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We use the correlated-random-field approximation and a conditional coherent-potential approxima-
tion to study the ground-state phase diagram of the one-band Hubbard model. Our approach incorpo-
rates both spin and electron correlations. It has been found that for certain values of the parameters of
the model, in addition to paramagnetic, ferromagnetic, antiferromagnetic, and spin-glass or spin-liquid

phases found in our earlier studies, a phase-separated phase is found to be favored for 0.7 & n & 1.0 and
U/B ~ 2 in good agreement with results obtained in the t-J model using the technique of the 1/N expan-
sion. The present approach also allows one to watch the dependence of the electron density of states on
the number of electrons per site and gives a single physical picture for the occurrence of a metal-
insulator transition. Implications of these results for the existence of superconducting ground state as
well as comparison to other studies will be brieAy discussed.

I. INTRODUCTION

The recent interest in a possible phase-separated' (PS)
state in the Hubbard and the related t-J models and the
special attention that these models received in view of the
strong electron-electron correlations in high-T, supercon-
ductors and related compounds, made us undertake a
systematic reexamination of the phase diagram of the
Hubbard model at T =0, including effects due to magnet-
ic and charge correlations. Despite strong theoretical
efforts during recent years, many fundamental aspects of
the solution of the Hubbard model remain yet unclear
especially in the case of the two-dimensional (2D) (Refs.
5—7) and 3D systems. For these systems the problems of
neglecting charge and spin correlations as well as charge
and spin Auctuations from the solutions of the Hubbard
model become more pronounced in the description of the
T =0 phase diagram of the Hubbard model which
remains still not clear. Recent work on the t-J model in-
dicated that a phase-separated' state is a possible ground
state of this model when the parameters are in a certain
range. Indications for phase separation were also found
by us in the Hubbard model using the correlated-
random-field approximation (CRFA) and the conditional
coherent-potential approximation (CPA).

In the present work we employ the CRFA and the con-
ditional CPA in investigating the existence of a possible
PS state of the Hubbard model. As with our previous
considerations '" we use a Bethe lattice description of
our system for which simple analytic expressions for the
Green's functions exist. ' A similar study for a 1D
periodic Hubbard model within an unrestricted self-
consistent mean-field approach' has resulted in the same
qualitative and quantitative results as the ones of the
present approach, giving this way some additional sup-
port to our previous and recent conclusions.

II. SOLUTION OF THE HUBBARD MODEL
WITHIN THE CORRELATED-RANDOM-FIELD
APPROXIMATION AND THE CONDITIONAL

CPA METHOD

We have employed the one-band Hubbard Hamilton-
ian,

+Urn; n; +U, g n;(n;, +n;+, ),

where the sites (i) form a periodic lattice; o is taken + l
for spin up and —1 for spin down; co is a constant which
can be taken as zero; V; is the transfer integral which is
taken to be a constant V for i,j being nearest neighbors
(n.n. ) and zero otherwise; U is the on-site Coulomb repul-
sion; and n; =a; a; with a;, u; being the creation
and annihilation operators, respectively. Finally, U, de-
scribes the intersite Coulomb interactions which in our
case is limited only to nearest neighbors. The physical
parameters of the model are the following: (i) the ratios
U/V and U, /V, (ii) the average number n of electrons
per lattice site, and (iii) the type of lattice. Due to
particle-hole symmetry, one obtains identical results for n
and 2 —n. Thus we can restrict ourselves in the range
0&n &1.

In our earlier investigation" we found solutions of the
Hamiltonian of Eq. (l) (with U, =0) in the CRFA. The
correlated-random-field method allows us to include
effects due to magnetic and charge correlations. The
latter, in the simplest case, is achieved through a correla-
tion parameter P„&z which denotes the probability of a
lattice site being A (i.e., with the local moment up) under
the condition that a given nearest-neighbor site is 8 (i.e.,
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with the local moment down). Thus, P~&~ =1 denotes a
system which exhibits perfect antiferromagnetic order,
P~ &~ =0 denotes perfect ferromagnetic order, while
P~&~=0. 5 corresponds to a spin-glass or a spin-liquid
phase. Our approximation is based on the following two
steps: (i) We follow Hubbard's original suggestion and
replace the cumbersome many-body U term of Eq. (1) by
a random one-body term, i.e.,

age number of electrons per lattice site, i.e.,
Fn= p +p" E dE. (9)

The electron DOS's p =p and p =p can be ob-
tained from the following equations:

p (E)=——lim Im&6 (E+.is)) . „a= 2 or B1

K s —+0
U7l; flI ~ CE~fl)~ (2)

(10)
where s; are correlated random variables, the distribu-
tion of which is determined self-consistently. With this
approximation, Eq. (1) is decoupled to one-spin Hamil-
tonians,

H = y s, ~icJ ) &i(7~+ V y ~icT ) &j a'~, (3)

where

e,.=E,+U&n, .)+U, [&n, , )+&n, „,)] . (4)

(ii) We assume that the repulsive on-site interactions [ U
term in (1)] create local moments of fixed size p, , which
can be oriented either up or down, thus we restrict the

J distribution to a binary one. As a result, the solu-
tions to Eq. (1) under the approximation of Eq. (2) can be
obtained with techniques already developed for
correlated-random binary alloys. It should be noted that
within the present solution the size of the local moment p
as well as the parameters P~&z are determined self-
consistently.

Under the present assumptions, we have the following
binary distribution for t e;

p (E;,e; ) =x~5(E; —s~ )5(E; —s~ )

+x~5(E; —E~ )5(e; —s~ ),
where (in the absence of magnetic field) x „=xiii =

—,
' and

=E~ = ,' U(n —p), —

=a~ =
—,'U(n +p) .

The random-field approximation of Hamiltonian (1) is as-
sociated with ground states (for the various values of n
and U/V), which exhibit nonintegral moments in or-
dered phases as well as disordered phases which could be
called "spin-glass" or "spin-liquid" states. Such states
can be identified with the spin-Quid state of Anderson
which has attracted interest in relation with high-T, su-
perconductors.

The local moment p is determined by the self-
consistency condition

p = J [p "(E) p" (E)]dE . — (8)

For the evaluation of p it is obvious that we must have
the electronic density of states (DOS) p" and p" which
represent the average DOS for the o. and —o. spin states,
respectively, at a site where c; =cz and c; =cz
The Fermi level Ez which appears in Eq. (8), is deter-
mined by the input parameter n which specifies the aver-

1
G,,(E+is)= jo jar),E +is —H

where so in (11) and (3) has been taken for simplicity
equal to —Un /2.

In the averaging process implied by Eq. (10) for which
we employ '" the conditional CPA, o6'-site correlations
are incorporated in H through the parameter P~ &~.
For Pz&~=1, we have long-range antiferromagnetism
(AF) and for Pz&ii=0 we have long-range ferromagne-
tism (F). All other intermediate cases for P„&~ are al-
lowed as possible solutions. The conditional CPA calcu-
lates conditionally averaged Green's functions corre-
sponding to one or more site energies c; kept fixed. The
other site energies E (jAi) over which the average is per-
formed are replaced by two self-energies X& and X2
periodically arranged. X& and X2 are determined by the
CPA condition which ensures that this replacement
creates no scattering on the average in the vicinity of the
site i.

Finally, the ground-state energy per lattice site is ob-
tained from the expression (assuming that co=0),

UE = (n +p, —)+ f [p "(E')+p" (E')]E'5E', (12)

where n and p are the results of Eqs. (9) and (8), respec-
tively.

It should be noted that the energy E depends on P~ &~.
For given U/V and n the energetically more favorable
state can be obtained by minimizing E with respect to
P„&z [and p; the minimization with respect to p is
equivalent to the self-consistency, Eq. (8)].

The numerics of this model become much easier if a
Bethe lattice Green's function is employed to describe the
real lattice. For the Bethe lattice analytic expressions ex-
ist for the matrix elements of the Green's function in the
site representation. ' When these expressions are used,
the CPA condition takes the form of two polynomial
equations (with respect to the self-energies) which are
solved using the iterative scheme of Newton-Ramson.

In our calculations we have used the Bethe lattice
approach and calculated the ground-state energy
E =E(n, U/V, P~&~ ) of the system according to Eq. (12)
for the given input parameters n, U/V by Pg/z. The
ground state for a given n and U/V is the one for which
E(n, U/V, P~&~) is minimum as a function of Pzzii. The
ground-state energy for a given n and U/V is denoted by
Eo and the corresponding P~ &~ by P~ z~.
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III. RESULTS AND DISCUSSION

Our original results (for U, =0) for the ground state of
our system in terms of U/V and n were summarized in a
phase diagram shown in Fig. 1 of Refs. 8 and 11. In this
phase diagram it was shown that in addition to the
paramagnetic (P), ferromagnetic (F), and the antiferro-
magnetic (AF) phases, one new phase emerged for
U/8 & 2.0 (where the half-band-width 8 =2&% V,
K =Z —1, Z being the number of nearest neighbors)
namely a short-range-ordered phase characterized by
0.40~P&&z +0.85 and nonzero magnetic moments. A
central part of this short-range region characterized by
Pz &~ =0.50 and a nonzero magnetic moment was named
the spin-glass (SG) or spin-liquid (SL) phase. A systemat-
ic analysis of our results indicated that at specific regions
of the phase diagram the system favors phase separation.
This was found by calculating the variation of the
ground-state energy with the electron number n for given
UIB. As can be seen from the present results shown in
Fig. 1, for high enough U/8, the ground state of the sys-
tem seems to become unstable towards phase separation.
For example, for U/8 =5.0, a two-phase system (phase
one with n =0.6 and P~&~ =0.0, i.e., ferromagnetic, and
phase two with n =1.0 and P„&~, =1.0, i.e., AF) corre-
sponds to lower energy than the single-phase system. As
U/8 decreases, the phase-separation (PS) region shrinks
in size. One can obtain the PS region by plotting
bE =[E(n =1) E(n)]/(1—n) versus —n. If bE versus n
has a minimum, this clearly shows that the PS region has
lower energy than the single-phase system. This particu-
lar procedure was used to obtain the phase diagram
shown in Fig. 2. Note that for large values of U/8
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FIG. 2. The phase diagram of a 3D Hubbard system de-
scribed by a Bethe lattice of connectivity K =5 as obtained
within the conditional CPA. In addition to the paramagnetic
(P), ferromagnetic {F),antiferromagnetic (AF), and spin-glass or
spin-liquid (SG) phases, a phase-separated (PS) state appears to
be favored for 0.7~n &1.0 and U/B ~2. The dashed line is
Nagaoka's result (Ref. 15) for the instability of the ferromagnet-
ic state and the dotted line is the result of the approximate
theory (see the Appendix) for the instability of the ferromagnet-
ic state towards phase separation.

( ~ 1.5) and n close to 1, the PS region has lower energy.
Of course at n = 1, for all values of U/8, the system is in
the AF phase. Once n%1, the PS region sets in. In our
numerical studies it was dificult to observe the PS region
for U/8 ~ 1. We, therefore, expect that the single-phase
AF region has lower energy for U/8 ~ 1. These results
were obtained for a Bethe lattice of connectivity K =5.

It must be pointed out that our results for a phase-
separated region in the Hubbard model are consistent
with similar results in the t-J model obtained through
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FIG. 1. The ground-state energy E (in units of B/2) as a
function of the electron number n for different value for U/B of
the 3D IBethe lattice with connectivity (Ref. 12) IC =5] Hub-
bard model. Notice that for U/B =5, the E vs n is clearly con-
cave and therefore the system becomes unstable towards phase
separation.
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FIG. 3. Variations of the short-range parameter P =P&/&
(which minimizes the ground-state energy for given n and U/B)
as a function of n for a Bethe lattice of connectivity K =5, for
different values of U/B.
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the quite different approximate technique of the 1/N ex-
pansion. An approximate method based on the results
for the ground-state energy of the F and AF states shows
again that there is a region where the phase-separated
state has lower energy than both the F and the AF states
(see the Appendix).

In Fig. 3, we present the calculated values of P~&z as a
function of n for different values of U/B. According to

Fig. 3, the off-site correlations exhibit a more or less
abrupt change at values of n, which depend on U/8,
where the system changes from AF or PS to ferromagnet-
ic or paramagnetic. As U/8 increases, we observe a
more gradual transition to the ferromagnetic state and at
lower values of n A. further increase of U/8 makes the
transition less gradual and at higher values of n. For
very small values of I —n the decrease of P~&~ from its
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FIG: 4. Calculated electron density of states within the CRFA and a conditional CPA for a Hubbard model described by
U/B =2.0, E =5 and (a) n =0.9 and P~z& =0.844; (b) n =0.8 and P~/& =0.717, and (c) n =0.7 and P„*z&=0.572. The position of
the Fermi level is indicated by the thick vertical line.
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value at n =1 (P~&~ =1) is associated with the reversal
of some isolated local moments giving rise to a low con-
centration of small ferromagnetic clusters in an otherwise
AF medium. This reversal of a few local moments
creates two very narrow symmetric impurity subbands in
the gap between the main Hubbard subbands (see also
Ref. 14). This is shown in Figs. 4(a)—4(c) where we
present the calculated electron density of states (DOS) for
three systems that are described by the same parameter
U/B =2.0 but with different number of electrons n. All
calculations refer to Bethe lattices with connectivity
K = 5 and have been performed at the optimum value of
the correlation parameter P~ &B obtained from the results
shown in Fig. 3. In particular, Fig. 4(a) refers to a system
with n =0.9 (for which P„*&~=0.844), Fig. 4(b) to a sys-
tem with n =0.8 (for which P„"&~=0.717), and Fig. 4(c)
to a system with n =0.7 (for which P„*~~=0.572). Fig-
ures 4(a)—4(c) indicate clearly the creation of the impurity
subbands and their systematic trends. Thus, it is ob-
served that as P~&z gets smaller, the states in the sub-
bands increase, while the simultaneous decrease of n re-
sults in a decrease in the distance between the locations
of the bands. As a result, the subbands get closer to the
main bands [Fig. 4(b)] and finally merge in two overlap-
ping main bands [Fig. 4(c)]. It is interesting to make no-
tice of the location of the Fermi energy in Figs. 4(a)—4(c).
In Fig. 4(a) the Fermi energy is found to be at the bottom
of the lower subband and remains in this subband as n

gets smaller [Fig. 4(b)]. In the case where the lower sub-
band starts overlapping with the lower main band it is
still clear that the Fermi energy remains in the lower sub-
band (as it is observed that the Fermi energy is to the
right of the main peak of the lower band, i.e., to the right
of the lower main band). In the case of n =0.9 [Fig.
4(a)], we have found that an increase of 0.015 in the value
of P~&~ shifts the Fermi energy to the top of the lower
main band and the system appears to be an insulator
rather than a metal. In the case of n =0.8 similar
changes in P~&~ do not change appreciably the location
of the Fermi level which remains in the lower subband.
From these observations we can conclude that the metal-
insulator transition happens within the predescribed ac-
curacy for n =0.9 when U/B =2.0.

The behavior of the local moment p (without quantum
fiuctuations) as a function of n for different values of
U/B is shown in Fig. 5. Here we observe that p(n) fol-
lows the p=n line rat, her closely for U/B ~ 3, departing
from it for small n (where the system becomes paramag-
netic) and to a small but increasing extent as n exceeds
0.6 and approaches unity. For small values of U/8
( U/B ( 1.5), @=0 for small values of n where the system
is in its paramagnetic phase, and, beyond a certain value
of n, increases rather abruptly.

We have also calculated the coupling constant J of an
equivalent Ising model as a function of n for different
values of U/B. This constant has been calculated at
T=0 according to the formula J =(dE/BP~&~)T. There
are strong Auctuations in the calculated values of J. Nev-
ertheless, the main features of the coupling constant J is
the appearance of significant values of J for n ~ 0.85 for
all values of U/B. As can be seen from Fig. 3, in this re-
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FIG. 5. Variation of the magnetic moment p per lattice site
as a function of the electron number n for a Bethe lattice of con-
nectivity K =5, for different values of U/B.

gion (n ~0.85) the ground state exhibits short-range
correlations of nearly AF order.

It must be pointed out that our method, although quite
sophisticated, omits quantum fluctuations which may
drive the system to different ground states. This was
shown by recent theoretical and numerical investiga-
tions' ' on the exact spin-spin correlations of the 1D
Hubbard and the t-J models which indicated that for
such systems the ground state is short-range AF. The
picture that emerges from these exact 1D considerations
indicates the effect of neglecting quantum Auctuations
and the limitations of the mean-field approaches which
adopt such an approximation. However in systems of
higher dimensionality (2D and 3D as in the present case),
one might expect the effect of quantum Auctuations not
to be strong enough (as in the 1D case) to overcome the
short-range order and therefore this may possibly allow
the system to attain a phase-separated state, although the
existence of other configurations of even lower energy
cannot be ruled out by the present calculations.

IV. CONCLUSION

We undertook a systematic analysis of the magnetic
phase diagram of the Hubbard model employing the
CRFA and a conditional CPA within a Bethe-lattice
description of the 3D system. The analysis of the E —n

curves has revealed that in addition to the previously
found phases (paramagnetic, ferromagnetic, antiferro-
magnetic, and spin glass or spin liquid), a new phase,
namely, the phase-separated one, is found to be favored
for 0.7~n ~1.0 and U/B ~2 in qualitative agreement
with the results of other mean-field theories. '

The relevance of a PS state to real materials has been
questioned on the basis of the following argument: If
atomic diffusion is absent, the PS state implies macro-
scopic net charge accumulation which in view of the
long-range nature of the Coulomb forces is obviously en-
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ergetically unfavorable; thus, according to this argument,
the PS state, if it exists at all, is a peculiarity of the Hub-
bard model and has no relevance to the real world. How-
ever, if atomic diffusion is present (and there is evidence
for oxygen diffusion in high-T, superconductors), the net
electronic charge accumulation or depletion can be can-
celed at least locally by the charge created by the
diffusion of oxygen ions; consequently, the survival of a
microphase-separated state, consisting of microscopic or
mesoscopic domains of each (charge neutralized) phase
mixed together, is possible.

Within the present approach we were also able to
watch the effect of the short-range electron correlations
on the electron DOS of the system and give the physical
reasoning for the occurrence of a metal-insulator transi-
tion. In particular, we demonstrated the creation of two
symmetric subbands between the two (symmetric) main
bands. The Fermi level was found to be located at the
bottom of the lower subband and at specific values of the
parameters of the system to be shifted to the top of the
lower subband giving rise to a metal-insulator transition.

where the integration is for k within the Fermi "volume"
and E'"' is the ferromagnetic energy, we obtain

and

kFa =(cd5)'~

E'"'= —zd~ v~5+
~

v~cd'5'+""

(A4)

(A5)

dE(F)E' '=E'"'(n )+(n n—)
dn n=n

C

(A6)

where the critical point n, is determined by the condition

dE'F'E'"'(n, )+ (1 n, )—
dn n=n

C

=E'""'(n =1) . (A7)

where cd, cd are numerical constants which depend on the
dimensionality.

The F-AF phase-separated state has an energy versus n
curve which is a straight line passing through the E' "'
for n =1 and being tangential to the E'"' versus n curve.
Hence, its equation is
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Combining the above equations we find

5, = ~E~AF~(n =1)(
2cd V

(A8)

V2E(AF)
( (A9)

However, for U/B~oo the quantity E' "'(n =1) is
given by (including quantum fluctuations correlations)

APPENDIX

One can find analytically in the limit of U/B —+ Do the
line of instability of the ferromagnetic state towards a
phase-separated F-AF state, which has lower energy than
both the pure F or the pure AF state.

In the limit of U/8 ~ oo, 5= 1 n~0, the Fe—rmi level
for the F state is very close to the upper band edge, where
the E versus k can be approximated by

I2'd 51+(2/d)
dcd'

For d = 1, cd =~ /3, and

375
Vl

U 6 ln2

(A10)

(A 1 1)

where cd'=41n2=2. 77,4.68, 6.582 for d =1,2, 3, respec-
tively. Hence,

E(k)=2d
f V/

—
/
V/a'k',

where d is the dimensionality. From the relations,

dk,
(2m. )"

(A 1)

(A2)

(A3)

For d =2, cd =2~, and

134V 2m

U 4.68

For d = 3, cd (6m )
~ /10m. , and

' =0925,i; d=3.Vl

U

(A12)

(A13)
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