EfFects of Ce and F doping and reduction on the electronic structure of $Nd_{2-x}Ce_xCuO_4$ and $Nd_2CuO_{3.6}F_{0.4}$ as determined by x-ray-emission spectroscopy

S. M. Butorin, V. R. Galakhov, and E. Z. Kurmaev

Institute of Metal Physics, Russian Academy of Sciences, Ural Division, Ekaterinburg, GSP 170, Russia

S. M. Cheshnitsky and S. A. Lebedev

Special Design Office for Scientific Equipment, Russian Academy of Sciences, Ural Division, Ekaterinburg, GSP 170, Russia

E. F. Kukovitzkii

Kazan Physical Engineering Institute, Kazan, Russia (Received 16 March 1992; revised manuscript received 20 October 1992)

The Cu $L_{\alpha,\beta}$, O K_{α} , and F K_{α} x-ray spectra of Nd_{2 -x}Ce_xCuO₄ and Nd₂CuO_{3.6}F_{0.4} are presented. It is found that doping with Ce or F and reduction lead to the formation of Cu^+ ions. The O K_α difference spectra of $Nd_{2-x}Ce_xCuO_4$ ($x\neq 0$) and Nd_2CuO_4 exhibit a charge-density redistribution from Cu-O to Ce-O bonds. Fluorine ions are introduced into oxygen sites in $Nd₂O₂$ layers.

I. INTRODUCTION

The report¹ on the discovery of electron-doped superconductors $Nd_{2-x}Ce_xCuO_4$ has aroused a great deal of interest, since superconductivity in cuprate compounds was believed to be intrinsic in only hole-doped oxides. It has been found that the superconducting properties of the new superconductors (including the superconducting phase transition temperature T_c) are similar to those of $La_{2-x}Sr_xCuO_4$ compounds, regardless of the polarity of the charge carriers. Therefore, an investigation of these oxides provides further understanding of the superconductivity mechanism. In both types of superconductors, the crystal structure is dominated by $CuO₂$ layers, where each Cu atom is surrounded by four O atoms. However, in the $Nd_{2-x}Ce_xCuO_4$ system (the so-called T' structure), two apical oxygen atoms below or above the $CuO₂$ layer, which are found in $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$ (T structure), are absent.

Since the discovery of the $Nd_{2-x}Ce_xCuO_4$ system, many x-ray-spectroscopic studies of its electronic structure have been carried out. However, the results obtained are not consistent with each other.

It still remains to be ascertained which of the Cu 3d or Cu 4s states are occupied by the dopant electrons, and why the oxygen content is crucial in determining the superconducting and metallic properties of these materials. For unreduced samples, the authors of Refs. 2—6 have observed a linear increase of $Cu⁺$ concentration on doping with Ce. On the other hand, Fujimori et $al.$ ⁷ have found no evidence for the occupancy of Cu 3d orbitals n_d by dopant electrons up to $x \le 0.15$. For reduced samples, several workers report a linear dependence of $Cu⁺$ on Ce content,^{5,6,8} however, Ishii et al.³ point out that n_d is independent of Ce concentration for $0.1 \le x \le 0.2$. Thus, insofar as the character of the additional charge is concerned, there are several interpretations: (i) the electrons donated by Ce fill the Cu 3d holes, leading to formation of $3d^{10}$ configurations in the ground state [see, in addition to the aforementioned references, the x-ray absorpion spectroscopy $(XAS)^{9,10}$ electron-energy-loss specion spectroscopy $(XAS)^{9,10}$ electron-energy-loss spectroscopy $(EELS)^{11}$ photoelectron spectroscopy $(PES)^{12,13}$ and Auger electron spectroscopy $(AES)^{14}$ data]; (ii) the electrons are injected into a band rather than being localized on Cu sites^{15,16}; (iii) the additional charge has a Cu 4s-like nature.^{7,17} '

In turn, reduction of the sample, according to the authors of Ref. 18, involves adding electrons to the Cu-4s- $O-2p\sigma$ bond and enhances the Cu-O bond covalency; however, according to Refs. 2, 4, 5, 13, and 19, it leads to $Cu⁺$ formation.

Another method of bringing about electronic superconductivity in the Nd_2CuO_4 cuprate is the replacement of part of the oxygen by fluorine.²⁰ In this case, an increase in $Cu⁺$ concentration upon F doping has been found.²¹ But so far, the Nd-Cu-O-F system has received little or no x-ray-spectroscopic study.

X-ray-emission spectroscopy is a much less surfacesensitive method than photoemission spectroscopy (for Nd_2CuO_4 , the maximum escape depth of x rays for a 4- \overrightarrow{X} electron beam is \sim 2500 Å) and provides direct information about the occupancy of the energy levels and about the local densities of electronic states of each of the elements in the valence band of the compound.

In this study, measurements of the Cu $L_{\alpha,\beta}$, O K_{α} , and F K_{α} x-ray-emission spectra of unreduced and reduced $\text{Nd}_{2-x}\text{Ce}_x\text{CuO}_4$ (x = 0, 0.05, 0.1, 0.15, 0.20) and $Nd_2CuO_{3.6}F_{0.4}$ samples were carried out. As a result, we came to the conclusion that Ce or F doping and reduction lead to formation of monovalent copper and the additional charge has Cu 3d character.

II. EXPERIMENT

 $Nd_{2-x}Ce_xCuO_4$ (x =0, 0.05, 0.1, 0.15, 0.20) samples were prepared using high-quality $Nd₂O₃$, CeO₂, and CuO

 0.2

 $\sum_{0.1}$

waaaa unreduced
William reduced

as starting materials. Mixtures of nominal composition were sintered at 950°C for 12 h and at 1100°C for 24 h, with intermediate regrinding, pressing into pellets, and cooling together with the furnace. Some of the samples were reduced in a helium atmosphere at 900'C for 12 h. As a result, the $x = 0.15$ sample showed bulk superconductivity with $T_c = 22$ K.

 $Nd_2CuO_{3.6}F_{0.4}$ samples were obtained using NdF_3 as a fluorine-containing reagent. Stoichiometric mixtures of starting materials were ground, pressed into pellets, and annealed at 1050'C for 12 h. After regrinding, the material was pressed into pellets and synthesized at the same temperature for 24 h. To obtain superconductivity, the samples were reduced in vacuum. For the final material, the T_c was found to be \sim 21 K.

The composition of the samples was checked by the xray phase analysis method (a DRON-3M diffractometer, Cu K radiation). $Nd_2CuO_{3.6}F_{0.4}$ samples exhibited a small impurity of NdOF.

Cu $L_{\alpha,\beta}$, O K_{α} , and F K_{α} x-ray-emission spectra were measured with an RSM-500 x-ray electron excitation spectrometer using a diffraction grating $(R = 6 \text{ m}, 600 \text{ m})$ lines mm⁻¹). The O K_{α} and F K_{α} radiation were recorded in the first refiection order (the instrumental broadening was \sim 0.7 and larger than 0.8 eV, respectively), and Cu $L_{\alpha,\beta}$ spectra were obtained in the first and second refiection order (the instrumental broadening was 1.¹ and less than 0.6 eV, respectively) with the x-ray-tube operating parameters being $V = 4$ kV, $I = 0.2 - 0.3$ mA.

For detection of Cu L_{α} (the second reflection order), O K_{α} , and F K_{α} radiation, the spectrometer was calibrated using V L_1 (446.5 eV), Cr L_1 (500.3 eV), V L_α (511.3 eV), and Co L_1 (677.8 eV) lines of pure metals,²² respectively. The vacuum in the x-ray tube, better than 10^{-6} Torr, was produced by oilless pumping.

III. RESULTS AND DISCUSSION

A. Copper

 $L_{\alpha,\beta}$ x-ray-emission spectra (3d \rightarrow 2p_{3/2} and 3d \rightarrow 2p_{1/2} transitions, respectively) of 3d transition metals provide direct information about the occupancy of 3d orbitals, allowing one to estimate the chemical state of these metals in any compound.

Figure ¹ shows the variation of the occupancy of Cu 3d orbitals in both unreduced and reduced $Nd_{2-x}Ce_xCuO_4$ $(x\neq0)$ samples upon Ce doping in comparison with that in Nd_2CuO_4 . The difference occupancy was evaluated as

$$
\Delta n_d = \frac{I_x - I_o}{I_e} \ ,
$$

where I_x , I_o , and I_e denote the integral intensities of Cu $L_{\alpha,\beta}$ lines normalized to the intensity of the core Cu L_l line $(3s \rightarrow 2p_{3/2}$ transition) for $Nd_{2-x}Ce_xCuO_4$ $(x\neq 0)$, $Nd₂CuO₄$, and Cu₂O oxides, respectively (we postulated that I_e corresponds to $n_d = 10$). The Cu 3s electrons do not take part in the chemical bonds; therefore, the intensity of Cu L_i spectra is not sensitive to a change in the chemical state of copper. Indeed, a model self-consistent

in $Nd_{2-x}Ce_xCuO_4$ ($x\neq0$) samples upon Ce doping in comparison with that in Nd_2CuO_4 .

calculation (Dirac-Hartree-Fock-Slater approximation) of the matrix elements of the transition probabilities corresponding to Cu L_1 spectra for Cu⁰ and Cu²⁺ (Cu3d⁹) ions has shown that they differ by a small amount (0.5%) .²³

Inspection of Fig. 1 shows that upon Ce doping, the n_d value increases in both unreduced and reduced $Nd_{2-x}Ce_xCuO_4$, being higher in reduced samples in comparison with that in unreduced samples although the difference between samples of both types with equal x values is within the measurement error.

On the strength of these data, we evaluated oxygen osses during reduction. The δ values obtained vary from ~ 0.03 in Nd₂CuO_{4- δ} to ~ 0.002 in Nd_{1.8}Ce_{0.2}CuO_{4- δ}. This is in good agreement with results of thermogravimetric analysis $(TGA)^{24}$ and electron paramagnetic resonance $(EPR)^{25}$ investigations.

The increase of the occupancy of Cu 3d orbitals when the Nd-Ce-Cu-0 system is doped with Ce can be a result of both $Cu⁺$ formation and the increase of the contribution by the $3d^{10}\underline{L}$ configuration (\underline{L} denotes a hole on a ligand) to the ground state of divalent copper.

Earlier, we pointed out the dependence of the ratio of the integral intensities of Cu L_{β} and Cu L_{α} lines $[I(L_\beta)/I(L_\alpha)]$ on the chemical state of Cu atoms.²⁶ For monovalent copper, this ratio is appreciably lower than that for Cu²⁺. The $I(L_\beta)/I(L_\alpha)$ values for both unreduced and reduced samples of Nd-Ce-Cu-O and Nd-Cu-0-F systems are presented in Table I. As the dopant concentration is increased the $I(L_\beta)/I(L_\alpha)$ ratio decreases; its diminution, for example, in $Nd_{1.8}Ce_{0.2}CuO_4$ compared to that in Nd_2CuO_4 , being equivalent to the appearance of 15% of the monovalent copper [for $Cu₂O$ the $I(L_\beta)/I(L_\alpha)$ ratio is 0.182].

Cu L_{α} x-ray-emission spectra of $Nd_{2-x}Ce_{x}CuO_{4}$ oxides are depicted in Fig. 2. For unreduced samples, no change is observed in the energy of the L_{α} peak, while the full width at half maximum (FWHM) of this line increases by 0.3 eV as $x = 0.15$ is doped with Ce (see Table

TABLE I. The ratios of the integral intensities of Cu L_{β} and Cu L_{α} lines $[I(L_{\beta})/I(L_{\alpha})]$ of $Nd_{2-x}Ce_{x}CuO_{4}$ and $Nd₂CuO_{3.6}F_{0.4} compounds.$

Material	$I(L_{\beta})/I(L_{\alpha})$, ±0.004	
	Unreduced	Reduced
Nd ₂ $CuO4$	0.301	0.298
$Nd_{1.95}Ce_{0.05}CuO_4$	0.297	0.290
Nd_1 $_0Ce_{0.1}CuO_4$	0.289	0.295
$Nd_{1.85}Ce_{0.15}CuO_4$	0.294	0.285
Nd_1 _s Ce_0 ₂ CuO ₄	0.283	0.283
$Nd_2CuO_36F_{0.4}$	0.284	0.282

II). One might have accounted for this broadening only by the contraction of the unit cell volume of doped Nd_2CuO_4 (see, for example, Ref. 27), leading to larger overlapping on valence electron wave functions. But the similar effect exists in Nd-Cu-0-F oxide, where such a contraction has not been found (see below). On the other hand, the Cu L_a line of a reduced, superconducting $Nd_{1.85}Ce_{0.15}CuO_{4-\delta}$ sample is narrower in comparison with that of nonsuperconducting $Nd_{1.85}Ce_{0.15}CuO_4$.

In addition, Fig. 2 shows Cu L_a spectra of the $Nd₂CuO_{3.6}F_{0.4}$ system, and one can see that F doping of unreduced Nd_2CuO_4 also leads to an increase in the Cu 3d bandwidth, while the reduction of $Nd_2CuO_{3.6}F_{0.4}$ gives rise to a decrease in the FWHM of the Cu L_{α} line. Such changes of the spectra are similar to those observed for the $Nd_{2-x}Ce_xCuO_4$ system. However, although the lattice parameters for Nd_2CuO_4 reveal similar behavior (the a axis expands and the c axis contracts) as Ce and F are substituted, no contraction of the unit cell volume with increasing F content is observed.²⁸

FIG. 2. Cu L_{α} x-ray-emission spectra of $Nd_{2-x}Ce_{x}CuO_{4}$ and $Nd_2CuO_{4-\nu}F_{\nu}$.

The cause for the variation of the FWHM of Cu L_{α} emission bands is probably the presence of excess oxygen atoms in the compound studied, $29,30$ atoms which can be reversibly introduced or removed by oxygen or vacuum annealing. Such excess oxygen atoms may be located on apical oxygen sites, which are normally empty in the deal T' structure. Tanaka, Okada, and Kotani³¹ have calculated the Cu L_{α} spectra of CuO and La_2CuO_4 using the Anderson impurity model. According to that calcuation, the hybridization enhancement for the a_{1g} symmery states (i.e., $Cu-3d_{z^2-z^2}-O-2p\sigma$ hybridization) in $La₂CuO₄$ owing to the existence of the apical oxygen leads to broadening of the Cu L_{α} band as a result of a redistribution of the ${}^{3}B_{1g}$ spectral component. Thus, in oxygen-rich Nd_2CuO_4 , Ce and F substitution, resulting in c-axis contraction, gives rise to a decrease in the Cuapical-0 distance and, hence, to the enhancement of the a_{1g} hybridization.

In Nd_2CuO_4 , the Madelung energy acting on an electron at a Cu site has been shown to be 3.0 eV (Ref. 32) lower than that in La_2CuO_4 . Hence, the presence of apical oxygen atoms is unfavorable for electron doping of the $CuO₂$ planes due to the repulsive Coulomb interaction. In turn, a sample reduction, removing the excess oxygen atoms, results in an increase of the occupancy of Cu 3d orbitals owing to the introduction of an additional charge into CuO₂ planes and in Cu L_a narrowing as a consequence of the weakening of the a_{1g} hybridization. However, according to Wang *et al.*³⁰ in the reduced $Nd_{2-x}Ce_xCuO_4$ compounds with $x \ge 0.15$ the oxygen content becomes lower than 4. Therefore, another cause for decreasing the Cu L_{α} bandwidth may be removal of bxygen from $CuO₂$ planes, as found in Ref. 33, and, hence, the formation of $Cu⁺$ ions. A more drastic narrowing of the Cu L_{α} line owing to oxygen depletion and the appearance of monovalent copper has been observed by Mariot et al.³⁴ for the YBa₂Cu₃O_x system.

Anyway, we can see that the additional charge introduced by Ce or F doping of Nd_2CuO_4 and by the reducing procedure has a Cu 3d character.

B. Oxygen

In Fig. 3 we show O K_{α} x-ray-emission spectra of $Nd_{2-x}Ce_xCuO_4$ and $Nd_2CuO_{3.6}F_{0.4}$ compounds. The energies and FWHM of these spectra are presented in Table II. Comparing the O K_{α} bands of Nd₂CuO₄ (T structure) and La_2CuO_4 (T' structure) [Fig. 4(a)], which are parent compounds for $n-$ and p -type superconductors, one can see that the centers of gravity of these bands almost coincide with each other; however, there are some differences on the low-energy side of the emission lines. The O K_a spectrum of Nd_2CuO_4 reveals an enhanced intensity in the vicinity of \sim 524 eV and a decreased intensity near ~522 eV as compared with the O K_a spectrum of $La_2CuO₄$. Such differences are observed owing to the different distribution of the valence O 2p states in these compounds, since the O 1s binding energies in the samples studied are much the same (529.1 eV for Nd_2CuO_4 and 529.0 eV for $La_2CuO₄$). According to LMTO-ASA

FIG. 3. O K_a x-ray-emission spectra of $Nd_{2-x}Ce_xCuO_4$ and $Nd_2CuO_{4-\nu}F_{\nu}$.

calculation of Szotek, Guo, and Temmerman,³⁵ 2p states of oxygen atoms located in Nd_2O_2 layers reveal a shift by \sim 2 eV towards higher binding energies in comparison with those of apical oxygen atoms in La_2CuO_4 (for the latter compound, the 2p states of apical oxygen make a fundamental contribution to the main peak of the O K_a band). Hence, $O2p$ states hybridized with Nd 5d states induce the enhanced intensity of the O K_{α} spectrum of Nd_2CuO_4 at \sim 524 eV, while the higher intensity in the vicinity of \sim 522 eV in La₂CuO₄ arises owing to the higher contribution by the 2p states of oxygen atoms located in $CuO₂$ planes in going from the T' to the T structure. Note that Szotek, Guo, and Temmerman consider Nd 4f states as well-localized and inner states in their calculation. Actually, there is an Nd-4 $f - O - 2p$ hybridization.^{12,36} Quite probably, the O 2p states hybridized with

Nd $4f$ states make a certain contribution to the main peak of the O K_{α} band. On the binding energy scale, this peak lies \sim 3.4 eV lower the Fermi level, and hybridized Nd 4 f states measured by resonant photoemission spectroscopy¹² reveal the same binding energy, although, according to Ref. 37, $4f$ states manifest themselves weakly in the p band of light elements.
For superconducting $\sum_{n=1}^{\infty}$

 $Nd_{1.85}Ce_{0.15}CuO_{4-\delta}$ and La_{1.83}Sr_{0.17}CuO₄ samples, the differences in O K_{α} spectra are more considerable [Fig. 4(b)]. The gravity center of the O K_a line of a p-type superconductor moves to higher energies with respect to that of an n-type superconductor. This is caused by the energy rise of $2p$ states of apical oxygen atoms due to the Sr doping of $La_2CuO_4.^{38}$ On the other hand, according to one calculation,³⁵ Ce doping of $Nd₂CuO₄$ leads to lowering of 2p states of oxygen atoms close to the rare-earth element atoms, as a result of the metal-5d –oxygen-2p hybridization in the $Nd_{2-x}Ce_xO_2$ layers. Indeed, the feature observed in emission O K_a spectra at \sim 524 eV is more pronounced in $Nd_{1.85}Ce_{0.15}CuO_{4-6}$ as compared with that in Nd_2CuO_4 . It is interesting that this feature disappears in O K_a spectra of the $Nd_2CuO_{3.6}F_{0.4}$ system. This disappearance seems to be evidence of the introduction of F ions into oxygen sites in $Nd₂O₂$ layers.

In Fig. 5, we show on the binding energy scale the O K_a difference spectra between unreduced samples with different Ce content, and Nd_2CuO_4 and the partial densities of 2p states of oxygen atoms located in inequivalent crystallochemical positions as were calculated by Szotek, Guo, and Temmerman³⁵ for $Nd₇CeCu₄O₁₆$. To realize the subtraction procedure, the O K_{α} spectra were normalized to the intenity of the Cu L_l line of the respective sample. The partial densities of states are combined with experimental data so that the gravity centers of the total density of O 2p states and the O K_a spectrum of $Nd₂CuO₄$ should coincide. Note that according to calculation, the occupied Ce 5d states are located deeper than those of Nd. The origin of this is the strengthening of the "rare-earth-element —oxygen" chemical bond due to the higher overlapping of the valence electron wave functions, since the radius of the Ce ion is larger than that of the Nd ion.

Inspection of the figure shows that upon Ce doping the intensity of the O K_a emission band increases in the bind-

FIG. 4. O K_{α} x-ray-emission spectra: (a) La_2CuO_4 (--) (Ref. 38) and Nd_2CuO_4 ($\bullet\bullet\bullet$); (b) $La_{1.83}Sr_{0.17}CuO_4$ (--) (Ref. 38) and $Nd_{1.85}Ce_{0.15}CuO_{4-8}$ ($\bullet\bullet\bullet$).

ing energy range from \sim 3.5 to 8 eV and decreases in the \sim 0–3.5 eV range, leading to a high binding energy shift of the band gravity center. The appearance of the features at \sim 6 and \sim 4.5 eV in the difference spectra is a consequence of the hybridization of O 2p states with Ce $5d$ and Ce 4 f states, respectively (Szotek, Guo, and Temmerman³⁵ have not taken into account the Ce $4f$ states; however, according to an analogous calculation for $Nd₃CeCu₂O₈$ ³⁹ the Ce 4f states occupied owing to the chemical bond are \sim 1.5 eV closer to the Fermi level than Ce $5d$ states). It is clear that the Ce doping process

FIG. 5. The O K_{α} difference spectra between $Nd_{2-x}Ce_xCuO_4$ ($x\neq0$) and Nd_2CuO_4 in the binding energy scale (the top of figure) and partial densities of 2p states of oxygen atoms into inequivalent crystallochemical positions for $Nd₇CeCu₄O₁₆$ (see Ref. 35).

of Nd_2CuO_4 must stimulate the growth of the intensities of these features. Simultaneously, the intensity of the high binding energy side of the O K_a band is also formed by the contribution of the 0 2p states hybridized with Nd 5d states. However, the decrease of Nd content in the samples studied as a result of Ce substitution weakly affects the firm growth of the peaks at \sim 4.5 and \sim 6 eV. This indicates a stronger Ce-0 chemical bond compared with the Nd-0 bond in the parent compound.

The lowering of the intensity of the O K_a band at low binding energies with increasing x is caused mainly by the weakening of Cu-3d – O-2p hybridization due to Cu⁺ formation and also by a decrease in the fraction of O $2p$ states hybridized with Nd $4f$ states. The negative difference spectrum, exhibiting ^a "U shape" upon small Ce concentration, later reveals itself on two minima at \sim 1 and \sim 2.5eV owing to the appearance of a distinct salient feature at \sim 1.5 eV. This salient feature may be a manifestation of hybridized Ce 4f states, which, as emphasized by Namatame et al , 36 are distributed predominantly near the top of the O $2p$ band. The enhancement of the hybridization of the valence O $2p$ and Cu 3d states along the c axis owing to the existence of excess oxygen atoms on apical oxygen sites may be another cause for the appearance of this salient feature. As a whole, the figure gives evidence of the redistribution of charge density from Cu-0 to Ce-0 bonds.

C. Fluorine

In F K_{α} x-ray emission spectra, a group of α' , α_3 , α_4 , α_5 , and α_6 satellites are observed on the high-energy side of the main $\alpha_{1,2}$ line (the initial state is $1s^{-1}$).⁴⁰ According to the energy calculations of the initial states for α' , α_3 , and α_4 satellites, the latter have $1s^{-1}(2s2p)^{-1}$ electron vacancy configuration (later on the $K^{1}L^{1}$ satellite), while configuration for α_5 and α_6 is $1s^{-1}(2s2p)^{-2}$ (K¹L²) satellite).⁴¹ As known, the intensity of the K^1L^1 satellite is affected by the chemical environment of F atoms (see, for example, Ref. 42). Part of the research groups em-

FIG. 6. F K_a x-ray-emission spectra of $Nd_2CuO_{3.6}F_{0.4}$, NdF₃, and $CuF₂$ compounds.

phasize such influence on the energy and FWHM of the main $K^{1}L^{0}$ line.⁴

Figure 6 shows F K_{α} spectra of unreduced and reduced $Nd_2CuO_{3.6}F_{0.4}$ samples, and also NdF_3 and CuF_2 compounds. One can see that the spectra of NdF_3 and CuF_2 are appreciably different in the energy range of the K^1L^T satellite (\sim 681 eV). Note that the high-energy shoulder formation in the F K_{α} spectrum of CuF_2 can also be caused by the Cu-3d - F-2p hybridization. The K^1L^1 satellite intensity and FWHM of F K_{α} spectra of both $Nd_2CuO_{3.6}F_{0.4}$ samples are similar to those of the F $K_{6.6}$ spectrum of NdF_3 (see Table II). Therefore, in spite of the existence of some impurity of NdOF in the $Nd_2CuO_{3.6}F_{0.4}$ samples, we concluded that F ions are introduced into the oxygen sites in Nd-0 layers. This conclusion is in agreement with data of both x-ray diffraction²⁸ and nuclear magnetic resonance (NMR) investigations.

¹Y. Tokura, H. Takagi, and S. Uchida, Nature 337, 345 (1989).

- 2S. Uji, M. Shimoda, and H. Aoki, Jpn. J. Appl. Phys. 28, L804 (1989).
- ³H Ishii, T. Koshizawa, H. Kataura, T. Hanyu, H. Takai, K. Mizogushi, K. Kume, I. Shiozaki, and S. Yamagushi, Jpn. J. Appl. Phys. 28, L1952 (1989).
- 4T. Suzuki, M. Nagoshi, Y. Fukuda, K. Oh-ishi, Y. Syono, and M. Tachiki, Phys. Rev. 8 42, 4263 (1990).
- ⁵M. Klauda, J. P. Ströbel, J. Schöltterer, A. Grassmann, J. Markl, and G. Saemann-Ischenko, Phys. C 173, 109 (1991).
- ⁶S. M. Butorin and V. R. Galakhov, Sverkhprovodimost': Fiz. Kim Tekhn. 5, 438 (1992) [Supercond. Phys. Chem. Technol. 5, 431 (1992)].
- ⁷A. Fujimori, Y. Tokura, H. Eisaki, H. Takagi, S. Uchida, and E. Takayama-Muromachi, Phys. Rev. 8 42, 325 (1990).
- 8G. Liang, J. Chen, M. Croft, K. V. Ramanujachary, M. Greenblatt, and M. Hegde, Phys. Rev. 8 40, 2646 (1989).
- ⁹J. M. Tranquada, S. M. Heald, A. R. Moodenbaugh, G. Liang, and M. Groft, Nature 337, 720 (1989).
- ¹⁰Z. Tan, J. I. Budnick, C. E. Bouldin, J. C. Woicik, S.-W. Cheong, A. S. Cooper, and G. P. Espinosa, Phys. Rev. B 42, 1037 (1990).
- ¹M. Alexander, H. Romberg, N. Nücker, P. Adelmann, J. Fink, J. T. Markert, M. B. Maple, S. Uchida, H. Takagi, Y. Tokura, A. C. W. P. James, and D. W. Murphy, Phys. Rev. 8 43, 333 (1991).
- ¹²A. Grassmann, J. Ströbel, M. Klauda, J. Schlötterer, and G. Saemann-Ischenko, Europhys. Lett. 9, 827 (1989).
- ¹³H. Buchkremer-Hermanns, P. Adler, and A. Simon, J. Less-Common Metals 164-165, 760 (1990).
- ¹⁴C. F. J. Flipse, S. Edvardson, and K. Kadowaki, Phys. C 162-164, 1389 (1989).
- E. E. Alp, S. M. Mini, M. Ramanathan, B. Dabrowski, D. R. Richards, and D. G. Hinks, Phys. Rev. 8 40, 2617 (1989).
- ¹⁶E. Lederman, L. Wu, M. L. de Boer, P. A. van Aken, W. F. Muller, and S. Horn, Phys. Rev. 8 44, 2320 (1991).
- ¹⁷C. F. J. Flipse, G. van der Laan, A. L. Johnson, and K. Kadowaki, Phys. Rev. 8 42, 1997 (1990).
- ¹⁸S. Kohiki, J. Kawai, T. Kamada, S. Hayashi, H. Adachi, K. Setsune, and K. Wasa, Solid State Commun. 73, 787 (1990).
- ¹⁹O. Strebel, P. Sladeczek, M. Asensio, C. Laubschat, A. Kolod-

IV. CONCLUSION

Cu $L_{\alpha,\beta}$ and O K_{α} x-ray-emission spectra of unreduced and reduced $Nd_{2-x}Ce_xCuO_4$ and $Nd_2CuO_{3.6}F_{0.4}$ give evidence of $Cu⁺$ ion formation in these compounds as a result of Ce or F doping and the reducing process; the fluorine ions, as one can conclude from analysis of F K_{α} spectra, being introduced into oxygen sites located in $Nd₂O₂$ layers. The O K_{α} difference spectra between $Nd_{2-x}Ce_xCuO_4$ and Nd_2CuO_4 show the charge density redistribution from Cu-0 to Ce-0 bonds.

ACKNOWLEDGMENT

We would like to thank Dr. L. D. Finkelstein for a fruitful discussion.

zieczyk, R. Miranda, and G. Kaindl, Phys. C 162—164, 1331 (1989).

- 2oA. C. W. P. James, S. M. Zahurak, and D. W. Murphy, Nature 338, 240 (1989).
- ²¹A. Grassmann, J. Schlötterer, J. Ströbel, M. Klauda, R. L. Johnson, and G. Saemann-Ischenko, Phys. C 162-164, 1383 (1989).
- 22 J. A. Bearden, Rev. Mod. Phys. 39, 78 (1967).
- V. V. Niemoschkalenko, V. N. Uvarov, A. A. Yereschenko, S. K. Tolpygo, V. A. Starodub, M. A. Obolenskii, A. V. Zhalko-Titarenko, and L. M. Sheludenko, Sverkhprovodimost': Fiz. Khim. Tekhn. 3, 858 (1990).
- $24K$. Suzuki, K. Kishio, T. Hasegawa, and T. Kitazawa, Phys. C 166, 357 (1990).
- 25V. E. Katayev, E. F. Kukovitzkii, B. Z. Rameev, and G. B. Teitel'baum Sverkhprovodimost'. Fiz. Khim. Tekhn. 4, 896 (1991)[Supercond. Phys. Chem. Technol. 4, 803 (1991)].
- ²⁶S. M. Butorin, V. R. Galakhov, E. Z. Kurmaev, and V. I. Glazyrina, Solid State Commun. 81, 1003 (1992).
- $27K$. Oh-Ishi, M. Kikushi, Y. Syono, N. Kobayashi, and Y. Muto, J. Solid State Chem. 83, 237 (1989).
- ²⁸J. Sugiyama, Y. Ojima, T. Takata, K. Sakuyama, and H. Yamauchi, Phys. C 173, 103 (1991).
- ²⁹E. Moran, A. I. Nazzal, T. C. Huang, and J. B. Torrance, Phys. C 160, 30 (1989); H. Oyanagi, Y. Yokoyama. H. Yamaguchi, Y. Kuwahara, T. Katayama, and Y. Nishihara, Phys. Rev. 8 42, 10136 (1990).
- E. Wang, J. M. Tarascon, L. H. Greene, and G. W. Hul, Phys. Rev. 8 41, 6582 (1990).
- 31S. Tanaka, K. Okada, and A. Kotani, J. Phys. Soc. Jpn. 60, 3893 (1992).
- 32J. Kondo and S. Nagai, J. Phys. Soc. Jpn. 57, 4334 (1988).
- ³³F. Izume, Y. Matsui, H. Takagi, Y. Tokura, and H. Asano, Phys. C 158, 433 (1989); T. Williams, Y. Maeno, I. Mangelschots, A. Reller, G. Bednorz, ibid. 161, 331 (1989).
- 34J.-M. Mariot, V. Barnole, C. F. Hague, T. Frey, S. Siegmann, and H.-J. Guntherodt, J. Less-Common Metals 164-165, 1209 (1990).
- 35Z. Szotek, G. Y. Guo, and W. M. Temmerman, Phys. C 175, ¹ (1991).
- 36H. Namatame, A. Fujimori, T. Tokura, M. Nakamura, K.

Yamagushi, A. Misu, H. Matsubara, S. Suga, H. Eisaki, T. Ito, H. Takagi, and S. Uchida, Phys. Rev. B41, 7205 (1990). 37S. S. Mikhailova (unpublished).

- ³⁸S. M. Butorin, V. R. Galakhov, L. D. Finkelstein, E. Z. Kurmaev, Yu. A. Teterin, M. I. Sosulnikov, S. M. Cheshnitsky, S. A. Lebedev, and A. I. Akimov, J. Phys. C 177, ⁸ (1991).
- ³⁹L. D. Finkelstein, N. N. Efremova, A. V. Postnikov, E. Z. Kurmaev, N. A. Babushkina, and G. Balakrishnan (unpublished).
- ⁴⁰T. Åberg, G. Graeffe, J. Utriainen, and M. Linkoaho, J. Phys.

C 3, 1112 (1970).

- ⁴¹E. H. Kennard, E. Ramberg, Phys. Rev. 46, 1040 (1936); V. F. Demekhin, and V. P. Sachenko, Izv. Akad. Nauk USSR, Ser. Fiz. 31, 900 (1967); 31, 907 (1967).
- $^{42}H.$ Endo, M. Uda, and K. Maeda, Phys. Rev. A 22, 1436 (1980).
- ~~C. Sugiura, W. Konishi, S. Shoji, and S. Kojima, J. Phys. Soc. Jpn. 59, 4049 (1990).
- ⁴⁴E. F. Kukovitzkii, R. G. Mustafin, and G. B. Teitel'baum, Phys. B 169, 643 (1991).