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Unusual Doppler effect in He II

Y. A. Nepomnyashchy
Physics Department, Technion Isra-el Institute of Technology, Haifa 32 000, Israel

(Received 20 April 1992)

Many years ago Khalatnikov described unusual properties of the Doppler shift for the second sound
in He II, first of all the "back-entrainment" effect: at some temperatures (at the beginning of the roton
region) the center of the spreading sound moves in the direction opposite to the normal-component ve-

locity v„[buz=y( Tlv„,yl T-0.6K) (0]. However, the existing theory describes Doppler shift of the
first and fourth sounds as a trivial, "kinematic" effect: the center of the spreading sound moves with the
velocity of the liquid as a whole [Au, 4=j/p =(1—p„/p)v, ]. We show that the real situation is quite
different. We find (1) the coefficient K in the Doppler-shift expression, Au

& 4 =(1—K, 4p„/p)U„substan-
tially diff'ers from the kinematic value K =1:~K~,„reaches some tens. (2) K, (T) and K4(T) have

different (qualitatively opposite) nontrivial temperature dependences, in particular a high peak (modulo)
at the beginning of the roton region. (3) K& 4(T) can be negative: E j &0 in the region of the peak,
K4 &0 in the phonon region. This implies an "outstripping" effect: the center of the spreading sound
moves faster than the flowing superAuid part of the liquid itself.

I. INTRODUCTION

The presence of two types of macroscopic motions and
several sound modes in a superAuid provides an unusual
manifestation of the Doppler effect. The simplest situa-
tion corresponds to a completely locked normal com-
ponent: the Doppler shift of the fourth sound in He
II.' In Sec. II we consider the theory of this
phenomenon. We prove that the existing description of it
is inadequate. It claims that the effect is practically "ki-
nematic": The center of the sound sphere moves with the
velocity of liquid as a whole, v= j/p, i.e., with its center
of mass. Corrections to this result are supposed to be
small. We show that the real situation is quite different.
The coefficient K~ (—:K) in the Doppler-shift expression
bu4=(1 Kp„/p)v, su—bstantially differs from the kine-
matic value L = 1. The existing theory's formula
neglects the thermodynamic derivatives that are propor-
tional to the thermal expansion coefficient a(T). This is
not justified in the present case. Moreover, the coefficient
K can be expressed in terms of the derivatives of sound
velocity (c) and the roton gap (b, ) with respect to the
density [a —= (pic)dc ldp, r =(p/b. )db, /dp] and the
derivatives can be deduced from the experimental values
of a( T) (note that the parameters a, r are nearly constant
in the most interesting temperature region T ( 1 K).

Our theory predicts some physical effects: (i) At the
phonon region of temperatures T ~ 0.4 K, we get
K ( T)=const (0 (K = —2.7); i.e., the center of the sound
sphere moves faster than the superAuid component itself
(an "outstripping" effect). (ii) At the beginning of the ro-
ton region of temperatures ( T=0.63 K), the function
K ( T) has a sharp peak (K,„=26. 5 ).

In Sec. III we investigate the Doppler shift in the case
of a "free" normal component. Many years ago, Khalat-
nikov obtained very striking results for the Doppler shift
of second sound: The coefficient y(T) (hu2=yv„)

changes sign at the beginning of the roton region, so that
the entrainment" of the second sound becomes opposite
to the direction of the normal-component velocity v„.
Since the difference between v„and v=j/p (at v, =0) is
of zeroth order in p„/p, it is natural that the difference
between hu2 and U„,U is also of zeroth order in p„/p.
Correspondingly, hu2 is described by the calculation to
the lowest order in p„/p. In particular, one can indeed
neglect here the derivatives proportional to cr(T). How-
ever, for the case of first sound, this approximation is
inadequate: The differences between b u &, U, and
v =(1—p„/p)v, (v„=0)are of first order in p„/p. We
obtain a nontrivial behavior of the coefficient K, (T)
[b,u, =(1—K,p„/p)v, ]: Unlike the case of fourth sound,
the function

K i ( T) (= const) in the phonon region is pos-
itive (and large, Ki =47), and it becomes negative with
large modulus ~K, ~,„=33)at the beginning of the roton
region (T=0.55 K) where ~Ki(T)~ has a high peak.
Thus we get here a very large outstripping effect.

Note that although the difference between the kinemat-
ic prediction and the real situation in terms of the
coefficient K& 4 is very large, the maximum distinctions of
the total corrections to the Doppler shift correspond to
the low temperatures ( T—0.6 K) where the ratio p„lp is
small (see Tables I and II). Accordingly, the effect would
not be easily observable. in case of K4 [:—K(T)], it is

ore accessible to observe the growth of K(T) at de-
creasing temperature: if we are interested in corrections
of more than, e.g., 0.5%, the corrections are measurable
down to T;„=0.7 K, whereas the kinematic prediction
is T;„=1 K. In the case of Ki(T), it becomes accessible
to observe directly the outstripping effect, even though
the maximal (modulo) value of the total correction,
Kip„/p, is —0.12% (T=0.65 K).

In the conclusion of the paper, we discuss the origin of
the nonkinematic character of the Doppler shift in a
super Quid.
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II. DOPPLER SHIFT OF FOURTH SOUND

Iul=luol+ '
v, .

p
' (2)

This means that the center of the sound sphere moves to-
gether with the liquid (He II) as a whole —the velocity of
its center of mass is

Pn Ps Psv= v„+ v, = v, (v„=0).
p p p

Unlike Eq. (1) (hu =vf ), there appears a correction
which describes the inhuence of the immovable normal
component:

Pn
6Q = 1 Vs

p
(3)

In Ref. 2 the authors note that formula (2) is not exact
and replace it by the expression

(i) The Doppler shift of fourth sound in the He II (hy-
drodynamic sound with the condition of completely
locked normal component) has been investigated by Rud-
nick et al. ' and is used as a convenient tool to investigate
persistent currents and critical velocities in a Aowing
superfluid. ' In usual hydrodynamics the Doppler shift
of a sound mode is an effect with a truly mechanical (ki-
nematic) nature: The center of the spreading sound
moves together with the Quid —the medium of the
spread. Correspondingly, along the direction of motion,
the sound velocity changes according to the formula

I
u

I

=
I u, I+uf,

where uo is the sound velocity in an immovable Quid and
vf is the velocity of the Quid. In Ref. 1 the authors sug-
gested for the Doppler shift of fourth sound the simple
expression

different: The inhuence of the normal component sub-
stantially differs from the kinematic result IEqs. (2) and
(3)]. The correction in Eq. (4) does not represent the
complete contribution to the Doppler shift, because it
neglects terms containing thermodynamic derivatives
that are proportional to the thermal expansion
coefticient,

a—1 ap

p aT
C7=p

ap . T

which are essential here. Moreover, the correction in Eq.
(4) is not small: The result (4) also appreciably differs
from the kinematic one IEqs. (2) and (3)].

Using a generalization of Eq. (3),

bu = 1 —K(T) Pn
Vs ~

(3')

we obtain the coefficient X as a function of T, which sub-
stantially differs from the early supposition, accepted in
the literature, K(T)=1. At low temperature (T (0.4 K)
K ( T) proves to be a negative and nearly constant quanti-
ty: K = —2.7. The result E (0 means that immobiliz-
ing the normal component leads to an increase (contrary
to natural expectation) of the velocity of center of the
sound sphere. With increasing temperature the
coefficient K sharply rises to large (positive) value
(K,„-26at T=0.6 K) and then essentially decreases to
JC-2 at T-2 K. In conclusion of this section, we con-
sider the corrections to the fourth-sound velocity in an
immovable liquid which show that the calculations
without the terms proportional to a(T) are here also
inadequate.

(ii) When v„=0,the basic two-fluid hydrodynamic
equations are

Bp +divp, v, =0,
lul =luol+ ' + ~p, a(p. /p) a~

p

a(p„/p) ap
ap Vs ~ (4)

a(p~)

Bv

Bt
+(v V)v = —Vp

(5)

where o., p, and T are the specific entropy, pressure, and
temperature, respectively. The correction to p, /p in the
square brackets was assumed to be small. In Ref. 5 it was
pointed out that below T =1.4 K the correction can be
neglected, so that Eq. (2) becomes correct.

We show in this paper that the real situation is quite

(see, e.g., Ref. 5). Regarding all the variables in Eq. (5) as
functions of T,P, u, and substituting T,P, v, &0 with the
oscillating corrections (T', P', v,') ~exp[ico(ux —t)], we
find the system of linear equations for the amplitudes of
T', P', v,'. The condition for the nonzero solution of the
system gives the equation for the fourth-sound velocity u:

Bp ~P

BT BT

a(p )

aT

Bp ~P
"M +"' aP

a(p~)

Bp

a( —,'v, )
Vs+Ps

a(pa )

a( —,'v, )

Ps9+ Vs
p

=0 (6)
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a
aT pu

a = a
BP BP Ti v

(7)
a

a(-,",') a(-,'v,')
„ r

From the expression for the chemical potential,

We support here that v, « u.
The partial derivatives are taken here with all other in-

dependent variables held constant, i.e.,

He II with the experimental data (see, e.g., Ref. 5).
For the energy Fof a Bose liquid, we get

r 3

F=~ fo(p)— kT kT —kTn„
90 Ac

2p 2 (pkT) i/2e a/T—
n„= (2~)'"e'
p=0. 16m4H, 5=8.6 K, po =Akp,

ko=1.92X10 cm ', c =2 4X10 cm/s .

(13)

(14)

Bp

Bv, /2

a(p~)
av, /2

)

, a(p„/p)
Bp

a(p„/p)
g p

2

T, v

T, v

1 PndP= odT+ dP v dv
p p

we find (using the Maxwell relations)

(9)

2k 4T3
+

45c PA

~2T4 k4
P =f, (p)+f~(p) +kTn„s,

90c

where

(17)

Thus the entropy S =m¹r = —( aF /a T ) v and the pres-
sure P = —(aF/aV)z are

kn„
CT- —+— (16)

p T 2

a(p„/p)
+p

P, V

dfo F(T =0)—fo fo=
dp

Using (6) and (9) and the condition v, ((u, we get fz(p) = 1+3a, a =+
c dp

(18)

u =u +du, bu= 1—pn

2p

where

Bi
Qo =Ps D

A +B+C
2D

apn a(per )

aP aT
ap„a(p~)
aT ap

1 a(po ) + a(po )

aT
+

aP

Ps A +B+C
Q uo+uv~0 D

(10)

o dhs=1+—r —5, r =
T ' 6 dp

p dp 2p dPo

2p dp po dp

We have neglected here the derivatives (ab /aT)z,
(aP/aT), and (aPo/aT) (as, e.g., in Ref. 7). The first
two derivatives [(ah/aT), (ap/aT) ] are very small, at
least for T ( 1.7 K (see, e.g. , Ref. 8); the last one
[(aPo/aT) ] is negligible at all T (Tz. Po~P'/. The
third term 5 in s [see Eqs. (18)] does not contain the large
factor 6/T, unlike the second term. Moreover, the terms
in 5 [Eqs. (18)] nearly cancel each other:

a(p„/p )=P'
BP

a(p„/p) a(p„/p)
p ap +p aT

ap a(po ) ap a(po )D—

1 ap ap

p aT aP

(12)
po dp 3 p dp

(see Ref. 8). Thus we get

s 1+ r
T

an„g 1 n„an, g n„—+- r
BT T 2 T '

Bp T p

(19)

(20)

Underlined terms are of higher order in p„/p. They are
necessary here only for the corrections to uo (11) (in
B„D).

(iii) As is well known, the thermodynamic derivatives
for a Bose liquid can be approximately calculated in
terms of ideal gases of excitation —phonons (s=cp) and
rotons [s=b, + (p —

po ) /2p ]. One can see the high pre-
cision of such an approach by comparing the results of
the calculations, e.g. , for the entropy cr(T) [Eq. (16)] of we get

(21)

Using the expressions for the contributions of phonons
and rotons to the normal density,

2m' kT kT Po
P~ PPh P» ~ PPh 45 Ac» 3kT
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Bp
aT

Bp
BP

(ay/aT)„
(ap/ap )

T

1 T r
f2p~h+Ap„r+ —1+—

1+— +A.r(ay/ap)„=, 2

(22)

(23)

a(p„/p)
aT

a(p„/p)

T
pT pph+ T

1
(Sa +1)p h+ —+ r—p„1

(29)

where

m (kT)P f— —f — kTn„—s,
9Q

(24)

a(po ) c'
3p h+A, 1+—p„T

aT T' (30)

df,
dp

c 2 d f2b= —c p
dp c3

a(po ) 1 T
pT P 2g3apph+ A,r 1+ p„ (31)

3(kb )'
0 179

(cpo )

Similarly, we find

~pn

'BT p

Bp

BP

r

4Pph Pr 6 1T+T T 2

1 Pph 6 2 Pr
5a + —r ——

c p T 3 p

(25)

(26)

(27)

In Eqs. (27) and (29), we use Eqs. (19). In Eqs. (26)—(31),
we have neglected the terms quadratic in pph p„because
they give a very small contribution in the formulas for
hu(10), and uo(11).

Substituting the formulas (21), (22), and (26)—(31) in
Eqs. (12), we find A, B&,B2,C, D.

For calculation of b, u(10) with an accuracy of p„/p,
we can take in A, . . . , D only the terms of the lowest or-
der in p„/p. In that case we get

1.e.,

~+a+C p. ap a

2D 2p Bp BP
o ~p Bo

p BT BT
1 BP Bp ~p Bo

p Bp 8T BT 8T (32)

pn &(T) ap pna

p Bp BP
o ~pn Bo'

p BT BT
1 9P 3p ~P 9o

p Bp BT BT BT
(33)

[see Eqs. (3') and (10)]. Accordingly, we find

A+8+C Pn [, ( )]2D p

pn 1
t

2

5a —g [(b,/T)
I
rl +—', ] [4+g [(b, /T) —

—,
' ] j [a —

—,
'

kgl rl (1+T/2A ) ]

1+g (1+g)[1+—,'Ag (1+T/b, )]

p„—(a + —,')+kg [(lrl /3)+ —,', ]+g j(b/T)(a + rl )
—[(a/2) —

—,']—(1/3)(5a +4lrl+ —,
'

)J

p (1+g)[1+—,'Ag (1+T/b, )]
(34)

where

p (T) e8.6(1 1/T)—
g(T)= =57.6

pph T T T

second term to the roton's contribution, and the third to
the phonon-roton's combined contribution.

In the pure phonon region g «1 (T &0.4 K; see Table
I), we get

(T is measured in kelvin).
We take into account that r &0 for He II. [Note that

r &0 also for the weak-interacting Bose gas (WIBG). ]
The first term in the numerator on the right-hand side of
Eq. (34) corresponds to the phonon's contribution, the

hu = 1+a Pn

p
v

A +8+C 1 Pna+—
2D 2 p

(36)
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TABLE I. Fourth-sound Doppler shift

T~O
0.3
0.4
0.5
0.55
0.6
0.63

0.65
0.67
0.7
0.75

0.8
1.0
1.2
1.5
2

~0
2.5 X10-'
8.9X 10

0.24
0.75
1.86
2.96

3.91
5.04
7.21
12.01

18.26
57.62
106.6
164.6
186.8

—2.67
—2.66
—2.04

8.28
18.81
25.56
26.56
(max)
25.72
25.28
23.16
18.93

15.06
6.27
3.62
2.4
1.87

—12
—11.97
—11.8
—6.55
—0.47

2.09
6.44

7.25
7.78
8.2
8.35

(max)
8.12
6.85
5.94
5.06
4.17

~0
9.5X 10
2.9 X10-'
8.2X 10
1.9X 10
4.3X 10
7.3 X10-'

1.03 X 10-'
1.4X 10
2.3 X 10
4.8X 10

8.93 X 10-'
6.9X 10
2.6X 10
0.096
0.35

—+0
—2.5X 10
—5.9X 10

6.8 X10-'
3.6X 10
1.1 X 10
1.9X 10

2.6X10-'
3.5 X 10

5.3 X10-'
9.1X10-'

1.3 X10-'
4.3 X10-'
9.4X10-'
0.23
0.65

Provided a =(p/c)dc/d )0 E
anomalous Doppler shift. The coeffici

p), q. (36) corres on

(3')] is here constant and
to )Oi f lfilldf H

ain t e anomalous Doppler shift too:

20—

15—

I

1 .--------,'-
04 I

2 I
I

I
I
I
l
I
I
I-6-

I
I
I-9- I

I
I

I-12------

1.2Q.B
I I I I I I I I I I I I I

1.6 2.0

Q W&9Q 2 & ~~%IBG — 1 + pn

2p

Outside the hphonon region, one of the
( oo io 1o )' llo g in t e numerator of the ~

g (6/T)(a + ~r~ —ives t
' ' ' o

q. (34 —with
a r —gives the main contribution to K:

FIG. 1. Coefficient K{T) '
h p

sound Doppler h ft b =[
in t e expression f

s i, u = 1 —K(T)p„/p]U, .

T 1+1/g
(37b)

a+S+C p. S a+(rt
2D p T 1+1/g

(37a)

With incr
'

creasing temperature this term
owing to the sh

is erm quickly increases
o e s arp increase of g(T). It becom

rable (modulo) with the h
t ecomes compa-

vides an extremel shar
i e p onon term, excee"ds it, and pro-

g
h

e y s arp increase of K ( T) from ne

imum

= —a = —. to the large positive max-

[T =0.63 K, g =2.96 K; see E .; see q. (39)]. The correction
o er terms somewhat diminiimmishes this result

urther increase of the tern e

increase of in th
ecause of theto di i tio of K(T) b he factor 1/T and the

e o g in t e term proportional to A, i
inator [see Eq. (34)]. E

g in the denom-

k
'

l K —
1 b

ventually, K ( T) a
ut becomes less

a e and Fig. 1).
(iv) Fromom the expression for the therm

o ffi i [ E (22)

1 Bp 1 Pph
f2 +I,

P p

T PrT
2A" 2 p

T

= 10 0. 117f2T3+1.21 T" ]+ + T
17.2 8.6

(38)

.2, where T is measured in kelvin' the eT &1.2 h
fo

proximate values of = +
re a uced, e.g. , in Ref. 5~ we

o 2= +3a) and r:

f2=9 (i.e. , a=2.67), r= —0"0

Puttmg Eqs. (34), (35), and (39) in Eq. (10), we obtain

1 —K(T) Pn

p

1 —3. 17+0.045 8g '+g ( 28.09/T —2. 14
2 (1+g)[1+0.06g (1+T/8. 6) ]

(40)
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= l. 17 X 10 T (1+g) (41) 1.e. ,

hu = 1 —K* U, ,
~Pn

p

pn «Bp pna

p Bp BP
0 ~pn OCT

p BT BT

—5a +g [(b/T)(r(+ —', ]

1+g
[4+g [(b /T) —

—,') )(1+AgT/b )
+ 3(1+g)[1+I ig(1+ T/b, )]

p

(42)

K (T)=
—13.3+g (5. 16/T +—', )

1+g
4+0. 179g +g ( 8.6/T —

—,
'

)
+ 3(1+g)(1+0.06g)

In the case g ((1 (phonon region), we get

K*=—(5a+-', ) KwiBo= —", (a =-,'}, (43)

(see Table I and Fig. 1).
Thus, with decreasing temperature, the coefficient K

grows from the almost kinematic value K —1 up to rnax-
imum E =26.56 at T=0.63 K and then sharply drops
down to a negative value that means the anomalous
Doppler shift.

The fourth line of Table I shows the values of E ac-
cording to formula (4) [obtained without taking into ac-
count terms proportional to a( T)]:

4 Pn
hu = 1+ —+5a

3 p

23 Pn
ku wjBG 1 +

6 p

[cf. correct results, Eqs. (34), (36), and (40)].
We see that the "approximate" formula (4) gives a sub-

stantially different result from the exact one especially at
T (1 K. Simultaneously, we note that the formula (4),
like the correct one (10), does not lead to the result K = 1,
although the peak of K'( T) at about 0.7 K is not so high
and sharp as the peak of K(T). At low temperature
(T (0.6 K), it also corresponds to the anomalous
Doppler shift; at T & 0.5 K I( * becomes much more neg-
ative than K.

Finally, in Table I we adduce the total corrections to
the Doppler shift —the exact one [K(T)p„/p] and the
kinematic one (p„/p).

Since the difference between K ( T) and K *(T) is pro-
portional to the thermal-expansion coefficient a(T) [see
Eqs. (33) and (42)], it is interesting to compare the tem-
perature at which I( =K* with the experimental temper-
ature at which the measured a(T) vanishes. We obtain
T «=1.0 (see Table I) and T 0=1.1 (see, e.g., Ref.
5). This reflects the exactness of our numerical calcula-
tions of K ( T) and K*(T) on the basis of two main pa-
rameters a and r.

(v) Substituting the expressions for 8, and D in Eq.
(11), we can calculate the correction to the fourth-sound
velocity (uo —c) ~p„/p. We get

p& &i Bp pn B(po ) Bo
Qp —p 1

~ ~p
1apM
p BT Bp

Pn b/4+Agr [3a —Ag ~r~(1+ T/2b ))
p 1+g 3(1+g)[1+—,'Xg(1+ T/b )]

(44)

At g —+0 we obtain

uo =c 1 — 1+——3a
Pn b

p 4

for the WIBG (a =
—,', b = —", ),

(45)

z 2 Pn b/4+A, gr

p 1+g

(1+Ag T/6 )

3(1+g)[1+—,
' Ag (1+T/b. )]

19 P
uo c 1

16 p
(46) (48)

Note that the usual approximate formula for uo that is
obtained by neglecting the derivatives proportional to the
thermal-expansion coefficient a [see, e.g., (24.6) in Ref. 7],

at g~0,

Pn 2 bQp=c 1 +
p 3 4

ps Bp ps
a Bp PBa /BT '

also does not give the proper correction:

(47)
for the WIBG, uo=c [1—Pp„/p] [cf. Eqs. (45) and

(46)].
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III. DOPPLER SHIFT OF FIRST SOUND

(i) The consideration of the Doppler shift in the case of
a free (unlocked) normal component is based on the com-
plete set of hydrodynamic equations,

BP +divj =0, j=p„v„+p,v, ,

Bv
+(v, .V)v, =Up, .

Bt

Let the sound oscillations be propagated in the direction
along the x axis, Ox, and let v„iiv,iiOx. Using the nota-
tion

Bj;
+~k(p~ik+pnvnivnk+psvsivsk )at

B(po ) +div(po. v„)=0,
at

(49)

v= j/p, w=v„—v, , U=u —v, (50)

we obtain the following equation for the sound velocity u

(owing to the Galilean principle, the quantity u can ap-
pear only in the combination U=u —v):

BP
BT

UaP
Bp

—Uw
a

Bw /2

Bo B(p (r)
Upo +w

aT

2pnps
W

P
B~ B(p,~) B~—Up +w p o —Uwp 2BP BP Bw 2/2

—Up

=0. (51)

B(p„/p)—o+ Uw
B(p„/p)—+ Uw

P
(U —w)

Pn

P

PnU+
P

Using (9) and the condition w « U, we get

AU +BU +C+RwU +SwU =0,
U; =u '+y;w,

u, =u,"'+v+y, w

(52)

(53)

Bp B(7+ Bp p
BT BP BT BP

pp, ~ Bp B(p„/p) p4 B B(p„/p)
p„BT BP p„BP BP

(57c)

where

aP a~ aP a~' ' BPBT BTaI

=u,'"+ y, + " u„+ l—
P

(0) 2 B+(B 4AC)
2A

R(u' ') +S
2[2A (u,"')'—B]

'

Pn
Vl

P

(54)

(55)

(56a)

+2pspo
Ps~ Bp Bo

as
(57d)

The coeScients A, B,C,R,S contain terms of both first
and second order in p„/p [see Eqs. (22), (23), and
(26)—(31)];the latter are underlined. Note that all the un-
derlined terms are proportional to a( T) or to a( T)

In the first approximation, we neglect all the under-
lined terms; the results coincide (to the same order) with
those obtained by Khalatnikov [see Eqs. (53)—(57)]:

2

(
(0) )2 = BP (0) 2(u~ ) =

Bp p„(Bo'/BT)
2

Bo. Ps ~ BpB=—
p

pspo

R = — M+R', S =M+S',a
as

B~ B(p, ~) pp, ~ B(p„/p)
M =(2p, +p) +

Pn

B(p„/p)
p BT

(56b)

(56c)

(57a)

(57b)

y1=0,
since

R (u', ') +S=M — p (u'0')'+1 =0Bp
as

i.e., U, =u1 'or

u1 u1 +v =u + 1 Us
Pn

1

(if v„=0),
M cr ~P2—

2PBo /BT P„Bo/BT

(58)

(59)
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1.e., U2 = u 2 +Q 2V n ~

(0) TABLE II. First-sound Doppler shift.

Pn
u =u'"+ y + v„u2 +Q~vn

(0)

(if u, =0). Using Eqs. (16), (21), (28), and (30), we find

(60)
[4+g (b /T —

—,
' )](1+gA, T/b. )

[3+gA(1+ T/b, )](1 +g)

In the phonon region (g « 1) y2(T) is positive constant:
y2 ( T)= ', ; at t—he beginning of the roton region ( T =0.6
K), there appears a sharp negative minimum of yz(T):
y;„(T)——1 [the term b, /3T(1+1/g) plays here a role
similar to the role of the term in Eq. (37) for the function
K(T); see Eq. (34)]. The result y &0 means an extremely
interesting physical effect found by Khalatnikov: the
poossibility of the entrainment of the second sound in the
direction opposite to the normal-component velocity.

The results obtained in the first approximation are ade-
quate for the investigation of the Doppler shift of the
second sound, but not for the first sound. In the latter
case, we must take into account terms of the next order.
The reason for this is the following: The motion of the
center of sound "sphere" for the first and second sounds
is not connected with the rest frame of either the liquid as

la whole or one of its components (superfiuid or norma,
respectively). Thus we can expect for the Doppler shift
velocity something "intermediate" between v=j/p and
v (v ). For the second sound, the difference between theVs Vn

ll:corresponding velocities v and v„(v,=O) is not smal:
(u —u„)/v„~p, /p = 1; therefore,

~ y2
—1

~

—1. However,
for the first sound the corresponding difference between v

and u, (u„=O)is small: (u —v, )/u, o-p„/p; accordingly,
~y&

—
1~ ~p„/p. Thus, for the calculation of the "inter-

mediate" Doppler-shift velocity in the case of first sound,
fwe need a higher order of accuracy than in the case o

second sound.
If we represent the exact expression for y&(55) by

means of M, R ',S' [see Eqs. (57)],

(61)
M[( —Bp/BP)(u', ') +1]+R'(u', ') +S'

'V&=
2[23 (u' ') —B]

T~O
0.3
0.4
0.5
0.53
0.55

~0
2.5X 10
8.9X 10
0.24
0.49
0.75

0.57
0.6
0.65

1.1
1.86
3.91

0.7
0.8
1.0
1.2
1.4
1.5
2

7.21
18.26
57.26

106.6
148.6
164.2
186.8

20-

Kl (T)»
50-

47.5
47.47
43.16

—14.5
—30.2
—33.3

(min)
—31.3
—24.0
—11.4

—3.5
—0.2

0.99
0.998
0.95
0.94
0.935

—+0
9.5 x10-'
2.9X 10
8.2X 10
1.4x10-'
1.9X 10

2.6X 10
4.3X 10
1.03 X 10

2.3 X 10
8.9X 10
6.9 x10-'
7.6x10-'
6.7 x10-'
0.096
0.35

K lP„/P
~0

4.5 X 10
1.2X 10

—1.2x10-'
—4.2X 10
—6.3 x10-'

—8X10
—1.0X 10
—1.2X 10

(min)
—0.8 x lo-'

1.7X 10
6.8 x10-'
2.6X10 '
6.3 x 10-'
0.09
0.33

I I (O) i2we can use for all the quantities M, R,S, A, B,&u,
except (u I ') in the numerator, the lowest order in p„/p:
The terms R', S', and M( . ) in the numerator and
A (u' ') B in the denominator are quantities of the sameu )

order (the second and first, respectively). Thus we obtain
simpler expressions for M, R ', S', -10—

I I I

0.2 O.

kina

I I I 1 I I I

1.0 1.4 1.8 T(K)

acT 20 apn

aT p aT

a~ ap a(p~) ap p'~ d(p. /p) a~R —3P ap aT+ ap aT p„ap ap

-20-

p'~ ap a(p„/p)
p„aT ap

apS'=~ P +2p ~aT ap

(62)

FICx. 2. Coefficient K&(T) in the expression for the first-

sound Doppler shift, b u
&

= [ I —K, (T)p„/p]u, .
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the expression for the denominator (the first order in

p„/p),

2A (u' ') —8=(8 —4AC)
aP, ap a aP
Bp BT BP Bp

Bo p a Bp
BT P„Bp

and (u I
' } for the numerator, with a correction,

Bo' po ~p
BT p„BP (63)

We get

(64)

2
Bp Bo. BP Ba prJ Bp ~, "dP +
BT BP Bp BT p„BP Bp

In the case u„=0[i.e., u = (p, /p)u„w = —u, ] we find

Bo po Bp
BT p„BP (65)

U&=ul —
r&U,

(0) ul=uI + 1—(0) pn
+/I U

. p
(66)

[see (53)] or [using the denotation y, = (K, —1)p„/p, which refiects the estimate y&
~p„/p]

u —u +oui

Xi(T)= ap

p

bu, = 1 —K&(T) u, ,
Pn

Bp Bp Bo. o. ~pa

aT ap aT p„aT
' BP 2 Bp o. Pn +6o

(jp 2 Q T p (jP p

'2
Bo' pcs Bp
aT P„M

Bo po Bp
aT p„aP

(67)

=1+F 2 3+gA, 1+— (1+g)— 1+gA,— 4+gT T 1

G2 T 2

2F(1+g)—(1+gAT/b, ) j 5a —g [(b /T)lrl+ —', ]]—6(1+gAT/b )(1+g)
G(1+g)

(68)

F:—3a+1—gA, lrl 1+ T
2h

6 = 3+gA, 1+—T (1+g)— 1+gA,—T
2

[see Eqs. (22), (23), and (26)—(31)].
Substituting the values of A, [Eq. (25}]and a, r [Eq. (39)], we get

E ( T)=1+F 2 3+0 179g 1+ T
G2 (1+g)—(1+0.02gT) 4+g 8.6 1

T 2

2F(1+g)—(1+0.02gT) [13.33—g (5. 16/T+ —,
'

) ]—6(1+0.02gT)(1+g)
G(1+g) (69)

9—0. 11g 1+ +0.02gT
T

17.2
(70)

(T is measured in kelvin).
In the phonon region (g ((1), E:,(T) is positive con-

stant,

6 = . 3+0.179g 1+ T (1+g) K, ( T)= 1+(3a + 1)(a + —,
'

) =47.5; (71)

—(1+0.02gT)

its sign corresponds to the normal Doppler effect, but its
value is much more than the kinematic one, K& =1. At
the beginning of the roton region ( T-0.5 K), the weight
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of the roton terms —erst all of the terms proportional to
gb, /T s—harply increases and provides a deep minimum
of the function K, (T) at T=T =0.55 K with a large
negative value of E

&
..

Ki,„=—33.3 . (72)

Thus we obtain here a strongly pronounced "anomalous"
Doppler shift —the large outstripping effect. At higher
temperatures (T-1 K), the corrections to the kinematic
result K

&

= 1 becomes small (see Table II and Fig. 2).

IV. CONCLUSION

I uI = Iu, I+V, . (73)

Even the immovable normal component takes part in the
spread of fourth sound: There are the oscillations of p„
[the normal and superQuid components can convert into
one other; cf. Eqs. (5)]. We can therefore expect the
Doppler-shift velocity to change: b, uAu, . (In He- He
mixtures, the part of p„connected with He does not par-
ticipate in the oscillations; correspondingly, at small con-
centrations the inhuence of He on the Doppler-shift
fourth sound becomes negligible in comparison with its
contribution to p„',this is confirmed by the calculations
in Ref. 9), i.e., Eq. (73) becomes correct at T—+0.

The result that the Doppler shift is greater when part
of the Quid is motionless than when the Auid Rows as a
whole [see (36), (67), and (71)] is highly curious, but it
does not contradict any general principles. This is not a
mechanical (kinematic) problem, connected with Galilean
relativity; it is a question about an inner thermodynami-
cal property of the system. First of all, let us take into
account that even fourth sound is not an oscillation of the
superfluid component only (as is sometimes claimed in
the literature). Such a picture would correspond to the
following formula of the Doppler shift:

Although the normal component takes part in the first-
and fourth-sound oscillations, this participation is not on
equal grounds, so that formula (2) is not valid. We can
expect the correctness of Eq. (2) only for collisionless
sound, which does not distinguish between the normal
and superAuid components, so that the "rest frame" of its
spread is the center-of-mass frame of the Bose system.
The anisotropy of the state must contribute here only a
small correction, but in the two-Quid hydrodynamic re-
gion, the situation is more complicated. The anisotropy
connected with the relative motion of the normal and
superAuid components leads to an appreciable change in
the conditions of the spread of the hydrodynamic mode
in different directions (there appears an anisotropy of the
local-equilibrium properties of the medium). In the case
v„=O,the contribution of the anisotropy turns out to be
so large that the effect exceeds that for the case of the
motion of the whole Quid.

Finally, let us note that the temperature which corre-
sponds to a strong change of the Doppler-shift charac-
teristics K(T), yz(T), and K, (T) (to the appearance of a
peak), nearly the same in all the cases, T=0.6 K—the
beginning of the "roton" region —is determined by a
common cause: the connection of the characteristics
with the derivatives t)p„/BT cc [4+g (5/T —

—,
'

) ] and

~P 6 2—5a +g —(r~+—
BI' T 3

cf. Eqs. (26), (29), (34), (60), and (68). Note also that this
temperature is special for some other characteristics of
the superAuid too —see, e.g. , the behavior of the second-
sound velocity, both in the usual case [Eq. (58)] and in the
case of large amplitude.

ACKNOWLEDGMENTS

I would like to thank Professor A. Mann, Professor F.
Pobell, and Professor M. Revzen for valuable discussions.

I. Rudnick, H. Kojima, W. Veith, and R. S. Kagiwada, Phys.
Rev. Lett. 23, 1220 (1969).

H. Kojima et al. , Phys. Rev. Lett. 27, 714 (1971).
H. Kojima et al. , J. Low Temp. Phys. 8, 187 (1972).

~I. M. Khalatnikov, Zh. Eksp. Teor. Fiz 30, 617 (1956) [Sov.
Phys. JETP 3, 649 (1956)].

sS. J. Putterman, Superfluid Hydrodynamics (North-Holland,
Amsterdam, 1974).

Yu. A. Nepomnyashchy and M. Revzen, Phys. Lett. A 161, 164
(1991).

7I. M. Khalatnikov, Introduction to the Theory of Superjluidity
(Benjamin, New York, 1965).

80. W. Dietrich, E. H. Graf, C. H. Huang, and L. Passel, Phys.
Rev. A 5, 1377 (1972).

F. Pobell and M. Revzen, Phys. Lett. 55A, 91 (1975).


