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SpecifIc heat for a strong-coupling superconductor with logarithmic electronic density of states
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We find that a Van Hove singularity can affect the temperature (T) variation of the electronic-
specific-heat difference between the superconducting and normal states b C(T). It shifts the zero in this
quantity away, rather than towards T, as is indicated in some experiments in the copper oxides. To car-
ry out the calculations we have generalized the Bardeen-Stephan formula for the free-energy difference
between the normal and superconducting states, and the Eliashberg equations on the imaginary-
frequency axis to include explicitly a logarithmic electronic density of states (a Van Hove singularity)
with normal- and paramagnetic-impurity scattering included.

I. INTRODUCTION

There have been several recent attempts to explain
high-T, superconductivity in the copper oxides in terms
of a Van Hove singularity in the electronic density of
states (EDOS). ' In some of these approaches an under-
lying electron-phonon model is assumed. This assump-
tion leads naturally to large variation in the isotope-effect
coefficient " as observed. More recent work, however,
reveals difficulties with this model when a quantitative
understanding of the measured isotope coefficient is at-
tempted. ' ' A joint phonon plus electronic mechanism
is more consistent with the data, but this is no way invali-
dates by itself the Van Hove scenario. Recently Tseui
et al. ' reported success in explaining the observed varia-
tion of the specific-heat jump to T, ratio [b,C(T, )/T, ] in
oxygen-deficient YBa2Cu307 & polycrystals' ' with a
Van Hove singularity in the density of states.

In ordinary Eliashberg theory the energy dependence
in the electronic density of states is assumed not to be im-
portant and a constant value is taken in the energy region
of importance for superconductivity. In this limit it has
been shown that the normalized ratio of the specific-heat
slope at T, to the jump R =

t T, [dhC(T)/
dT]] T /b, C(T, ) is bounded above to a value of approxi-

C

mately 5.0 whatever the shape, origin, and size of the
electron-boson spectral density that is responsible for the
pairing. ' On the other hand, initial experiments in
YBa2Cu3O7 by Junod et ah. and by Loram and Mirza
have given values of R slightly beyond the theoretically
predicted range. An even larger value has been
obtained by Schilling, Ott, and Hulliger in
Bi& 6Pbo 4Sr2Ca2Cu3Oio. Such large values cannot be un-
derstood at present within the framework of conventional
Eliashberg theory for any electron-boson exchange mech-
anism with an S-wave order parameter.

Eliashberg theory has been extended to include varia-
tion with energy (e) in the electronic density of state
[N(e)] at the Fermi surface by many authors. 3 This
generalized formalism has been applied to many proper-
ties including the specific heat. ' The existing results
employ a Lorentzian form superimposed on a constant
background to account for energy dependence in N(e)
and have been limited to the jump at T, .

In this paper we wish to generalize previous work in
two directions. First we wish to use a Van Hove singu-
larity form for the electronic density of states N(e).
Second, we want to consider the specific-heat difference
between normal and superconducting states [b,C(T)] at
finite temperatures below T, . %'e will particularly be in-
terested in the shift in position of the node observed in
b, C ( T) near T, when the Van Hove singularity is intro-
duced. The larger the value of the slope to jump, the
closer to T=T, is EC(T)=0 expected to occur. It can
be argued that Auctuations due to the two-dimensional
nature of the CuO plane could strongly affect the value of
R at T, but it is much harder to see how they could im-
portantly afFect the position of the node in AC( T) which
occurs at a temperature much below T, in a region where
fluctuations are not likely to be very important and cer-
tainly not dominant.

This paper is structured as follows. In Sec. II, we give
the generalized Eliashberg formalism needed to include a
Van Hove singularity in N(e). Some details of the
derivations are found in the Appendix. Results are
presented in Sec. III and a conclusion is found in Sec. IV.

II. KLIASHBKRG EQUATIONS
AND FRKK-KNKRGY FORMULA

The Eliashberg equations on the imaginary axis in the
superconducting state for general EDOS are given' by

N(e) Z(ice )co
Z (i~„)co„=co„+m.T g A(n —m) — de

No [—detC '(e, i co ) ]
(la)
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and

N(E) 6+iV(l&~ )
y(ico„)= vr—T g A,(n —m) —f de

Np [ —detC '(e, i co ) ]

N(e) P(i~ )
P(ico„)=~T g [A(n m—) p—*O(co, —~co

~ )] —f de
Np [ —detG '(e, i co ) ]

detC '(e, i co„)= [ico„Z(ico„)] —[e+y(i co„)] P—(ico„),

(lb)

(lc)

(ld)

A(n —m)= f dna (Q)F(A)
0 0 +(co„—co )

(le)

where Z(i co„)is the renormalization function; co„=(2n+1)m T, n =0,+1,+2, . . . , are the Matsubara frequencies; T is
the tern erature; o. (A)F(A) is the electron-boson spectral density at a frequency 0; N(e) is the electronic density of
states; is the renormalized electron propagator matrix; y(co) is the shift in the chemical potential due to the electron-
boson interaction; and P(co) is the renormalized pairing energy in the superconducting state. The density of states N(e)
in this particular calculation is of the form

s
N(e) =Np r —

~ 2
ln (2)

(e 5) +—D

The Lorentzian factor 1/[(e —5) +D ] is used to damp out the logarithmic part at large energy values in order to
make the density of states physical. The 61ling factor 5 is the position of the singularity with respect to the Fermi sur-
face which is chosen at e=O by convention, at T=O. The Fermi energy is E& and D is an adjustable damping parame-
ter. The strength of the Van Hove singularity is given by s, and the parameter r is a constant background. Using Eqs.
(2), (Al), (A2), and (A3) in performing the e integral, Eq. (lb) becomes

s~T " 5' ln(D Q5' +co +P /E&) —(+co +P +D)tan '(5' /+co +P )(—n m, )
2D 5' +(D+Qco +P )

5' ln(D /E/+5' +co +P )+(+co +P —D)tan '(5' /+co +P )+ (3a)
5' +(D —+co +P )

where

X =X(ico

5'„=5+y„,
~n Z(i~n )~n

6„is called the renormalized Matsubara frequency.
Also, Eqs. (la) and (lc) now become

~mco„=co„+~Tg A(n —m) +m(t++t )
~= —m +co +P +co„+f„

PmA'(co ) P„E(co„)P„=~T g [A(n m) @*8(co,———~co
~ )] +sr(t+ t )—

+corn+0m "t/con+An

(3b)

(3c)

(3d)

(4)

S
CO~

—I'
2D

(+co„+P„+D)ln(D(/ 5'„+co„+P„/E/)+ 5'„tan '(5'„/1/ co„+P„)
5„'+(D+Qco„+P„)

(+co„+P„—D )ln(D /Q5'„+co„+P„)—5'„tan '(5'„/+co„+P„)+
5'„+(D—1/ co +P„)
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The Eliashberg equations in the normal state are obtained by setting $„=0and

s~Z " 5O ln(D Q5' +coo /Ef ) —( ~coo ~+D)tan '(5O /~coo ~ )

2D
A(n —m) .

5' +(D+~ o ~)'

50 ln(D /Ef +50 +coo )+( lcoo )

—D)tan '(5t /I coo
~
)

50 + (D —
icoo i )

o. =6+go. (7b)

co„o= co+a.T g A(n —m)sgn(coo )8'o(coo )+sr(t++t )sgn(coo„)A'o(coo„), (8)

(Icoo ~+D)ln(DV 50„+coo„/Ef)+50„tan '(5O„/~coo
I )

o($0„)= r
2D 5 0+(D+ icoo i )

( (coo )

—D)ln(D /+50„+coo„)—50„tan '(50„/) coo ) )

502+(D Icoo l)~—

For the free-energy difference between the superconducting and normal states we use the Bardeen Stephan for-mula: 6

c,(p)
ln

' + [cr„(p)—cr,„(p)][6,(p)+ G„(p)] cr( p)F(p—)4„p (10)

p = (p, i co„),1/P = T, and

f = g I X(e)de

and

@.(p) = —[co'. +0'. +(e, +X.)'] (12a)

o „(p)=ico„ico„, — (12b)

i co„+e+y„
G, (p) = (12c)

(12d)

—cr2(p)F(p)=
c', (p) (12e)

Normal-state variables are obtained by replacing the subscript s with n and by setting $„=0,co„=coo„,and y„=go„..

o „(p) cr,„(p)=i co—o„ico„.—
The final expression for the free energy is
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n=oo
0, —0„= No g err

n=1

2 + 2

+co„+(5„

st con+In concoon+
2D

(+co„+P„+D)ln(DQ5'„+co„+P„/Ef )+5'„tan '(5'„/+co„+P„)
5'„+(D++co„+P„)

( +co„+P„D)ln—(D /Q5'„+co„+(h„)—5'„tan '(5„'/+co„+P„)+
5 2+(D Qg +y2 )2

$77
(coon ~n )

(coo„+D)ln(D+5o„+coo„/Ef)+5o„tan '(5o„/coo„)
5 „o+(D+ co„o)

(coo„—D)ln(D /+5o„+coo„)—5o„tan '(5o„/coo„)+
5o'+(D —ao. )'

ln[~(e 5)/E—f ~ ] (E+y„)+co„+P„
S ln dE

(e—5) +D (e+yo„)+coo„
(14)

which can be written in the following form:

= —2 +n ~n +n +On0, —0„= No g . ~2r [1/ co„+P„—coo„] ~N(co„) — +mNo(coon )(coon co )
n =1 +co„+P„

ln[ ~(e 5)/Ef ]
—(e+y„)+co„+P„

S ln dE '

(E 5) +D — (e+yo„)+coo„
(15)

III. NUMERICAL RESULTS AND DISCUSSION

In all our numerical results we will take t+ =t =0 for
simplicity. It is not at all difficult to include normal- and
paramagnetic-impurity scatterings. Also, to start we
consider the critical temperature which follows Eqs. (4)
and (5) linearized in the gap value P . Specification of
the electron-boson spectral density a F(Q) corresponds
to a specification of mechanism. We find, however, that
T, is mainly dependent on the characteristic boson ener-

gy used co&„(Refs.31—33) defined by

2 a F(co)co)„=exp — ln(co)d co
0 Cc)

and on the value of the mass renormalization A, :

oo CX E 67

Thus, we take for a F (co) a 5 function at energy
coE =20.0 meV and a value of A, =2.0 [No in Eq. (2) has

been incorporated into this value of A, ]. This in no way
implies that we are dealing exclusively with phonons. We
could have taken A, much smaller and coE larger which
might be more appropriate for an exciton mechanism.
The results that we now present would not change quali-
tatively. To specify the density of states we fix the back-
ground in Eq. (2) at r=1.0, the Fermi energy Ef =500
meV, and the damping factor in the Van Hove form
D =40 meV. The dotted curve of Fig. 1 gives T, starting
at 80 K as a function of filling factor 5 for a case with the
strength of the Van Hove singularity s set equal to 6000
(meV). We see that T, drops rapidly towards 40 K as we
move away from the logarithmic singularity in N(e) as is
expected. Thus, a Van Hove singularity can certainly
greatly increase T, over its value when it is not present.
Note in this comparison that T, =40 K is the value of the
critical temperature that comes from the constant back-
ground only.

The solid curve of Fig. I applies to the same parame-
ters as the dotted curve but now the filling factor is fixed
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FIG. 1. Transition temperature for Eliashberg superconduc-

tor with coE=20 meV, A. =2.0, r=1.0, p =0.1, Ef =500 meV,
D =40 meV, and (i) s =6000 (meV) (dotted curve) vs the filling
factor 6, (ii) 6=0 (solid curve) vs the logarithmic strength s.

at 5 =0 and the strength of the Van Hove singularity s is
increased. The curve starts at 40.0 K for s=0 and in-
creases to 80 K when s =6000 (meV). The rise of T,
from 40 to 80 K is much more gradual when s is changed
than is the drop in T, through the same range that we
found on increasing 6 at fixed value of s.

Results for the specific-heat difference [b.C(T)] be-
tween superconducting and normal states follows from
our free-energy difference formula, Eq. (14), for
AF—:0, —0„through the thermodynamic relationship

bC(T) = —T
dT

I I 1 t I I 1
)

0.5—

o.o
s a I ) t s 1 ) s t I s ) s I s ) s

o.a o.4 o.e o.e 1.0

which follows from a specific choice of spectral density
a F(Q) and of N(e) In Fig. 2, w. e compare results of a

FIG. 3. Specific-heat difference [hC(T)] between supercon-
ducting and normal states with T, =89.4 K, coE=20 meV,
A, =6.5, p =0.1, Ef =500 meV, D =40 meV, and (i) r=1.0,
and s =0 (meV) (solid curve) vs temperature T, (ii) r =0, and
s =2140 (meV) (dotted curve) vs T, .

constant density-of-state calculation (solid line) with
T, = 101 K with similar results (dotted curve) for the case
@*=0.1, A, = 1.4 with a 5 function at 70 meV for a F(Q),
background r =0, strength of Van Hove singularity
s =740 (meV), width of damping factor D =40 meV,
Fermi energy equal to 500 meV, and filling factor equal
to zero (5=0). In both curves the critical temperature is
the same. With energy dependence the slope at T, is re-
duced over the constant case and the zero in hC( T) is
pushed toward a lower temperature although the effect is
not numerically large, at lower temperatures solid and
dotted curves cross and end up going to zero at, T=0 of
course. In Fig. 3, large differences between constant and
nonconstant density-of-state results are shown for the
case T, =89.4 K with p'=0. 1 with a 5 spectral density
at niz =20 meV (more in the phonon region) with A, =6.5.
In this case the zero for the dotted curve is pushed to
even lower values of temperature than is the correspond-
ing curve of Fig. 2. Strong-coupling effects seem to push
the node in [hC(T)] to lower temperatures. We can
safely conclude from our work that the ratio R of the
slope to jump at T, of [b,C(T)] is reduced rather than in-
creased over the constant density-of-state curve and that
the node in [ b, C ( T) ] is pushed to lower rather than
higher temperatures. It is clear that the introduction of a
Van Hove singularity for the electronic density of states
into an Eliashberg formalism does not help explain recent
experimental data in the oxides. ' It is found that
[b,C ( T) ] crosses the axis at a reduced value of tempera-
ture t much closer to 1 than is predicted in BCS theory
and that R is also very much larger.

FIG. 2. Specific-heat difference [AC(T)] between supercon-
ducting and normal states with T, =101 K, coE=70 meV,
A, =1.4, @*=0.1, Ef =500 meV, D=40 meV, and (i) r=1.0,
and s=0 (meV) (solid curve) vs temperature T, (ii) r=O, and
s =740 (meV) (dotted curve) vs T, .

IV. CONCLUSIONS

We have derived generalized expressions for the free-
energy difference between superconducting and normal
states which apply to an Eliashberg superconductor with
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a Van Hove singularity in its electronic density of state
X(e). Eliashberg equations appropriate to the same
model are also given. The formulas are evaluated numer-
ically to obtain the specific-heat difference between super-
conducting and normal states AC ( T) at any temperature
T below T, . It is found that the zero in this quantity is
pushed towards lower energy with the introduction of a
Van Hove singularity in X(e). Experiments in the
copper oxides indicate instead that the node in b, C(T) is
much closer to T=T, than in a BCS superconductor.

Such results can therefore not be explained, at least in
our simple treatment of the Van Hove singularity in
N (e).
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APPENDIX

oo ] d e vr (b+D)
(e—5) +D e +b Db 5 +(b+D)

(A 1)

in(~e —5~) de
(e—5) +D e +b

ln( ~e
—5~/Ef )

(e 5) +D —e +b

(b+D)ln(D+b +5 )+5 tan '(5/b) (b D)ln(D—/+b +5 ) 5 tan '—(5/b)+
5 +(b+D) 5 +(b D)—

(A2)

vr 251n(D/Ef)+51n[+(b +5 )/Ef j
—(b+D)tan '(5/b)

2D 5 +(b+D)

251n(D/Ef) —51 n[+(b +5 )/Ef j+(b —D)tan '(5/b)
5 +(b D)— (A3)
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