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It is shown that, in the low-temperature limit, the effective-medium approximation predicts a univer-
sal frequency dependence of the conductivity of nonmetallic disordered solids. The calculation is based
on a macroscopic approach to ac conduction and is valid in more than one dimension. The universality
prediction is confirmed by simulations in two dimensions.

For many years ac conduction has been studied in
disordered solids such as amorphous semiconductors,
glasses, polymers, nonstoichiometric solids, or metal-
cluster compounds.!™® All disordered solids show simi-
lar ac behavior, whether the conduction is electronic, po-
laronic, or ionic. The frequency-dependent conductivity
follows an approximate power law with an exponent be-
tween 0.7 and 1.0. At lower frequencies there is a gradu-
al transition to constant conductivity. The standard
models for this are hopping models which deal with the
random walk of noninteracting charge carriers in a ran-
dom environment.’ !> While hopping models are rather
successful, the importance of Coulomb interactions has
recently come into focus.'®!® Unfortunately, hopping
models with interactions are not amenable to simple ana-
lytic treatment. One way to include the effect of
Coulomb interactions between charge carriers, instead of
using hopping models, is to adopt a macroscopic point of
view.'®”2 This is done here where conduction in inho-
mogeneous media is discussed by exploring Maxwell’s
equations.

Consider a disordered solid with spatially varying
thermally activated conductivity g(E (r))=g,e PE®),
Here S is the inverse temperature and the activation ener-
gy E(r) is assumed to vary randomly in space with a
finite correlation length. In some cases the activation en-
ergy probability distribution is quite narrow; however, we
are concerned here with the low-temperature case where
the distribution of conductivities becomes very broad. If
€ denotes the dielectric constant and w the angular fre-
quency, the continuity equation and Gauss’ law imply for
the electrostatic potential ¢

V- [(iwe+g)Ve]=0. (1

This equation is discretized?"??> by regarding the poten-
tial ¢ as defined on the points of a simple cubic lattice
and the quantity iwe+g as defined on nearest-neighbor
links. In this way Eq. (1) becomes the Kirchhoff current
conservation law for a lattice where each link is a resistor
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in parallel with a capacitor. If a is the lattice constant
and D the dimension, the correct continuum limit is en-
sured if each link admittance y is given by

y=a? iwve+g) . )
The electrical circuit is not to be interpreted literally as a
physical model of the solid because the free charge
currents run through the resistors only; the capacitor
currents are the well-known displacement currents.
However, the circuit is useful for calculating the macro-
scopic frequency-dependent free charge conductivity
o(w), i.e., the ratio between average free charge current
and average electrical field. If L is the linear circuit di-
mension and G (w) is the admittance between opposing
short-circuited faces, it is straightforward to show that,
whenever e is space independent, o(w) is given?® by

_ Glw)
“LD—z

o(w) —iwe . (3)
If the discretization length a is chosen to be the correla-
tion length for E(r) and correlations beyond a are ig-
nored,?""?* the effective-medium approximation (EMA)
may be applied to calculate G.'®?! The EMA
equation for the effective-link admittance, y,,, is
{((y =y,,)/[y +(D —l)ym])yZO where the bracket
denotes an average over the admittance probability distri-
bution. Since G =NP 72y where N =L /a, the EMA
equation and Egs. (2) and (3) imply (where s =iwe)

1 =< L > 4)
D(o+s) g(E)+(D—1)o+Ds g’

This equation has a simple solution in the limit S— .
The root E =E,(s) of g(E)=(D —1)o + Ds is given by

(D —1)o+Ds
&o

(5)

If p(E) is the activation-energy probability distribution,
Eq. (4) at low temperatures becomes
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For large B subtracting the s=0 case of Eq. (7) from Eq.
(7) itself leads to

s B0
D(o+s) Eg‘S)P(E)dE

Egmp (E)dE . (7

_ 1 o D s
—PEO G T o —Too |

Introducing the dimensionless variables

__ o B

7750 ° T Dp(E,0)0(0)" ©
Eq. (8) for B— o reduces to

& In(o)=5 . (10)

Equation (10) was derived by Fishchuk for the uniform
energy barrier distribution with cutoffs where the average
in Eq. (4) can be calculated explicitly.?® Here it has been
shown that, in the low-temperature limit, the EMA pre-
dicts a universal frequency dependence of the conductivi-
ty (in any dimension D >1). There is, however, some
doubt whether the EMA is reliable for systems with ex-
tremely broad distributions of admittances.?>?® There-
fore, computer simulations were carried out to test Eq.
(10). At low temperatures large lattices are needed to ob-
tain reasonable statistics, and the simulations are quite
demanding. Only the two-dimensional case was studied
where the highly efficient Frank-Lobb algorithm is avail-
able.?” For simplicity the simulations were carried out
for real 3, by analytic continuation this is possible when
the purpose is to compare the simulation results to an an-
alytic function. Bonds were defined via Eq. (2) where g is
given by a randomly chosen activation energy. Several
different activation-energy distributions were used. The
conductivity was evaluated from Eq. (3). Averages of 20
simulations of a 100 X 100 square lattice are shown in Fig.
1. The results confirm the EMA prediction of universali-
ty as the temperature is lowered. The universality
represents a new type of regularity, appearing gradually
as the “relaxation time distribution” becomes extremely
broad. The universality is not a consequence of a diverg-
ing correlation length, as for a second-order phase transi-
tion, and there are no critical exponents. While Eq. (10)
and the simulations are concerned with the free charge
contribution to the conductivity only, it is easy to show??
that the dipolar contribution to the total conductivity is
insignificant at low temperatures in the frequency range
of interest. Thus, both prediction and simulations may
be thought of as concerned with the total conductivity.
The observed universality reflects the fact that for
T —0 all energy distributions effectively tend to the uni-
form distribution so the conductance distribution be-
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FIG. 1. Log-log plot (base 10) of the dimensionless conduc-
tivity & as function of the real dimensionless Laplace frequency
§ [both quantities defined in Eq. (9)] at different temperatures.
The full curve is the EMA prediction for the low-temperature
limit of & (5) [Eq. (10)], while the symbols represent simulations
in two dimensions for different activation energy probability
distributions. S is the inverse dimensionless temperature. Each
point represents the average of 20 simulations of a 100X 100 lat-
tice. The total admittance was determined by the Frank-Lobb
algorithm (Ref. 27) and & subsequently found from Eq. (3). Re-
sults are shown for the following activation energy probability
distributions: (&), p(E)=( 1/V2me B2 (—w <E <w);
(@), p(E)=1 (—1<E<1); (A), p(E)=Q2/m)(1+E»)™!
(0<E<w); (0), p(E)=e £ (0<E <w); (+), p(E)=2E
(0<E <1). In each case the distribution should be thought of
as cﬁ;ntered around an energy E; this gives an extra factor
e PEo to both conductivity and frequency without changing &
or 5. The quantity E,(0) in Eq. (9) is the dc conductivity activa-
tion energy [Eq. (5)] which is easily determined from the fact
that the percolation threshold is ;— in two dimensions (Refs. 21,
23, 35, and 36).
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comes P(g)~1/g. However, it is noteworthy that even
at low temperatures there is a sharp cutoff in the “relaxa-
tion time distribution.” This is due to the existence of a
percolation threshold.

The asymptotic behavior o ~% found for §-—> o0 is a
subtle effect which is not directly due to the capacitors
[since the capacitor currents do not contribute to the
conductivity in Eq. (3)]. Indirectly, however, the capaci-
tors do give rise to the observed frequency dispersion via
their influence on the node potentials that in turn deter-
mine the resistor currents.

The EMA equation (10) was first derived by Bryksin
for a model of noninteracting electrons tunneling between
positionally disordered sites;?? it has also been shown to
apply for a hopping model with a box-type distribution of

energy barriers.> Hopping models are neither physically
nor mathematically equivalent to the macroscopic ap-
proach taken here. But both types of models lead to
large sparse matrix equations expressing local current
conservation. In view of the present findings it seems
likely that, in the limit of severe disorder, the EMA for
any problem of this type leads to Eq. (10) for the
frequency-dependent conductivity (or diffusion constant).

An important and well-established experimental fact is
the Barton-Nakajima-Namikawa (BNN) relation,?’™3!
i.e., the rule that the characteristic frequency for onset of
ac conduction has the same activation energy as o(0).*
This follows directly from Egs. (9) and (10) [a reduced
frequency definition similar to Eq. (9) was used for hop-
ping models by Scher and Lax*} and by Summerfield®*].
It is easy to understand qualitatively why the BNN rela-
tion is valid here. In the dc limit the current follows the
“critical” percolation paths giving the easiest ways be-
tween the electrodes.®> As the frequency increases there
is little effect until, for s ~s,, s is of order the lowest con-
ductivity o ,;, met on a critical path. On the other hand,
the dc conductivity is also determined by o ,;,,>>* and
thus one expects 0(0)~s, which is the essence of the
BNN relation.

In three dimensions the EMA has the percolation
threshold somewhat wrong,?' so the predicted dc con-
ductivity activation energy is also wrong. However, Eq.
(10) may still be valid in three dimensions at low tempera-
tures. Summerfield has conjectured a ““quasiuniversality”
for the frequency dependence of the conductivity.3* This
idea fits nicely into the present work that predicts true
universality only in the zero temperature limit. Compar-
ing to experiments, it has been shown elsewhere’ that all
qualitative features of experiment follow the equation
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7=5/In(1+7%) . (11)

Equation (11), which clearly is an approximate solution
of Eq. (10), represents the admittance of a single critical
path.?® Both equations predict an approximate power-
law frequency dependence of the real part of the conduc-
tivity where the exponent at the real frequency @=—i7¥
is equal to 1—2/In(&).>?® A few decades above the on-
set of ac conduction, the exponent is predicted to be 0.8,
in agreement with most experiments. Thus, there are cer-
tainly no experimental reasons to reject Eq. (10) as a low-
temperature limiting universal frequency dependence of
the conductivity in three dimensions.

Some time ago Pollak and Pike suggested that details
of the conduction mechanism should be contained in de-
viations from linear frequency dependence of the conduc-
tivity.®” While Eq. (10) approaches proportionality & <5
for §— o, there is a significant nontrivial frequency
dependence in a very large frequency range. If the pre-
dicted universality is indeed valid also in three dimen-
sions, there is little information in a conductivity that fol-
lows Eq. (10). It seems therefore that experiments could
naturally be interpreted in terms of deviations from Eq.
(10), representing the low-temperature fix point, rather
than in terms of deviations from linear frequency depen-
dence.

The EMA assumes admittances that are uncorrelated
above the lattice spacing, the discretization length a. The
present results may be compared to recent simulations of
interacting charged particle hopping on a disordered lat-
tice, where it was found that the dispersive regime is due
to the blocking effect on very short distances.!® Possi-
bly, the length a may be identified with this range of
length scales.

In conclusion, it has been shown that the EMA pre-
dicts a universal frequency dependence of the conductivi-
ty for disordered nonmetals at low temperatures. Simula-
tions in two dimensions have confirmed not only the
qualitative universality prediction, but the quantitative
EMA prediction as well. Finally, we note that since hop-
ping models often follow Eq. (10), one cannot distinguish,
from ac measurements alone, between these two ap-
proaches to the modeling of ac conduction in disordered
solids.
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