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Strong localization of photons in aperiodic optical waveguides: A numerical realization
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Numerical demonstrations of the strong localization of light are presented by illustrating aperiodic
two-dimensional waveguides. For this purpose, the correspondence between the discretized form of the
wave equation for light and the vibrational equation of motion for lattice dynamics is discussed in a gen-
eral form. We emphasize that this mapping is useful not only to gain insight into the nature of the
strong localization of light, but also to perform large-scale simulations on this phenomenon by employ-
ing an accurate numerical technique. The results will serve as a useful guide for the modeling and design
of optical waveguides in which one can observe the strong localization of light.

I. INTRODUCTION

The localization of light is currently of great interest,
due to the possibilities for developing new frontiers of in-
tegrated optics and nonlinear optics. ' The ultimate goal
is the realization of the strong localization of light. Real-
istic modeling to observe such a phenomenon and the
classification of its implication are most desirable. We
discuss, in Sec. II of this paper, the corresponding rela-
tionship between the discretized form of the wave equa-
tion for light and the vibrational equation of motion for
lattice dynamics. We emphasize that the correspondence
is quite useful to gain insight into the design and model-
ing of systems to observe the strong localization of light.
An additional merit of this mapping is that a powerful al-
gorithm can be applied in order to numerically demon-
strate the strong localization of light. ' This algorithm
has been applied to problems of lattice dynamics of large
and complex systems, and has also been successfully uti-
lized in the mode analysis of optical waveguides.

In Sec. III, we treat a simple optical waveguide that
can be used to observe strongly localized light waves.
Our system consists of a step-index optical waveguide
with an aperiodic grating. Though our system is two di-
mensional (2D), it should be noted that the dimensionali-
ty does not play an important role for the strong localiza-
tion phenomena of waves, in contrast with the case of
weak localization. We present also, in Sec. III, our simu-
lated results demonstrating that light is strongly localized
in the optical waveguides with aperiodic gratings. Sum-
mary and discussions are given in Sec. IV.

can be reduced to the scalar wave equation for weakly
guided systems by choosing a suitable polarization direc-
tion. This is, in fact, an excellent approximation for
waveguides of practical interest. By setting the polariza-
tion to be in the x direction, Eq. (1) is reduced to

n (ijk)g«(ijk) = —+2/(ij k)/h +gg'(ijk) lh
a, e

(3)

where p(ij k) is the value of the electric field at the grid
point, r=(ij,k). The symbol p'(ij k) represents the elec-
tric field values at the nearest-neighbor points along the
direction ea with e = + and —and a =x, y, and z.

One can relate Eq. (3) to the equation of a lattice vibra-
tion for scalar displacements. The corresponding equa-
tion of motion to Eq. (3) is described by

m(ij k)u„(ijk)=gK k "u(1mn),
Imn

(4)

n (r)g„(r,t)=V g(r, t),
where the subscript tt means the second derivative with
respect to time t, and g(r, t) represents electric fields of x
direction at the spatial position r. It should be em-
phasized that the third term of Eq. (1) vanishes exactly
for electric fields E propagating along the principal axis
of step-index optical waveguides which are the main sub-
ject of this paper.

Discretizing the three-dimensional (3D) system by
grids, the Laplacian in Eq. (2) can be written, for a lattice
with grid spacings h along the a axis of Cartesian coor-
dinates, in the form

II. LATTICE DYNAMICAL ASPECT
OF THE WAVE EQUATION FOR LIGHT

The wave equation for electric fields E, propagating in
a medium with local refractive index n(r), is

n (r) BE Vn (r)
c Bt n (r)

where c represents the velocity of light in vacuum. Here-
after the system of units c =1 is used. In general, Eq. (1)

where m(ijk) and u(ijk) are the mass and scalar dis-
placement of the atom at the site (ij k), respectively. The
nondiagonal elements of E''jk represent the Born-type
force constant between atoms at (ijk) and (lmn) The.
Born-type force constants K k" are nonzero for a
nearest-neighbor interaction and zero otherwise. The di-
agonal elements must be chosen as

~ijk ~ ~lmn
ijk ijk

1&i,m& j,nWk

for a system which reflects the uniform-translational in-
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variance of the system. Thus, we see that there is a
correspondence between the discretized wave equation (3)
and the vibrational equation of motion for lattice force

K,'./
"*'= 1/h, and diagonal elements K'J'I",

= —(2/h ) —(2/h» ) —(2/h, ). The squared refractive in-
dex n (ijk) corresponds to mass m (ijk) at the site (ijk)
The results obtained using this mapping seem, at first
glance, to depend on the choice of the grid spacing h
However, this is not the case as described in Ref. 8.

The dynamical properties of random lattices have been
extensively investigated both theoretically and numerical-
ly. It is well known that a random distribution of masses
leads to the occurrence of localized modes. As a simple
example, let us consider the situation where a single im-
purity with lighter mass (m) than that (M) of host atoms
is embedded in a lattice. A localized mode appears at an
eigenfrequency above the Debye cutoff frequency co& if
the condition m (2M/3 is satisfied for the 3D (d =3)
case or m & M for 1D. ' The localization becomes strong
with increasing ratio between M and m. However, some
caution is needed for the prediction of the strong locali-
zation of photons from the analogy between Eqs. (3) and
(4) since the optical system is spatially continuous and the
cutoff frequency co&& should be inanity The iso. lated
domain of refractive index (mass) is irrelevant to the
strong localization of light, even for the case of small re-
fractive index domain (mass). This is because the spectral
density of states (DOS) spreads over the infinite range
(co~~ ~ ) and the corresponding eigenfrequencies are
embedded in the continuous frequency band of the DOS,
namely, the localized modes couple with the modes of
continuous spectrum. Note that this type of disorder
leads to the occurrence of weakly localized light. One
has to introduce the "cutoff" frequency such as the case
of lattice dynamics, i.e., a frequency gap is necessary in
the DOS for the optical system to obtain the strong local-
ization of light. "

To design the optical system for our purpose, first the
frequency gap in the DOS is necessary by taking into ac-
count the periodic structure of refractive index, "'
and second we introduce the midgap states, in which the
strongly localized modes are expected, by violating the
periodic structure of refractive index. The accurate cal-
culation of the DOS for the system is crucial for predict-
ing the frequency region to observe the strong localization
of light. We need, of course, to perform large-scale nu-
merical simulations to demonstrate the strong localiza-
tion of light.

III. MODEL PROPOSAL
AND ITS SIMULATED RESULTS

In this section, we present the simulated results of the
strong localization of light for our proposed system. Our
system is illustrated in Fig. 1 with the definitions of coor-
dinates. The active layer has a heterostructure in which
two regions with different refractive indices (n„,nz) are
alternately aligned. The active layer is surrounded by
cladding layers with the refractive index nz. We deal
with electric fields in the y-z plane neglecting the x-axis

B A B A
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FIG. 1. The waveguide with aperiodic grating and the
definitions of parameters. Active layer consists of the grating
with two different refractive indices n & and n& ~

dependence. This assumption does not seriously
inhuence our main results.

The parameters used for our system, illustrated in Fig.
1, are the refractive indices (n„,n~, nc), the thickness of
the active layer (T~ ), and that of the waveguide (T~).
The random distribution of refractive indices in the ac-
tive layer is required to localize light waves. We have in-
troduced aperiodicity in the active layer as follows: the
length of the region A (or 8) in the active layer is chosen
as d„+x(or d~+x), where x is a random variable under
the condition ~x ~

~ a. The positive parameter a
represents the strength of disorder, i.e., periodicity is de-
stroyed with increasing the value of a. To obtain strong
localization, the mean free path 1' of light should be corn-
parable to the wavelength. Short-range disorder (even
strong), on length scales shorter than the wavelength,
does not lead to the strong localization because of its
averaging-out effect. The only way is to require the
correlation length of disorder comparable to the wave-
length of light. This point will be discussed later.

The grid spacings h and h, must be taken small
enough that amplitudes become sufFiciently smooth on a
scale of the grid spacing. This indicates that the numbers
of grids (N and N, ) should be taken to be large enough.
In our simulation, the thickness of the waveguide is taken
as T~=1 pm and that of the active layer as T~ =0.2
pm. The total length of the waveguide is set to be
I.~=36 pm. We have taken grid spacings along the z
and y axes as h, =100 A and h =200 A, respectively.
The refractive indices are assumed to be n ~ =2.5,
n~ =2.0, and nc = 1.5 (Note that the case of nc = 1 corre-
sponds to the isolated active layer such as the case fabri-
cated by Jewell et al. ' ). The fundamental lengths of the
regions A and B are taken to be d„=900A and dz
=2700 A, respectively. Our system has 100 steps of in-
dex distribution along the z axis.

The accurate calculation of the spectral density of
states (DOS) is crucial to pick up the localized eigen-
modes of light waves, especially in the frequency region
of the pseudogap. We show first the calculated results of
the DOS's for the system without cladding layers. These
results will clear up the diff'erence between the cases with
and without cladding layers.

At first, we show in Fig. 2(a) the calculated DOS for
the case a=0 without cladding layers, in which the
periodic boundary condition is applied in the z direction
and the fixed boundary condition in the y direction. '

The first sharp peak close to v= 315 THz can be attribut-
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Here the center of mode ro is defined by

r, y„z dz
ro= f If(y„z)ldz

where r, is the distance from an arbitrary point along the
center line of the waveguide (y=y, ). If the amplitude
follows the relation
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FIG. 2. The calculated DOS for (a) periodic and (b) aperiodic
grating without cladding layers. The definition of the parame-
ters are given in the text. The eigenmodes, belonging to the
eigenfrequencies pointed by the arrows in the figure, are shown
in Fig. 3.

ed to the mode with the set of wavelengths A,,= ~ and
A,„=2T&,which is the lowest eigenfrequency in our sys-
tem. The origin of this sharp peak is due to the fact we
have taken the fixed boundary condition at the edge of
the waveguide. The frequency region between v=351
and 396 THz corresponds to the lowest band gap. Figure
2(b) shows the calculated results of the DOS's for the case
with random distribution of refractive indices in the ac-
tive layer. We can realize, from the results of Fig. 2(b),
that the photonic band gap between 351 and 396 THz is
rounded o6 with increasing a, i.e., increasing degree of
disorder.

Next, we have calculated in Fig. 3 the spatial distribu-
tion of squared amplitudes f(y, z)l for the case a=400
A without claddings, belonging to eigenfrequencies (a)
v=345 THz, (b) 373 THz, and (c) 397 THz. The localiza-
tion length has been calculated from the following rela-
tion:

the characteristic length A, defined in Eq. (5) becomes
the localization length g. The localization lengths of
these three modes have been obtained as (a) 3.17 pm, (b)
0.73 pm, and (c) 2.22 pm, respectively. We see that the
midgap state (v=373 THz) in the pseudogap is most
strongly localized. Thus, the accurate calculation of the
DOS is crucial, especially the frequency region of the
pseudogap, to pick up strongly localized modes of light.

We have performed the same calculations for the more
realistic system with cladding layers. Figure 4 shows the
calculated results of the DOS for a=0 (solid line) and
a=600 A (dotted line). The frequency region between
230 and 251 THz corresponds to the lowest photonic
band gap for our system. It should be emphasized here,
from the results of Fig. 4, that the pseudogap is appre-
ciably rounded off even for the periodic case. This is be-
cause the system with cladding layers has a large transla-
tionally symmetric region (cladding), i.e., a lot of modes
excited in the cladding layers contribute to the DOS, and
the pseudogap arising from the periodic active layer is
averaged out.

We have calculated the eigenmode belonging to the
eigenfrequency 245 THz (the midgap state) for the case of
a=600 A. This is shown in Fig. 5, from which we can
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FIG. 3. The spatial distribution of squared amplitudes
lP(y, z)l for the case a=400 A. The case (a) corresponds to the
eigenmode with the eigenfrequency v=345 THz, the case (b)
corresponds to that of v= 373 THz, and the case (c) corresponds
to that of v=397 THz. The length scale is given on bottom.

FIG. 4. The calculated DOS with cladding layers. The result
of the solid line indicates the photonic pseudogap which ap-
pears between 230 and 251 THz. The dotted line shows the

0

DOS for the case with aperiodic grating a=600 A.
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FIG. 5. (a) The calculated eigenmode for the case a=600 A
near the midgap state (v=245 THz). The light waves are
smearing out from the active layer into the cladding layers. The
amplitude of electric fields is normalized as the case of Fig. 5.
(b) The cross section of the amplitude of the same localized
mode is plotted along the center line (y =y, ) of the active layer.

appreciate that this eigenmode is surely strongly local-
ized. The localization length of this eigenmode is
A, =4. 59 pm, which is larger than its wavelength
A,,=2(d„+dtt)=0.72 pm. Note here that the localiza-
tion length of the midgap state A, =0.73 pm for the case
without cladding layers (shown in Fig. 3) is much shorter
than the case of Fig. 5. This clear difference between the
cases with and without cladding layers is interpreted as
follows: the tails of localized waves smear out appre-
ciably into the cladding layers as seen from the result of
Fig. 5. This smearing-out effect prevents strong localiza-
tion of light.

IV. SUMMARY AND DISCUSSION

In this paper, it has been demonstrated by computer
simulations that the strong localization of light occurs for
the realistic systems, namely, the optical waveguides with
aperiodic grating. In Sec. II, we have discussed the cor-
responding relationship between the discretized form of
the wave equation for light and the vibrational equation
of motion for lattice dynamics. The mapping has the fol-
lowing advantages: (i) it is useful to gain insight into the
strong localization of light from the analogy with lattice
vibrations and (ii) we can employ an accurate numerical
algorithm to perform large-scale numerical simulations
for the present problem, which has been successfully ap-
plied to the problem of lattice dynamics of large and
complex systems.

The numerical method ' employed in this paper is
based on mechanical resonance to extract eigenmodes,
and can deal with matrices of the size 10 X10 for im-
plementation on an array-processing supercomputer with
64 MB memory space. This algorithm has enabled us to
accurately calculate the spectral density of states. We
have proposed a system in which the strong localization
of light is observed, which is actually obtainable by ap-
plying microfabrication techniques. We conclude that
our results should serve as a useful guide for the design
and modeling of the system to observe the strong locali-
zation of light.
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