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Quantum coherence and duality in Josephson junctions
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The contribution to the partition function of the instanton tunneling between degenerate vacua is in-
vestigated for systems of Josephson junctions with gauge charge induced by external sources. Effects of
weak dissipation both due to quasiparticle tunneling and due to shunt resistance are considered via a
perturbative method for one- and two-junction cases. The tunneling partition functions display oscillat-
ing behavior as functions of the gauge charge, generating oscillating voltages in the presence of external
currents. The duality relation in the system is also discussed: In particular, the strong-coupling limit
and the weak-coupling limit of a ring of N junctions map onto each other.

In quantum mechanics, the electromagnetic potential
plays a fundamental role even in the region of no elec-
tromagnetic field, as manifested by the Aharonov-Bohm
effect. ' Thus the energy levels as well as the partition
function of a particle moving on a circle are periodic
functions of the magnetic Aux enclosed by the circle,
leading to the interesting possibility of a persistent
current in the system. This is to be compared with a
Josephson junction, the Hamiltonian of which can be
written in the same form as that of a particle on a circle
in a cosine-type periodic potential. In the case of a
Josephson-junction system, externally induced gauge
charge plays the role of magnetic Aux. Then the voltage
across the junction is a periodic function of the gauge
charge, which implies that a persistent voltage drop can
be induced without an accompanying dc current. The
relevant dynamic variables in such a Josephson-junction
system are the phases of the superconducting order pa-
rameters, which represent collective degrees of freedom.
In this respect, the Josephson-junction system can be
considered to display quantum mechanics on a macro-
scopic scale, in particular, the macroscopic quantum
coherence (MQC), which involves coherent tunneling be-
tween two or more degenerate vacua. Such effects have
been investigated in charge-density-wave systems to re-
veal oscillations with period hc/2eN for a ring of N
correlated chains.

In general, a macroscopic system cannot be sufficiently
decoupled from the outside world, and there exist effects
of environment. Such dissipation effects on Josephson
junctions, which are usually studied with either the Ohm-
ic dissipation due to normal current Row through a shunt
resistor or the dissipation due to discrete tunneling of
quasiparticles, can be treated by the effective action. The
effective dissipative action may be calculated either by in-
tegrating out the degrees of freedom of the environment
represented by a bath of harmonic oscillators or from
the microscopic model Hamiltonian, with macroscopic
variables introduced via the Hubbard-Stratonovich trans-
formation. Effects of dissipation on the Aharonov-
Bohm oscillation have been considered only for a free
particle on a circle.

In this paper, we use the instanton formalism to corn-

H =(1/2M)(p f) + Vo(1 —cosP—), (2)

which is the Hamiltonian of a particle of mass m and
charge —e moving on a circle of radius R in the periodic
potential Vo(1 —cosP). In this interpretation, P is the az-
imuthal angle, p is the canonical (angular) momentum
conjugate to p, and f:—&0/4&0 is the flux enclosed by the
circle in units of the (lux quantum @0—=hc/e. (Hence-
forth we set fi= 1. ) The Eucl—idean Lagrangian corre-
sponding to the Hamiltonian equation (2) is given by

2

LF =—M + Vo(1 —cosP) —if1 dP . d
2 d7 O'T

(3)

with imaginary time ~—=it, which has been also con-
sidered in the context of charge-density-wave systems.
From the Euclidean action Sz =—fdr Lz, we obtain the
classical solutions of 5Sz =0 with the boundary condition
P(P/2) —P( —P/2) =2trn, where P = 1/ktt T is the inverse
temperature and n is the winding number. For n =1,
such an instanton solution can be calculated exactly in
the form of elliptic integrals, and leads to the partition

pute the partition functions for systems of Josephson
junctions in the presence of dissipation. Effects of dissi-
pation both due to quasiparticle tunneling and due to
shunt resistance are considered in the case of single-
junction and two-junction systems. In particular, a ring
of N junctions is considered at low temperatures, which
may be mapped onto a particle on a circle. This leads to
an interesting duality relation in the ring between the
strong-coupling and weak-coupling limits.

We first consider a single Josephson junction of capaci-
tance C and Josephson coupling energy Vo. The Hamil-
tonian of the system is given by

H =(I/2C)(q —Q) + Vo(1 —cosP),

where P is the phase difference between the two super-
conducting order parameters, q measures the excess
charge of Cooper pairs on the junction, and Q is a gauge
charge induced by an applied voltage V or current I.
With C/4e =—mR /A' =—M and Q/2e= f, Eq. (1) ca—n be
written in the form
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function in the high-temperature limit (Pro « 1),
—pvZ e Zfree

where Zf„, is the partition function of a free particle
given by the Jacobi theta function

Z g (f e
—zn MIP)

We first consider dissipation due to quasiparticle tun-
neling. SD given by Eq. (7) is divergent for odd winding
numbers, and only terms of even winding numbers con-
tribute to the partition function. Therefore we have the
one-instanton action SE =So+SD/2, where SD is the dis-
sipative action for two instantons given by

exp
2

j 2~gfn e (4)

SD = 1.74'~ —(2/m )2) ln(rr I@co)

in the low-temperature limit. For small PEO, this leads to
the partition function

Z —v ~j~e pmlz — y I (pE )e z~inf (6)

where Eo —=8+Voto/m exp( —8VO/co) and I„(x) is the
modified Bessel function. Equation (6) manifests the
periodicity of the partition function in f with period uni-
ty. Thus in the presence of an applied direct current I,
the partition function displays an oscillation with period
2e/I. Unless the Josephson energy Vo and the charging
energy Ec ——2e /C are comparable to each other, Eo is
much smaller than co. In this macroscopic limit, we have
PEo«1 together with Pro))1, for which the partition
function in Eq. (6) becomes, except for the phase factor,

Z = 1+PEo cos2m f .

We now consider the effects of dissipation. In the pres-
ence of dissipation, the Euclidean action consists of two
parts: Sz =So+SD, where So is the action in the absence
of dissipation and SD represents the dissipative action. In
the case of dissipation due to quasiparticle tunneling, SD
can be chosen as '

'Qq p/2 p/2, sin ~' — ~ 4
—plz plz (pj—'rr) sin [m(7 1 )/p]

At low temperatures (Pco ))1), on the other hand, the in-
stanton solution reduces to

P(r ) =4 tan ' [exp(+cow) ],
where the positive (negative) sign represents an instanton
(anti-instanton). The solution for the arbitrary winding
number n can be constructed by inserting n

&
instantons

and n2 —=n, —n anti-instantons. This dilute instanton ap-
proximation is valid at low temperatures, where the sepa-
ration between instantons is suSciently larger than the
size of each instanton. It is then straightforward to com-
pute the partition function

Z= 1+—,'(PE cos2m f)
where E=EO(n. /pro) ' exp( —0.872)~ ). Therefore the
partition function is periodic in f with period 1/2. Weak
dissipation due to quasiparticle tunneling reduces not
only the amplitude of the oscillating part in the partition
function but also the period of the partition function by a
factor of 2. This reduction of the amplitude is consistent
with the result of Ref. 5, where weak dissipation was
shown to reduce the WKB tunneling amplitude by the
factor exp( —A 2) ), with 3 being a number of 0 (1).

We next consider Ohmic dissipation due to shunt resis-
tance. The dissipative action SD given by Eq. (8) is diver-
gent for nonzero winding numbers. In the low-
temperature limit, it is straightforward to evaluate SD for
a pair of instantons and anti-instantons:

SD =4m21, [3—2 in(m /Pcs)],

which leads to the partition function for small PEO,

Z= 1+—,'P c

4m',
with E=eo(m /pro) 'exp( —6~2), ). Thus Ohmic dissi-
pation again reduces the tunneling amplitude but it des-
troys the periodicity in f due to the nonperiodic nature of
Ohmic dissipation described by Eq. (8).

Heretofore we have considered a single-junction sys-
tem. We now consider a two-junction system (a ring of
two junctions) with the Lagrangian

I.= —,'M(p, +p 2)+f (p, +$2)—Vo[1—cos(p, —pz)],

where p, and $2 are the phases of the order parameters of
the two superconducting islands. The corresponding Eu-
clidean action can be written in the decoupled form

2

where g represents the strength of dissipation. For
Ohmic dissipation, on the other hand, the dissipative ac-
tion takes the form

S~=f d —M —'f
—P/2 4 d~ d7

'2

+I dr —M + Vo(1 —cos8)
P/2 1 d 0
—P/2 4

(10)

Plz Plz, [P(r') —P(r)]2d7. d7'—p/2 —p/2 (pjn) sin [~(7.' —r) II3]

(8)

For weak dissipation (g, « 1), we may use the nondissi-
pative solution given by Eq. (5) to calculate SD in a per-
turbative manner.

where we have defined p =p, +$2 and 0—=p, ——$2 with the
boundary conditions

P(13/2) P( —/3/2) =2'(m +—n)
8(P/2) —8( —P/2) =2'(m n) . —

Thus the partition function is given by
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oo
2

e
—vr M(m+n) /pl (~ y 2mi(m +n)f

where so=8+Voce/m exp( —8Vo/co) with co —=2Vo/M.
For small PEo, we have

Z g (2f e rr M—/P)+p —w M/P

with the boundary conditions

P(r, 0)—P(r, 2m. ) =27m,
P(r, 0) P—(r+P, 9)=2rrm,

where, in the low-temperature limit (pVo ~~ ), m is uni-
form for all junctions and independent of 0. The corre-
sponding classical solution of 5SE =0 is then

—4rr Mm /P ~f~2 4M'
m —2~if P(r, 8)= n8 ——(2mm/P)r, (14)

N

Vo g [1 cos(pk pk+i)]
k=1

(12)

where the periodic boundary condition pN+, —=p, is as-
sumed. We consider the low-temperature limit and use
the harmonic approximation

cos(4k 4k+1) 1 2(4k 4k+1)

We assume further that N is large and introduce a vari-
able 0=—2~k/N which becomes continuous in the limit
N ~~. In this continuum approximation, the Euclidean
action is given by

ynd J2~dg NM BP .f N BP
o o 4m B~ 2m B~

1 2n+—Vo (13)

where the first and second terms are periodic in f with
periods 1/2 and 1, respectively. In the macroscopic limit
(pEo~O), only the first term survives as pointed out in
Ref. 4 by qualitative consideration of the Hamiltonian for
the charge-density-wave system. In the presence of dissi-
pation, the partition function can be computed to give

Z =8 (2f e ~)[l+—,'(Pe) ],
/vr —0.87g

where e=Eo,(n /pea) ' e ' for dissipation due to
4m.g, —6n.g,quasiparticle tunneling and E=eo(vr /Pcs) 'e '/&2

for Ohmic dissipation. It is again periodic with period
1/2. Here the preservation of the periodicity in the two-
junction system in spite of Ohmic dissipation can be un-
derstood as follows. In Eq. (10), the center-of-mass coor-
dinate P and the relative coordinate 8 are decoupled from
each other, and the gauge charge f is involved only in the
center-of-mass part which takes the form of the free-
particle action. In such a system it is known that dissipa-
tion hardly changes the partition function. Since in the
macroscopic limit the dominant contribution comes from
the center-of-mass part, the effect of dissipation in the
two-junction system is negligible compared with the
single-junction case, thus maintaining the periodicity.

%'e next consider a ring of N Josephson junctions,
which, in the absence of dissipation, has been considered
via a variational method, and generalize the Lagrangian
in Eq. (9):

N N
L= —M gP„+f gPk

k=1 k=1

leading to the partition function of period 1/N:

(Nf
—2n NM/P)y (()

/ i 0
) (15)

It is of interest to note that the above dependence on
pEC and pVo indicates the existence of duality in the sys-
tem. For example, in the limit p/NM=2pEC/N~O,
only the Josephson coupling energy is relevant, and the
N-junction partition function in Eq. (15) reduces to

H= y (qk
—g)'

2C k

N
+ Vo g [1—cos(4'k pk+& Ak k+, )],

k=1
(16)

with gauge charge Q on each island. The bond angle
Ak k+1 is given by the line integral of the vector potential
due to the applied magnetic field

2' k+i 4mf
k, k +1

where @0/2=—hc/2e is the Aux quantum for a Cooper
pair and f=4/4o is the enclosed flux in units of No.

In the weak-coupling and low-temperature limit
(a~ ~ and PVo~ ~ ), the system behaves like a single
particle and leads to the partition function

(Nf e
—2rr NM/P)

which is that of a particle of mass NM in the presence of
fiux Nf. [Compare with Eq. (15).] Thus in this limit, the
Hamiltonian in Eq. (16) reduces to that of a particle on a
circle. '

Conversely, in the strong-coupling limit, the Josephson
energy is dominant and the N-junction system described
by the Hamiltonian (16) with the charging energy
neglected can be mapped onto a tight-binding particle on
a circle of N sites. " The energy eigenvalues of either sys-
tem are given by

which has the same form as that of a free particle in the
absence of flux, as given by Eq. (4). Thus the strong-
coupling limit (a=Ec/Vo~O) of the ring of N ())I)
junctions corresponds to the weak-coupling limit
(a~ oo ) of a single junction, which reflects the duality
between the two limits of the system.

To establish the duality, which is valid in the low-
temperature limit, we consider a ring of N junctions in an
external magnetic field
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Ek = —2b cos[(2m /N)(k +f )], (17)

where 6=N—VD/2 is the hopping energy in the tight-
binding system. For sufficiently large N, Eq. (17) reduces
to Ek =4~ b(k+ f ) /N, and the tight-binding particle
becomes essentially equivalent to a free particle on a cir-
cle of mass N /4rr E, which can be recognized by com-
paring eigenvalues of the two systems. Hence in the limit
a~0, the system again reduces to a particle on a circle,
of mass N/4' Vo and in the presence of Aux f. There-
fore, both the e~ ~ limit and the a~O limit of the X-
junction system correspond to a particle on a circle, and
correspondingly, they map onto each other, which is ex-
act in the large-size (N~ ao ), zero-temperature (T~O)
limit. This establishes the duality with f~f /N and
Eg~27T Vp between the two limits of the X-junction sys-
tem.

In summary, we have investigated systems of Joseph-

son junctions with gauge charge induced by external
sources, via the instanton formalism. The partition func-
tions are shown to display oscillating behavior as func-
tions of the gauge charge. Eff'ects of weak dissipation
have been also considered and found to hardly change the
general features for two-junction systems. In a single-
junction system, on the other hand, Ohmic dissipation re-
sults in the destruction of the periodicity. The duality in
the system, which is reflected by the limiting forms of the
partition function, has been also pointed out. In particu-
lar, the strong-coupling and weak-coupling limits of a
ring of N junctions map onto each other.
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