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Within the construct of the complete Kim-Anderson model for the critical-current density, we have

calculated the initial magnetization curves and full hysteresis loops of type-II superconductors immersed

in an external field H =Hd, +H„cos(cot), where Hd, ( ~0) is a dc bias field and H„( & 0) is an ac field

amplitude. We denote the maximum and minimum values of H by H& (=Hd, +H„) and H&

( =Hd, —H„). According to the Kirn-Anderson model, the critical-current density J, is assumed to be a

function of the local internal magnetic-Aux density B;, J,(B; ) =k l(BO+ ~B; ~), where k and Bo are con-

stants. We consider an infinitely long cylinder with radius a, and the applied field along the cylinder

axis. The field for full penetration is H = [(Bo +soka�)
'~ Bo ]/p—o. A related parameter is

H*= [(Bo—soka)'~ —Bo]lpo. Magnetization equations for full hysteresis loops are derived for three

different ranges of H& .. 0 (H& & H, H~ & H& ~ H*, and H* ~ H~. Each of these three cases is further

classified for several ranges of Hz. To describe completely the descending and ascending branches of the

full hysteresis loops for all cases, 58 stages of H are considered and the appropriate magnetization equa-

tions are derived. In addition to these equations for a cylinder, the corresponding equations for a slab

are presented. Comparison with previous work by Ji et al. and by Chen and Goldfarb in the appropri-
ate limits supports the validity of the present derivation.

I. INTRODUCTION

The basic premise of the critical-state model intro-
duced by Bean' and London for the study of magnetic
properties of type-II superconductors is that, when a
magnetic field is applied to a sample, a macroscopic su-
percurrent circulates in the sample with a critical-current
density J, (B, ), where B, is the local fiux density inside
the specimen. An additional assumption for the critical-
state model is that the lower critical field is zero.

Bean derived the full hysteresis loop by assuming that
J, is a constant independent of B, . On the assumption
that the critical-current density as a function of 8; has
the form

model, Chen and Goldfarb derived both the initial
magnetization curve and the hysteresis loops for the case
with no dc offset magnetic field. In the present study, we
extend their derivation to the more generalized case
where an alternating magnetic field is superimposed on a
dc magnetic field, H(cot)=Hd, +H„cos(cot), where Hd,
( ~ 0) is a dc basis field and H„()0) is an ac field ampli-
tude.

Using these extended equations, we calculate M(H)
curves and verify that the curves are continuous at their
end points. For a further test of our derivations, we
reduce the M(H) equations in the limit Bc~0 and com-
pare them with the result by Ji et al. " who derived the
magnetization equations in the framework of the
simplified Kim model (Bo =0).

where k and Bo are constants, Kim, Hempstead, and
Strnad ' and Anderson investigated the critical phe-
nomena of type-II superconductors. As pointed out by
Chen and Goldfarb, the relation given by Eq. (1) is a
very generalized form of the critical-state model because,
when Bo »B, , it is equivalent to the linear model
J,(B;)=A —C~B;~, where A and C are positive con-
stants, and to the Bean model when k and Bo become
infinite in such a way that k/Bo is a constant. When
Bo=0, it leads to the power-law model ' J,(B; )

=kl~B; ~, where the power of B, is —1, the so-called
simplified Kim model.

For every model mentioned above, one can derive the
initial magnetization curve and hysteresis loops of super-
conductors. In the framework of the Kim-Anderson

II. GENERAL EXPRESSIONS FOR MAGNETIZATION
AND LOCAL CURRENT DENSITY

FOR AN INFINITE CYLINDER

We consider an infinitely long cylindrical specimen
with radius a, where the boundary of the sample is at
x =a. An external field H is applied along the axis. In
this configuration, both the local current density and the
local magnetic-Aux density are expressed as functions of
x, and are denoted as J (x) and B,(x), respectively. .

In the critical-state model, by applying an external field
H, macroscopic supercurrent J(x) fiows in the sample
and B;(x) is written as

B;(x)=p oHp+JoJ(x')dx', (2)

where p&=4nX10 H/m. Using B,(x), we obtain the
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M (H) =8 (H) /po H—. (4)

Using the expression for critical current density
J, =k /(8 o+ ~ 8, ~ ) and Ampere's law, V X8=poJ, we ob-
tain

dB, —sgn( J)@ok= —p (x)=
dx Bo+sgn(B; )8;

average fiux density 8 (H) in the sample

8 (H) = f xB;(x)dx .
a

Thus, the average magnetization M (H) of the sample is
given by

where

[(80+poH) —2pok (a —x) ]'

= —k (pox +qo )

po =2pok,

qo =(80+poH) 2pok—a .

dition jo(a) = —J,(poH) we get

2pokc =(Bo+poH) 8—0 —2poka .

Substituting Eq. (11) into Eq. (10b), we obtain

(12)

(12a)

(12b)

where the sign function sgn(X) is 1 if X )0, —1 if X & 0,
and 0 if X =0. From Eq. (5),

I [80+sgn(B, )8, ]dB, = —J sgn(J)@ok dx .

After integration, we obtain

8, = —sgn(B; )80+[80—sgn( JB; )2@ok (x +c)]'

xo=a —[(Bo+poH) —Bo]/2@ok . (13)

Since the full-penetration field H~ is H for xo =0 [see Fig.
1(a) represented schematically by a straight-line seg-
ment], we obtain

From the boundary condition jo(xo)= —J,(0), xo can be
obtained:

H =[(80+2p oka)'~ B]—o/po . (14)

where c is an integration constant to be determined by
the boundary conditions. Multiplying Eq. (7) by sgn(B, ),
we obtain

80+sgn(8; )8;

=+sgn(8;)[Bo —sgn(JB;)2@ok(x +c)]'

B. Local Aux density and B (H)

We consider the magnetization for two stages:
0(H +H and H K.

For the first stage (0 & H & H~ ), the distribution of fiux
density in the sample is

We set +sgn(B;) =1 because, from Eq. (1), the left-hand
side of Eq. (8) is always positive. Using Eqs. (1) and (8),
we obtain the general expression for J(x):

J(x)=sgn( J)J,(8; )

8;(x)=0 (0 x &xo),

8;(x)=ho(x) =@OH+go f jo(x')dx'
X

(xo&x &a),

(15a)

(1Sb)

sgn(J)k

[Bo—sgn( JB, )2@ok (x + c }]' (9)

(a)

III. INITIAL MAGNETIZATION
AND FULL-PENETRATION FIELD

A. Current distribution
and full-penetration field H~

We start from the initial state, H =J(x)=8;(x)=0,
and increase H in the direction of the cylinder axis. Ac-
cording to Lenz's law, the supercurrent J (of negative
sign) begins to penetrate from the sample surface (x =a)
inward. If the supercurrent penetrates until x =xo, J (x)
is given from Eq. (9) as

=-- Xp

H*

J(x)=0 (0&x &xo), (10a}
Xq

X

—kJ(x)=j,(x)= (xo&x &a),
[80+2@ok (x +c)]'

(lob)

where jo(x) is defined as the supercurrent corresponding
to J(x) in the region xo & x & a. From the boundary con-

FIG. 1. Definition of (a) the full-penetration field H~ in the
ascending branch and (b) a related parameter H* in the des-
cending branch, both represented schematically by straight-line
segments. xo and x

&
are given by Eqs. (13) and (23), respective-

ly, and a is the cylinder surface.
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where bo(x) is defined by 8;(x) derived using jo(x). Sub-
stituting Eq. (12) into Eq. (15b), we obtain

bp(x) =(ppx+qp)' —Bp,
where we used —2ppk/pp= —1 and (ppa+qo)' =Bo
+poH.

Using Eq. (3), the average flux density for this case is

8 (H) = I xbp(x)dx
a "0

2 [(3poa —2qo)(poa+qo) ~

15(soka)

(3poxo 2qo )(poxo+ qo ) ]

never fully penetrated. The second case is for H* ~H~,
when the reverse supercurrent penetrates to the center of
the specimen before H is cycled back to zero. [We give
H' schematically in Fig. 1(b), and its expression is de-
rived below. ] The third case is intermediate,
H +Hz ~H*. When a dc bias field Hd, has a nonzero
value, each of these cases is further classified into several
different cases, depending on the magnitude of H~.

A. Hysteresis loops for the low-H& case (0(H& &H~ )

In the initial magnetization process, 8 (H) for H =Hz
is obtained from Eq. (19):

B(Hg )=Goy(a) Gpg(xpg ) (Bp/a )(a —xpg )

(Bp—/a')(a' xp—) . (17) (21)

G (x)= (3p x —2q )(p x+q )
1

15(soka)

where

(18)

Similarly, in the following discussion, we use j (x)
(m =0, 1,2, . . . , 8) which corresponds to J(x) in a
specified region of x for each m. Thus, we assign b (x)
to local flux density B,(x) derived by substituting j (x)
into Eq. (15b).

For simplicity, we define here G (x) with p and q
involved in j (x):

where an additional subscript 3 on GO and x0 indicates
the specified function or variable at H =H~. For exam-
ple, from Eq. (13),

xo~ =& —[(Bo+VpH~ )'—Bo]/2Vok) .

Full hysteresis loops are derived by decreasing H from
H~ to H~, forming the descending branch of the loops.
The ascending branch is then drawn by increasing H
from Hz to Hz.

1. For H& &0

+0 +3 +6 +7 +8 2I Ok

P &
=72 =F4 =P5 = —2POk,

qo =q6 =
q7

=qs = (Bp+poH) —soka,
q, =(8 +pppH) +soka,
q2 =28 p

—(Bp —
ppH ) +2ppka,

q3 =(Bo—VW)' —2Vo« ~

qc=(Bo poH) +2poka,

q5=28o —(Bo+ppH) +soka .

(18a)

(18b)

(18c)

(18d)

(18e)

(18g)

(18h)

(x, (x (a), (22)

where we used the boundary condition j, ( a ) =J, (PpH).
Using the boundary condition at x =xi, ji(xi)= —jp„(x, ), we obtain

Stage 1: 0(H(H& (descending). With decreasing H
from H„, the supercurrent J (of positive sign) penetrates
from the sample surface until x =x &, and the correspond-
ing j,(x) is expressed by

kj,(x)=
[(Bp+ppH) +2@ok (a —x) ]'

Using Gp(x} defined by Eq. (18), Eq. (17) can be rewritten
as

x, =a —[(Bp+ppH„) —(Bp+ppH) ]/4@ok . (23)

8(H)=Gp(a) —Gp(xp) —(Bo/a )(a —xp) . (19)
Thus, the corresponding flux density b, (x) in the region
x, (x (a and 8 (H) is

(8H) =G (ao) —Gp(0) —Bp . (20)

For the second stage (H (H), 8 (H) is given by Eq.
(19) with xp=0:

b, (x)=(p,x +q, )'~ Bp—
8(H)=

2 f xbo~(x)dx+ I xb(x)dx
Q - OA xl

(24)

IV. FULL HYSTERESIS LOOPS

To obtain full hysteresis loops, we consider a period of
the applied field H=Hd, +H„cos(cot), where Hd, &0
and H„&0. Denoting the maximum and minimum
values of H by Hz ( =Hd, +H„) and Hii ( =Hd, H„), —
respectively, three types of hysteresis loops appear, de-
pending on the magnitude of H~.

The first case is for 0 (Hz +H, where the specimen is

=[G,(a) —G, (x, )]+[G (x ) Gpg(xpg)]

(Bp/a )(a xp„) (25)

Stage 2: Hli ~H (0 (descending). For H =0, ji(x)
takes its maximum value at x =a, ji(a}=k/Bo. With
decreasing H, x at which the supercurrent becomes max-
imum [i.e., equivalent to 8;(x)=0] shifts inward until
x x3. In this case, the supercurrent, denoted by j3(x ),
1s
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j3(x)= k

[(Bo—poH) —2pok (a —x) ]'~

(x3 x 0) (26)

where we used the boundary condition j3(a)=J,(poH).
From the boundary condition j3(x3)=J,(0), we find

x, =a —[(Bo poH—) Bo—]/2pok . (27)

Assigning x2 to the point x =x& at which the super-
current turns around, and expressing J(x) in the region
x2 ~x x, by j2(x) we ob ain

k

[(28o —(Bo—poH) +2pok (a —x)]'~

[(Bo poH—) +2pok(a —x)]'

(x4~x ~a), (33)

x4=a —[(Bo—PoHB) —(Bo PoH—) ]/4Pok, (34)

b~(x) = —(I24x +q~)'i +Bo, (35)

B(H) = —[G~(a) —G~(x~)] —[G3B(x4)—G3B(x3B)]

from HB, the supercurrent (of negative sign) circulates in
the sample. Supposing the supercurrent penetrates until
x =x4, and assigning j4(x) to J(x) in the region
x4 ~x ~a, we obtain the following equations in a similar
way as discussed above:

(x2 x x3), (28)

where we used j2(x3)=j3(x3). From the boundary con-
dition j2(x2)= —jog(x2), x2 is given by

x2=a —[(Bo+poH„) +(Bo poH) —28o]l4—pok .

+ [ 2B(x3B ) G2B(x2B )]

+[Goo(x2B)—Goo(xone )]

+(Bo/~ )(a +xone
—2x3B), (36)

Thus, we obtain b2(x), b3(x), and 8 (H):

b2(x) = (p2x +q2 )' ~ Bo, —

b3(x)= —(p3x+q3)'~ +Bo,
8 (H) = —[G3(a)—G3(x3)]+[G2(x3)—G2(x2)]

+ [Go~ «2) —Go~ «o~ )]

+(Bo/a )(a +xone —2x3) .

(30)

(31)

(32)

Stage 3: HB ~ H ~ 0 (ascending). When H increases

where an additional subscript 8 on 6 and x indicates the
speci6ed function or variable at H =Hz.

Stage 4: 0 ~ H ~ Hc (ascending). For H =0, j4(x) has
its minimum value at x =a, j~(a ) = —k /Bo. With in-
creasing H, x at which the supercur rent becomes
minimum [i.e., equivalent to 8, (x)=0] shifts inward until
x =x6. We assign j6(x) to J(x) in the region x6~x ~a.
We also assign x5 ( (x6) to the point at which J(x) turns
around from negative to positive, and in the region
x3 ~x ~x6, we use j3(x). Hz is defined as H for
x 5 x 3B . Since Hc ss positive, we find Hc Ha
Thus, by a similar method, we obtain

—kj,(x)=, (x, ~x ~x6),
[28o —(Bo+p Ho) +2pok (a —x)]'~

x3 =a —[(Bo+PoH) +(Bo PoHB )
—

28o )/4P—ok,
b3(x)= —(p3x+q3)'~ +Bo,

—kj,(x)=, „, (x, ~ ~ ),
[(Bo+poH) 2pok (a —x)]'~—

x6 =a —[(Bo+poH) Bo ]I2pok, —

b6(x) =(I26x +q6)' —Bo,
B(H)=[G6(a)—G6(x6)] [G3(x6)—G3(x3)]—[G3B(x5)—G3B(x3B)]+[G2B(x3B) G2B(x2B)]—

+[Goo(x2B) Goo(xone)] (Bo/a )[a —xo„+2(x3B x6)] .

(37)

(38)

(39)

(40)

(41)

(43)

Note that j6(x)=jo(x), b6(x)=bo(x), x6=xo, and

G,(x)=G,(x).
Stage 5: HB ~ H ~ H„(asc—ending). Considering

that the supercurrent changes its sign from negative to
positive at a certain point, denoted by x7, we define J(x)
in the region x7 x a as j7(x):

—kj7(x)=
[(Bo+poH ) —2pok (a —x) ]'i

(x7~x ~a), (44)

x7=a —[(Bo+poH) +(Bo pH o)

—B28o]/4po—k, (45)
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b7(x) =(p7x +q7)'~ 8—0,
B(H)=[Gi'(a) —G7(x7)]+[G2ii(x7) 62ii(x2ii)]

+ [Go~(x2B) GOB(xone )]

+(Bo/a )(a x—o~ ) .

(46)

(47)

(a)
~ H*

X

Note that j7(x)=jo(x), b7(x)=bo(x), x7=x5, and
67(x)=Go(x).

2. For H~ &0

Stage 1: Hii &H «H„(descending). This stage is the
same as stage 1 of Sec. IVA 1 except for the interval of
H 8(H. ) is given by Eq. (25).

Stage 2: H~ «H & H „(ascending). Supposing that the
supercurrent penetrates until x =xs with the increase of
H, and assigning j8(x) to J(x) in the region xz &x &a,
we obtain

(b)

Hpr

[(Bo+poH) 2pok (a——x) ]'~

(xs &x &a),

x8 =a —[(80+@0K) (Bo p~—ii ) ]—/4@Ok,

b8(x) =(psx +qs )' —Bo,
8 (H) = [Gs(a) —Gs(xs)]+ [G,ii(xs ) —G1B(x IB }1

(48)

(49)

(50) 8 (H) = —[Gz(a) —Gz(x3)]+ [62(xi ) —Gz(x2)]

+ [Goo(x2) —Goo(0)]
—(80/a )(a —2x3) .+ [Goo (x ia ) Goo(xone )]

—(80/a )(a —xo„) .

(55)

Stage 3: H~ & H & H~„—(desce dni gn):

8 (H) = —[G&(a)—G3(x3)]+[Gz(x& )
—G2(0)]

(51)

Note that js(x)=jo(x), bs(x)=bo(x), and Gs(x)
=Go(x).

(56)+(Bo/a )(a 2x3) . —

FIG. 2. Schematic representations of the reverse full-

penetration fields (a) H~„ in the descending branch and (b)

H~„ in the ascending branch for the medium-H& case. H„and
H& are the maximum and minimum values of H, respectively.

B. Hysteresis loops for the medium-H& case f H~ H& H*)

In the intermediate case, there are four cases depend-
ing on the magnitude of H~. To avoid repetition, we give
only the final 8(H) equations derived by a similar pro-
cess as described above.

For Hz + —H~

Stage 1: 0 & H & K~ (descending):

8 (H) = [G, (a) —G, (x, ) ]

+[GOA(xl) —GOA(0)] —80 . (52)

This equation is the same as Eq. (25) with xo„=0.
Since x& =0 for H =0, H is expressed as

H' = [(82O+ soka )'~ 80]/po . — (53)

[4pok++28o (80+poHw ) ] /po (54)

Stage 2: H „&H & 0 (descending). H „ is the re-
verse full-penetration field (on the descending branch) for
the medium-H~ case, which is represented schematically
in Fig. 2(a). H „can be determined by taking x2=0 in
Eq. (29):

Stage 4: H~ &H & H~ (descending)—:

8(H)= —[G3(a)—G3(0)]+Bo .

Stage 5: HIi & H & 0 (ascending):

8 (H}= [G4(a) G4(xq)]

[G3B(x4) G3B(0)1+80

(57)

(58)

—[G3ii(x~) —G3ii(0)] —(80/a )(a —2x6) .

Stage 7: H~+, &H «H~ (ascending):

8 (H) = [G6(a)—G6(x6)]—[G~(x6)—G~(0) ]
—(80/a )(a —2x6) .

(60)

(61)

Stage 6: 0&H &H+„(ascending). H~+„ is the reverse
full-penetration field (on the ascending branch) for the
medium-H~ case which is represented schematically in
Fig. 2(b}. H~+„can be determined by taking x~ =0 in Eq.
(38):

H+„=[4poka+280 —(80 —poH&) ]' /po 80/po, —

(59)

8 (H) = [G6(a)—G6(x6) ]—[G,(x6)—Gg(x5)]
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Stage 8: Hz + H ~ H„(ascending):

8 (H) = [ G6(a) —G6(0) ] B—o .

2. For —Hp ~H~ ~Hp,

(62)

Stage 6: —H8 ~ H ~ H+„(ascending):

8 (H) = [67(a)—G7(x7) ]

+[628(x7)—G,8(0)]—Bo .

Stage 1: 0 & H ~ H A (descending). Same as Eq. (52).
Stage 2: H~„~H ~ 0 (descending). Same as Eq. (55).
Stage 3: H8 ~ H ~ H~„(desc ending). This stage is the

same as stage 3 of Sec. IV B 1 except for the interval of H.
8 (H) is given by Eq. (56).

Stage 4: H8 ~ H ~ 0 (ascending):

8 (H) = —[G4(a) —G4(x4)] —[G38(x4)—G38(X38 )]

+ [G28(x38 ) —G28(0)]—(Bo/a )(a —2x 3 )

Stage 5: 0~H~ H8 (as—cending):

8 (H) = [G6(a) —G6(x6) ]
—[Gs(x6) —Gs(xs )]

—[G, (, ) —G, (, )]+[G, (, )
—G, (0)]

Stage 7: H+„~H ~ H A (ascending). Same as Eq. (62).

3. For Hp, + H ~ 0

Stage 1: 0 ~ H ~ H „(descending). Same as in Eq. (52).
Stage 2: H8~H~0 (descending). This stage is the

same as stage 2 of Sec. IV B 1 except for the interval of H.
8(H) is given by Eq. (55).

Stage 3: H8 ~H ~0 (ascending):

8 (H) = —[G4(a) —G4(x4)] —[G38(x4)—G38(x38)]

+ [ 28(X 38 ) G28(X28 )]

+ [GQA (X28 ) GQA (0)1+(Bo/a

(66)

(Bo/a )—(a +2x38 —2x6) . (64) Stage 4: 0 H ~ H8 (asce—nding):

8(H)=[66(a) —G6(x6)l [Gs(x6) —Gs(xs)] —[G38(xs) G38(x38)]+[G28(x38)—G28(x28)]

+[GoA(x28) GoA(0)] —(Bo/a )(a +2x,8 —2x6) . (67)

Stage 5: H8 ~ H ~ H—„(ascending):

8 (H) = [G7(a)—G7(X7 )]+[G28(x7)—G28(x28 )]

+
I GOA «28 ) —GOA (o) ] —80 .

4. For 0»H& (Hz

(68)

(a)
HA

~ H*

Hp~g
X

Stage 1: H8 ~ H «H„(descending). This stage is the
same as stage 1 of Sec. IV B 1 except for the interval of H.
B(H) is given by Eq. (52).

Stage 2: H8 ~ H ~ H „(ascending): (b) ++
Hprh

[Gs(a) Gs(x8)]+[G[8(xs) G]8(x]8)]
+ [GOA (X18 ) GOA (0)] Bo—

C. Hysteresis loops for the high-H& case (H* ~Hq )

(69)
a

X

+
"Pet

h [(Bo+PEA ) soka�]' /Po Bo/Po (70)

1. For Hz + —H

Stage 1: H „h
~ H ~ H „(descending). H h is the re-

verse full-penetration field (on the descending branch) for
the high-Hz case, which is represented schematically in
Fig. 3(a). H „h can be determined by taking x, =0 in Eq.
(23):

Hs

FICx. 3. Schematic representations of the reverse full-

penetration fields (a) Hp„~ in the descending branch, Hp„j, in the
ascending branch, and Hp+„z in the ascending branch. When
H Hp p Hp h or Hp+, z+, B; (x ) never crosses over the x axis.
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Stage 2: 0 «H «H „~ (descending):

8 (H) = [G, (a) —G, (0)] Bo —. (72)

Stage 3: H~ «—H«0 (descending). This stage is the
same as stage 3 of Sec. IV B 1 except for the interval of H.
8 (H) is given by Eq. (56).

Stage 4: Hii «H « H(d—escending). Same as Eq.
(57).

Stage 5: H~ «H H~„z (ascending). H~+„z is the re-
verse full-penetration field (on the ascending branch) for
the high-H~ case, which is represented schematically in
Fig. 3(b). H„+„z can be determined by taking x~ =0 in Eq.
(34):

H+„q =Bo/po [(Bo——poH3 ) 4poka—]' /po . (73)

This stage is the same as stage 5 of Sec. IV 8 1 except for
the interval of H. 8 (H) is given by Eq. (58).

Stage 6: H+„z «H «0 (ascending):

B(H)= —[G~(a) —G~(0)]+Bo . (74)

Stage 7: 0 «H «H (ascending). This stage is the same
as stage 7 of Sec. IVB 1 except for the interval of H.
8 (H) is given by Eq. (61).

Stage 8: Hz «H «H„(ascending). Same as Eq. (62).

2. For —H +H + —H~

Stage 1: H~„z «H«H„(descending). Same as Eq.
(71).

Stage 2: 0 «H «H
„& (descending). Same as Eq. (72).

Stage 3: H«H «0 (desc—ending). This stage is the
same as stage 3 of Sec. IV 8 1 except for the interval of H.
8(H) is given by Eq. (56).

Stage 4: Hz «H « H~ (descending). —Same as Eq.
(57).

Stage 5: H~ «H «0 (ascending). Same as Eq. (58).
Stage 6: 0 «H «H+„(ascending). Same as Eq. (60).
Stage 7: H+„«H «H (ascending). Same as Eq. (61).
Stage 8: H «H «H& (ascending). Same as Eq. (62).

3. For —H~ +Hz «0

Stage 1: H „z «H «H„(descending) Same a.s Eq.
(71).

Stage 2: 0 «H «H „z (descending). Same as Eq. (72).
Stage 3: H~ «H «0 (descending). This stage is the

same as stage 3 of Sec. IV B1 except for the interval of H.
B(H) is given by Eq. (56).

Stage 4: HI «H «0 (ascending). Same as Eq. (63).
Stage 5: 0 «H « H~ (ascending). Same as—Eq. (64).
Stage 6: Hz «H «H+„(ascendin—g). Same as Eq.

(65).
Stage 7: H+„«H «H„(ascending). This stage is the

same as stage 8 of Sec. IV B 1 except for the interval of EI.
8 (H) is given by Eq. (62).

8 (H) = [G, (a) —G, (x, )]+[Go„(x, ) —Go„(0))—Bo .

(71)

Hp h [(Bo+p(PB ) +4po a)' /po Bo/po

B(H)= [Gs(a) —G8(x8)]+[G,~(x8)—G,a(0)] Bo—
(75)

(76)

Stage 4: H„+„I,
+ «H «H„(ascending). This stage is the

same as stage 8 of Sec. IV 8 1 except for the interval of H.
8(H) is given by Eq. (62).

5. For Hp I,
+ Hg &Kq

Stage 1: Ha «H «H„(descending). This stage is the
same as stage 1 of Sec. IV C 1 except for the interval of H.
8 (H) is given by Eq. (71).

Stage 2: HIi «H «H„(ascending). Same as Eq. (69).

V. COMPUTED M(H) CURVES

We have analytically tested, for each case in Sec. IV,
that the stages are continuous at their end points. In this
section, we give some computed M(H) curves. To
reduce the number of variables, we define a parameter,
similar to one used by Kim and Chen and Goldfarb:

p =(2poka)' /Bo . (77)

Using this parameter p, Eqs. (14) and (53) can be rewrit-
ten as

H =Bo[(1+p )'~ —1]/po,
H* =Bo[(1+2p )' —1]/po .

(78)

(79)

M(H) is calculated from 8(H) using Eq. (4). Figures
4—6 give the initial and hysteresis M (H) curves for three
different values of dc bias field, Hz, =0, H, and 4H; and
for each Hz„ three different values ofp: 0.3, 3, and 1000.
For each case, three M (H) loops are drawn for
H„=H /2, (H*+H )/2, and 4H~ For all the lo.ops, M
and H are normalized to H . Figures 4(a) —4(c) corre-
spond to Figs. 6(a), 6(c), and 6(e) in Ref. 7, in which the
physical interpretation of the M(H) behavior has been
thoroughly discussed.

From Figs. 4—6, we note the following aspects.
(a) As seen in Fig. 4 (H&, =0), the M(H) loops are

symmetrical about the origin of the coordinate axes. Fig-
ure 4(a) is very similar to those derived from Bean's mod-
el; in the limit p —+0, the M(H) loops exactly reduce to
those from Bean's model.

(b) When H~, &0, the center of the M(H) loops shifts

4. For O~Hg ~Hp, p

Stage 1: H~„z «H«H„(descending). Same as Eq.
(71).

Stage 2: H~ «H «H „z (descending). This stage is the
same as stage 2 of Sec. IV C1 except for the interval of H.
8 (H) is given by Eq. (72).

Stage 3: H~ «H«H~+„I, + (ascending). H~+„z+ is the re-
verse full-penetration field (on the ascending branch) for
the high-H„case, which is represented schematically in

Fig. 3(b). H~+„z+ can be determined by taking xi=0 in

Eq. (49):
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(a)

-1 I I I I I I

-4 -2 0
H/Hp

2 4
I I I I I I I I I-1

-4 -2 0 2 4
H/Hp

(b) (b)

rw0

-1 I I I I I I I I I

-4 -2 0 2 4
H/Hp

-4 -2 0 2 4
H/ Hp

(C)

rwO-

-1 I I I I I I I I I

-4 -2 0 2 4
H/Hp

FIG. 4. Theoretical M-H curves, scales by H~, for Hd, =0
and p =(a) 0.3, (b) 3, and (c) 1000. In each figure, loops are
shown for H„=H~/2 (smallest), (H*+H~)/2, and 4H~ (larg-
est).

-1 I I I I I I I I I

-4 -2 0 2 4
H/Hp

FIG. 5. Theoretical M-H curves, scaled by H~, for Hd, =H~
and p =(a) 0.3, (b) 3, and (c) 1000. In each figure, loops are
shown for H„=H~/2 (smallest), (H*+H~)/2, and 4H~ (larg-
est).

to the right (by H/H~ =1 in Fig. 5 and by H/H~ =4 in
Fig. 6), and the profiles of the M (H) curves become more
and more asymmetrical about the center as p increases.

(c) The asymmetrical nature is more evident for
Hd, =H„. This can be seen, for example, by comparing
the outermost loop in Fig. 6(c) (Hd, =4H„, H„=4H~)
with the innermost loop in the same figure (Hd, =4H,
H„=H /2).

(d) For Hd, ))H„, the asymmetrical nature is much
reduced and the M(H) loops seem to approach those
from Bean's model. [See, for example, the innermost
loop in Fig. 6(c), where Hd, =4H and H„=H~ l2.] The
reason is that the effect of the variation of B, on
J, =k l(BO+ ~B; ~ ) becomes relatively small.

VI. 8 (H) EQUATIONS CORRESPONDING
TO AN INFINITE SLAB

2IMokc =(Bo+POH) Bo 2Pok(D—/2) . — (82)

Substituting Eq. (82) into Eq. (10b), we obtain

[(Bo+@AH) @ok (D —2x) ]—'

= —k (pox +qo) (83)

where pa=2@ok and qo=(BO+p~)2 pokD. From th—e
boundary condition jo(xo) = —J,(0), xo for the slab is

The analytical forms of M(H) and J(x) given by Eqs.
(4) and (9) hold in this case. From the boundary condi-
tionj 0(D/2) = —J, (IMOH), Eq. (11) is revised as

xo= ——[(Bo+pDH) Bo]/2pok . — (84)
We modify our derivation to apply it to an infinitely

long slab of thickness D. In this case, the local
magnetic-fiux density B; (x) and the average fiux density
given by Eqs. (2) and (3) are revised as

Since the full-penetration field H is the field for x0=0,
we obtain

B,(x)=@OH+@Of J(x')dx',
X

H =[(Bo+pokD)' Bo]/p, o . — (85)

B(H)=—f B,.(x)dx .D/2

D 0
(81) Referring to Eq. (15), and using Eqs. (81) and (83), the

average fiux density B (H) in the slab is
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D/2B (H) =—J bo(x)dx
D xo

pox+qo 1/2 —Bo dx
0

4
[4'oD /2+ qo

)'"—(S'oxo+ qo )'"]
3poD

(2Bo—/D)(D/2 xo) —.

Similar to G (x) defined by Eq. (18), we here introduce
a function F (x) defined by

r«0-

O g 4. 6 8
H/Hp

F (x)= (p x+q )
~ (m =0, 1,2, . . ., 8),4

3p D
(87)

r«0-
K

where p and q are given by Eqs. (18a)—(18h). Note
that, for the slab sample, a included in q should be re-
placed by D/2.

Using F (x), Eq. (86) can be rewritten as

B (H) =Fo(D/2) —Fo(xo) —(2Bo/D)(D/2 —xo) . (88)

In a similar manner, we can derive all the B(H) equa-
tions for a slab sample of thickness D from those for a
cylinder sample of radius a. Analytically, this can be
achieved as follows: (a) Replace a included in the B(H)
equations for a cylinder sample by D/2 except for the
last term; for example, (Bo/a )(a —xo) in Eq. (19). In
the last term, a and x should be replaced by D and
2x, respectively. (b) Replace G (x) by F (x).

As an example, we derive B (H) for a slab sample of
thickness D for the high-H~ case, Sec. IVC1, stage 1,
where Hz ~ H* and H—

„i,
~ H ~ H„(descending). Re-

placing G (x) in Eq. (71) by F (x), we obtain

0 2 4 6 8
H/Hp

(C)

r«0-

O g 4 6 8
H/Hp

FIG. 6. Theoretical M-H curves, scaled by H~, for Hd, =4H~
and p =(a) 0.3, (b) 3, and (c) 1000. In each figure, loops are
shown for H„=H~/2 (smallest), (H*+H~)/2, and 4H~ (larg-
est).

B (H) = [F,(D/2) —F, (x, ) ]

+[Fox(x&) Fox( )] Bo (89)

where an additional subscript A on Fo indicates the
specified Fo at H =H~.

Using Eq. (87) for m =0 and 1, and Eqs. (18a)—(18d),
we obtain B (H) for the case Bo=0:

B (H) = [(poH) [( —2pokx, )+—(poH) +pokD]
4

3( —2pok)D

—[2pokx, +(poH~ ) pokD] i +[(p—oH„) —pokD] i
] . (90)

Substituting

x, =(D/2) —[(poHw ) (poH) ]/4pok

given by Eq. (23) into Eq. (90), we obtain

[(poH)' —
I (poHA )'/2+(p&)'/2]'"

3Vok

—[(pW~ )'/2+(pW)'/2]'"

+[(pW )' pokD]'"]—(91)

From Eq. (14), pokD = (poH& ) . Using this relation,

—[(pW~ )' —(pW, )'l'"] . (92)

There are several studies treating magnetization of a
slab sample immersed in an ac field superimposed on a dc
bias field. Employing the Kim-Anderson model,
Miiller' calculated the fundamental ac susceptibility of a
ceramic Y-Ba-Cu-0 superconductor and compared with
the experimental data of Goldfarb et al. ,

' even though

I

B (H) is finally written as

B (H)=,[2[(poH~ )'/2+(poH)'/2)' ' —(poH)'
2

3(poH )
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=I(PW )' 2(PW—, )'l'"/Po . (93)

H~„I, also agrees with the expression given by them.
In order to complete the descending branch for the

high-Hz case, Sec. IV C1, for a slab sample, we also re-
vised B (H) of stages 2 —4, Eqs. (72), (56), and (57), respec-
tively. The results are the following.

Stage 2:

, I I (PW)'+(PW, )'1'"—(PW)'l .
3(PoH„)

(94)

Stage 3:

Stage 4:

(PoH )'+ (PoH, )' j'"2

3(PoH~ )'

—(PoH)'I . (95)

, I l(PW)' —(PW, )'1'"—(PW)'I .
3(PoH )

(96)

These equations agree with the second Eq. (14) in Ref. 11.
The agreement in B (H) equations supports the validity of
our results.

Miiller did not give M(H) equations used in the calcula-
tion.

Using the simplified Kim model ' (Bo=0), Ji et al. "
derived B(H) equations for an infinitely long slab of
thickness D, where the boundary of the sample is at
x =D/2. The sample is immersed in a field H cycled be-
tween Hz and Hz, where Hz )Hz.

We find that Eq. (92) agrees with the first Eq. (14) of
Ref. 11. From Eq. (70), the lower limit of H, H „h, for
BO=0 is

Hp„h
= [(PoHw )

—2(PokD )]' /Po

sidered an infinitely long cylindrical specimen with the
external field applied along the cylinder axis, and an
infinite slab with the field in the plane. To obtain full
hysteresis loops, we treated a period of the applied field
H =Hd, +H„cos(cot), where Hd, & 0 and H„)0.
Denoting the maximum and minimum values of H by Hz
and H~, respectively, three types of hysteresis loops ap-
pear, depending on the magnitude of H„. Each of these
three cases is further classified into several cases, depend-
ing on the magnitude of Hz. Full hysteresis loops were
derived by decreasing H from Hz to Hz, forming the
descending branch of the loop. The ascending branch was
then formed by increasing H from H~ to Hz. To com-
plete the descending and ascending branches for all the
cases, we calculated 58 stages for H and all the magneti-
zation equations were derived.

To test our derivation, we gave some computed magne-
tization curves with no dc offset magnetic field and corn-
pared them with those computed by Chen and Goldfarb.
For further examination of our results, our slab equations
were tested in the limit Bo~0 in Eq. (1). We found the
results agree with those by Ji et al. "who derived magne-
tization equations for the simplified Kim model. '

Recently, Ishida and Goldfarb' carried out detailed
measurements and analyses of harmonic susceptibilities
for a sintered Y-Ba-Cu-0 superconductor where they su-
perimposed a dc field on an ac field. They analyzed the
results with the simplified Kim model and found that the
temperature- and field-dependent features of the suscepti-
bilities were in good agreement with the model calcula-
tions.

More recently, we measured the superconducting tran-
sition of a sintered Y-Ba-Cu-0 superconductor with Fe
impurities in terms of harmonic ac susceptibilities. '

Analyses of the results were made in the framework of
the Kim-Anderson model with Bo, where B(H) equa-
tions presented in this work were used. We found that
the Kim-Anderson model with Bo values in the vicinity
of a few mT reproduces the data well.
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