effective mass of an electron, and
Pz(x +k»/m*co, ) are the eigenfunctions of a harmonic
oscillator of the cyclotron frequency co, —= ~e~B/m, cen-
tered at (

—k»/m 'co, ). b~ (b~ ) in Eqs. (2.4) and (2.5) is
the creation (annihilation) operator for a phonon with
q—:(s, q), where s is the polarization index and q the wave
vector of a phonon with energy co . In Eq. (2.5),
C &(q)=(a~c(q)~P) is the matrix element of the one-
electron operator c (q), which describes the interaction of
an electron with the vibrating lattices in a self-consistent
approximation scheme. In the following, ~a+1) shall
denote the state ~N+1, k», k, ) if ~a) = ~N, k», k, ), and
C (q) =C( —q), where —

q =(s, —q), since V is Hermi-
tian.

We suppose that the external time-dependent field is
initially absent and the electron-phonon system is ma-
croscopically in thermodynamic equilibrium with an ab-

I

Here a (a ) is the creation (annihilation) operator for
an electron in the state ~a) with energy e given by

~a) = ~N, k, k, ) =(L L, ) P~(x +k /m *co, )

solute temperature T. The system, then, can be described
in terms of the grand-canonical density operator

exp[ —P(H, p—N ) ]

T~ [exp[ P(H—, pN—)]]
(2.8)

Here X is the total number of electrons in the system, p
the chemical potential of an electron, and P=(k~T)
where k~ is the Boltzmann constant. Tz denotes the
many-body trace for the electron-phonon states.

Most theories have adopted the approximation that
~pq ~0 in the density operator, since it is diKcult to
calculate the trace for V in the exponential form which
contains nondiagonal elements. This approximation
disregards the shift of the cyclotron-resonance absorption
peak due to the self-energy of the electron-phonon sys-
tern.

Now we present a diagonal-plus-nondiagonal form of
the density operator. We first define the integral-
equation operator U(A, ) given by

U ( A, )
—=exp [AP(HO —p N ) ]exp [ AP(H, —pN ) ] .—

Differentiation with respect to A, gives

(2.9)

(2.10)

where V(A, ) is defined as

V( A, )
—=exp [AP(HO pN ) ) V ex—p[ —AP(HO —pN ) ] .

U(A, ) = 1 —Pf V(A, , ) U(i i)di,
0

If this manipulation is iteratively performed, we get

(2.12)

(2.1 1)

The differential equation for the operator U(k) in Eq.
(2.10) can be solved by integration with respect to A, :

QO ]
U(A. )=1+ $ ( —13)"f dA, , f dA, . f dA, „V(A,, )V(A, ) V(A, „) .

@=1

Substituting 1 for A, in Eqs. (2.9) and (2.13), we have

exp[ I3(H,~
—pN) ]=exp[—P(Ho —pN ) ][1—+S( V) ],

where

(2.13)

(2.14)

S(V)= g ( —p) f dA. ,f dk2. . . f dA, „V(A,, )V(A2) V(A,„) . (2.15)

Therefore, we finally have a diagonal-plus-nondiagonal
form of the density operator as (2.18)

exp[ —P(HD pN )]-
po(HO )—:

T~ [exp[ —P(HO pN)]j—
where

and

Z„—= 1+T», [po(HO)S( V)]

p,q(H, q)=po(HO)[1+S( V)]/Z„, (2.16)

(2.17)

The transformed density operator expressed as Eq. (2.16)
has the nondiagonal part including V separated from the
exponential form, and thus we can calculate straightfor-
wardly the ensemble average and also make a suitable ap-
proximation based on our condition for V.

When an applied electromagnetic field is very weak
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compared with the internal field of the electrons and the
ionized nuclei in the system and the wavelength is much
larger than the atomic constant, the perturbation associ-
ated with the field can be taken to be uniform and grow
adiabatically from the nonperturbed equilibrium state to
the perturbed steady state in approximation. The com-
ponent of the induced current density J, for the electrons
driven by the electric field is given by

(co b,—'L )b, 'K(co ) b,—'LEK(co ) =b, 'J =0 .

Making use of ALO =Loh =(co, +L )6
ELOA'= 5'Loh =0, we obtain

(co Lo —bL,—)bK(co ) bL—, A'K(co )=J+,
(co Lo —5'L, )—b, 'K(co )

—5'L, b,K(co ) =0 .

(3.4)

(3.5)

(3.6)

(2.19)

P(co) =
—,'E Re[cr+ (co )] . (2.20)

where j; is the one-electron current operator. Then we
can obtain the conductivity tensor for the induced
current through the Kubo formalism.

Especially for the electric field of amplitude E and an-
gular frequency co, which is circularly polarized in the xy
plane, the time-averaged absorption power per unit
volume is given by "'

b, 'K (co ) =G'(co )b 'L, bK(co ),
where

(3.7)

co —L —6'L0 1

(3.8)

when 5'K(co ) in Eq. (3.7) is substituted into Eq. (3.5),
we find a new form of K(co ) given by

Solving Eq. (3.6) for b, 'K(co ) in terms of bK(co ), we
get

Here co = co —ig —(g~0+ in the final stage), the symbol
Re means "the real part of,"and, according to Ref. 18(e),

K(co ) = 1

co —Lo —Q(co )
(3.9)

(2.21) where

Here
Q(co )=L,A+L, G'(co )b'L, b, . (3.10)

K (co ):—G(co )J+,
G(~ )=—(~ —L)

J—=J +i',

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

Equation (3.9) is similar to the result of Argyres and Sigel
obtained by using integral-equation method in Ref. 18(c).

Second, we shall transform the propagator in Eq. (3.9)
into the I.orentzian form by which we can define the shift
and the linewidth of the absorption power spectrum. We
define another set of operators [P,P'], which are called
the projection operators, by

(3.1 1)
where L =Lo+L &

is the Liouville operator correspond-
ing to H

q Ho+ V.
There have been some controversies on the validity of

expansion of the line-shape function in powers of A, , as
mentioned above. In the next section, we will show a
different way of expansion, which is free from any diver-
gence.

P'=1 —P . (3.12)

With P and P' applied to K (co ) as K (co )

=PK(co )+P'K(co ), we obtain

[co —co, PQ(co )]PK (co )
—PQ (co )P K—(co ) =J

(3.13)

III. LINE-SHAPE FUNCTION

We shall derive the general form of line-shape function
by using the so-called isolation-projection technique and
obtain the dominant terms for a sum. ciently small V.
First, following Argyres and Siegel, ' "we define a set of
operators [b„b,'], which are called the isolation opera-
tors, by

(3.1)

and

If we split the function K (co ) in Eq. (2.22) into
K(co )=8K(co )+b, 'K(co ), then with b, and b, ' ap-
plied to this expression separately, we have

Solving Eq. (3.14) for P'K(co ) in terms of PK(co ), we
get

P'K(co ) =G "(co )P'Q (co )PK(co ),
where

(3.15)

(3.16)G "(~ ) —=

co —Lo —P'Q(co )

We now substitute Eq. (3.15) into Eq. (3.13) and obtain

[co —co, PQ(co ) PQ(co )G "(co—)P—'Q (co )]PK(co )

=J+, (3.17)

[co Lo P'Q (co ) )P'K——(co ) P'Q(co )PK (c—o ) =0 .

(3.14)

(co bL )bK(co ) bLb. 'K(co ) —=bJ+ =J+, —(3 3) or
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i(J+)
(&(~ )) =

i(co —co, )+I (co )
(3.18)

and

(3.22)

where the complex line-shape function I (co ) is defined

by

1ra(~ )= .
( +)

&&([Q(co )+Q( )G"( )P'Q( )]J+)
(3.19)

If we expand the above function in powers of V or L
&

the
first term is expressed in terms of Go(co )b, ', where
Go ( co ):( ct) L0 ) . This term gives rise to regular
terms, since

where cop p
=—ep

—ep. On the other hand, if the second
term in Eq. (3.19) is expanded in powers of V or L„then
this part includes the terms with Go(co )P' We ea. sily
see that the terms containing Go(co )P' diverge near the
cyclotron frequency [for details, see Ref. 18(c)]. If we
leave the expression in Eq. (3.19) as is, without expansion
with respect to Vor L, , no danger of divergence arises.

Fortunately, for a sufficiently weak scattering potential
V, we can ignore the second term of Eq. (3.19), which is
composed of higher orders of V, and then Q(co ) can be
replaced by [L,+L, Go(co )6'L, ]b, in approximation.
Thus the dominant part of the line-shape function is
given by

(3.21)

I (co )—= i(—L, GO(co )b, 'L,J+) /(J+) (3.23)

—Tg Ipo(HD)[J+ & & +] ]]
(L,J+) = /3 J—dA, T~ tpo(HO) V(A, )[L, J+,a a +, ]],

0

(3.24)

(3.25)

(L, Go(co )6'L,J )

—TgIp (H0)0[L~G (oco )6 L&J+,a a +&]]

(3.26)

For the electron-phonon systems, b, (a) disappears in
some other theories, ' "' "'"' since they made the
approximation that p, (H, ) =po(HO). But in the present
theory we have recovered it, as shown in Eqs. (3.22) and
(3.25). Finally, in the one-electron representation, we
have

[f ~. f ~.+i ]J.+ '—
0'+ CO

i [co —co, —b, (a)]+I (co )

(3.27)

Here we will see soon that b,(a) is the line shift due to the
self-energy and I (co ) is the co-dependent part of the
line-shape function. If b, in I (co ) given by Eq. (3.23) is
replaced by P', this part is identical to the result of Bad-
jou and Argyres. ' "

For the calculation of the ensemble average, we shall
take the dominant part of the density operator in Eq.
(2.16) with Z„=1 in approximation. Then for each part
in Eqs. (3.22) and (3.23), we have

where Here b, (a) and I (co ) are given by

f +((1 fp)—a(a)=yy C.+i p(cp. +i Cp ~.Jp i/&—.+)
q p a+1 a

N [1—exp[/3(co +, p+co )]] +
CO +& p+COq

(N +1)t 1 —exp[P(co +, p
—coq)]]

~a+ &,p

fp(1 f.)—+ g g Cp (C p
—C +) p+Jp /J )

q p a+1 a

N [1—exp[P(cop +co )]} (Nq+1) I 1 —exp[/3(cop —
coq)]]

COp ~+COq ~pa ~q

and

+g g Cp p(C —C +& +&)[2N sinh(Pco )+1—exp( —/3' )]
p

(3.28)



THEORY OF CYCLOTRON-RESONANCE LINE SHAPES BASED ON. . . 9277

iP (co )=g g C +t p(Cp +, —Cp ] J'p, /J'+ )

q p Pa+1

I +Nq f—
p +

CO COp ~ COq

N +fp
CO COp ~+ COq

X X p, a u. p a+1 p+1Jp iJa )

q pea

1+N fp—
CO CO~+ ~ p+COq ~a+ i,p ~q

XXf«C +, yq+)(Jp Cpp+, Jp—, cp
q p CO COq CO +COq

(3.29)

where we have written the electron-phonon interaction
matrix element as C p instead of C p(q) for brevity,
N =[exp(Pc@ ) —1] ' is the number of phonons, and

f =—[exp[P(e —p)]+1] is the Fermi-Dirac distribu-
tion function. The co-dependent part of the line-shape
function shown in Eq. (3.29) is similar to the result of
Badjou and Argyres. ' " It is to be noted that the present
theory and the theory of Badjou and Argyres include the
e6ects of exchange among moving electrons in the field of
vibrating nuclei. Thus the Fermi-Dirac distribution func-
tion fp is contained in the final results. If we put fp=0,
Eq. (3.29) is similar to the results of Ref. 21.

IV. CONCLUSION

In the preceding section, starting with the diagonal-
plus-nondiagonal form of the density operator given in
Eq. (2.16) and utilizing the isolation-projection technique,
we obtained the dominant part of the line-shape function,
which is free from divergence. The diagonal-plus-
nondiagonal form of the density operator was obtained
by using the integral equation. The transformed density
operator has the nondiagonal part, including the
electron-phonon scattering potential, which is separated
from the exponential form. This enables us to calculate

straightforwardly the ensemble average of any operators
for the system and make a suitable approximation based
on our condition for the scattering potential. It is also to
be noted that for the electron-phonon systems, the line
shift h(a) due to the self-energy given in Eq. (3.28) is
recovered through the transformed density operator.

The final result, the dominant part of the line-shape
function given in Eq. (3.21), was obtained from Eq. (3.19),
which is a more explicit form than our previous one. '

For extremely weak interactions, if b, ' of I (co ) in Eq.
(3.23) is replaced by P', this part is identical to the ex-
pression of Badjou and Argyres.

It is expected that the present formalism can be applied
to the system of electron-impurity interactions, if the
electron-phonon scattering potential V is replaced by the
electron-impurity scattering potential, and also the
forced-balanced theory of resistivity, which has been re-
cently issued. ' We will leave these problems for future
studies.
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