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Electronic excitation spectra of the Emery model
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We calculate the photoemission and inverse photoemission spectra of holes in copper-oxygen
planes, the characteristic structural unit of high-temperature superconductors. The computations
are based on the extended Hubbard or Emery model in the limit of infinitely strong Coulomb
repulsion Ug on copper sites. In order to evaluate the corresponding one-particle correlation functions
the projection technique is applied, which is especially suitable for strongly correlated systems.
Thereby the hole dynamics is restricted to a subspace of relevant operators, within which it can be
treated exactly. In contrast to independent-particle approximations the excitation spectra show Bn

energy gap at half-filling, which disappears when the system is doped with additional holes. Besides
the insulator-to-metal transition the strong correlations lead also to a significant shift of spectral
weight to states close to the Fermi energy when the hole concentration increases. Our results are in

good agreement with the ones of exact diagonalization studies of the (Cu02)4 cluster with periodic
boundary conditions.

I. INTRODUCTION

It is well known that the copper oxide-based high-
temperature superconducting materials are systems in
which electron correlation are strong. This is demon-
strated by the experimental observation that, e.g. ,

LaqCu04 is a semiconductor and not a metal although
there is one hole per unit cell, suggesting a half-filled con-
duction band. The reason for the strong correlation is
easily found. Consider the all important copper-oxygen
planes of these materials. The Coulomb repulsion be-
tween two d holes on a copper site is found from con-
straint local-density-approximation (LDA) calculations
to be of order Ug =10.5 eV, while the hopping matrix
element of a hole from a Cu Sd~2 y2 orbital to an 0
2p ~&~

orbital is t&g=1.3 ev. It is the large value of Ug
as compared with the bandwidth which is responsible for
the strong electron correlations and that the system is an
insulator instead of a metal.

A computation of dynamical correlation functions for
holes in the planes should therefore start out from an
accurate treatment of Ug while the effect of t„g && Ug
can be dealt with in an approximate manner. This is
contrary to conventional theories of interacting electrons,
where it is the interaction which is treated approximately
only, e.g. , by using Feynman diagrams.

Recently a theory was developed~ 2 which can be ap-
plied to weakly and strongly correlated electrons. It does
not make use of Feynman diagrams, which require Wick's
theorem and are especially useful when electron inter-
actions are relatively weak (i.e. , when t„g )) U~). In-
stead, the computation of dynamical correlation func-
tions is based on projection techniques. The former are
expressed in terms of cumulants which eliminate statis-
tically independent processes (i.e. , unlinked clusters in
case of diagrams) from the calculation.

The aim of this investigation is to calculate the pho-

toemission and inverse photoemission spectra for the
copper-oxygen planes at half-Ailing and when the sys-
tem is doped, i.e., when the hole concentration nh & 1
deviates from half-filling. This is done within the frame-
work of the Emery model Hamiltonian of Ref. 3 (Sec. II),
where for simplicity the Coulomb interaction of holes at
copper sites is assumed to be infinitely strong. The same
problem was investigated previously by numerical diag-
onalization of a (Cu02)4 cluster and applying periodic
boundary conditions. Thereby it was found that the
spectra show a number of properties, in particular when
changes due to hole doping are considered, which cannot
be explained by conventional band theory and are solely
due to the strong correlations. Our aim here is to study
these features by analytic methods, i,e. , by application
of projection techniques. This can be done by using a
relatively small number of dynamical variables only. The
present investigation extends previous work on the pho-
toelectron spectrum for half-Ailing.

The paper is organized as follows. The projection
method is briefly reviewed in Sec. III. The following
sections describe the approximation within which the
ground state is treated from which an electron is ejected
(photoemission) or to which it is added (inverse photoe-
mission) as well as the computation of the spectra. Sec-
tion VII contains the discussion of the results while a
brief summary is given in Sec. VIII.

II. EMERY' MODEL

Our investigation of electronic excitations in high-
temperature superconductors is based on the extended
Hubbard or Emery model. The Hamiltonian describes
charge carriers of the copper-oxide plane and is formu-
lated in the hole picture. Two different types of localized
states are considered, namely, 0 2@~(„l and Cu 3d 2 y2
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orbitals, connected by hopping matrix elements between
nearest neighbors and nearest oxygen sites. As men-
tioned before, the dominant correlation between holes in
high-temperature superconductors is their Coulomb re-
pulsion on copper sites. We restrict ourselves to the limit
of infinitely strong interaction by simply excluding dou-
bly occupied Cu 3d states. Thus, the 3d configuration
is completely suppressed. With respect to the excitation
spectra the Coulomb repulsion within oxygen orbitals U„
is of minor importance since for low levels of doping the
hole occupation number of oxygen sites is rather small.
This point has been confirmed by exact diagonalization
studies. " Therefore, we may ignore the influence of two-
particle interactions within the oxygen system. Under
those restrictions the Hamiltonian of the Emery model
may be written in the form

0 =Hp+Hq,
II,'=e„) p,', p;I +) ) T,","p,', p, J

iIo IJ iso

+«) ."nIod~Io,
c)tIcr

I(3)

For later reference we introduce the operators p,.k and
d k which create holes with momentum k and spin cr:

RI
Piko ~) ~ PiIo&

I

N
(4)

FIG. 1. Unit cell of the copper-oxygen plane: four oxygen
orbitals (circles) and two copper orbitals (black dots) form the
basis. The spin directions in the Neel-ordered copper system
are indicated by small arrows. The four oxygen orbitals of
the B plaquette belong to the unit cells I(1),. . . ,I(4).

Here, RI, = RI + r, (or RI ) is a vector pointing to the
orbital i (or ot, respectively) in cell I. As an example, the
vector r~ is shown in Fig. 1. If we consider exclusively
the four oxygen orbitals on an A plaquette in cell I there
is only one linear combination p&I which is coupling via

T,.& to the central copper site:

PA Io 2 'LP1Io + P2IoP3Io 'P4Io)''
This linear combination is called the symmetric one since
it has the same symmetry as the hopping matrix element

T," . The corresponding creation operator pt&I with re-
spect to the B plaquette in cell I is given by

s'p = PG= —p, y& t&&, T, (2)

The p~I operator creates a hole in an 0 2p orbital in unit
cell I with site index i and spin a. In contrast to p, I the

Pa

Hubbard operators dt I do not fulfill fermionic anticom-
mutation relations since they act under the restriction
that no doubly occupied copper sites be generated. They
are related to the fermionic creation operator for Cu 3d
orbitals dtI through d I ——d I (1 —d I d I ). The-
hopping matrix elements T,". ." and T". connect neighbor-
ing 0-0 and Cu-0 orbitals, respectively. The signs of the
diferent matrix elements are determined by the symme-
try properties of the underlying pand d-wave -functions:

Thereby the phase factors yq
p3 = (p4 —(pB —1 have been used. The indices i,
j = 1, . . . , 4 and a. = A, B refer to the oxygen and cop-
per orbitals of the antiferromagnetic unit cell in Fig. l.
A reasonable parameter set for high-temperature super-
conductors can be extracted from band-structure calcu-
lations by mapping their results to the Emery model.
Hybertsen, Schliiter, and Christensens give the values
4 = e„—ed=3.6 eV, t„~=1.3 eV, and t» ——0.65 eV.

The Coulomb repulsion of holes on copper sites is the
dominant term in the Hamiltonian of Eq. (1) causing
strong correlations between the charge carriers. To yield
reasonable results the exclusion of double occupancy has
to be respected rigorously. Therefore the two-particle in-
teraction cannot be treated as a small perturbation but
should be included right from the beginning in the unper-
turbed part Hp of the Hamiltonian H. The copper and
oxygen states, which are independent from each other in
Hp are then coupled by nearest-neighbor hopping pro-
cesses T,". in the perturbation H&.

PBIo 2 KP1I(l)o + P2I(2)o P3I(3)o P4I(4)o)'

The cell indices I(1), . . . , I(4) are depicted in Fig. 1. We

distinguish the symmetric creation operators p I from

the oxygen operators of site i, ptI, by a Greek instead of
an italic index. In the following, the index o. always re-
places A, B, whereas i or j stands for 1, . . . , 4. According
to Eq. (3) we define the operator p & by

t 1 &- —.kR,
~C)tkO' ~ J ~ ~CLIO''

I
The spectra for addition or removal of oxygen or cop-

per holes are obtained from the corresponding dynamical
correlation functions. The latter are of the form

G(t) = (4
~

At e "(H B.) A
~
4),

where A stands for p,.I, p,I, d I, or d I . Here, E
denotes the energy of the exact ground state ~4) of the
Hamiltonian H. The resulting spectral densities can
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be compared with measurements of photoemission and
inverse photoemission spectra of doped copper-oxygen
planes.

III. PROJECTION TECHNIQUE

view Eq. (12) as a generalization of Goldstone's linked
cluster theorem to strongly correlated systems.

The cumulant (Xi X'„), of an arbitrary operator
product is given by the relation

(x, x„).
The starting point of the usual many-particle pertur-

bation theory is an unperturbed system of free fermions
or bosons. The one-particle Green's functions can be
calculated using standard diagrammatic techniques. In
strongly correlated systems, Wick's theorem no longer
holds (at least in its conventional form) since the un-
perturbed Hamiltonian contains the interaction terms
and the creation and annihilation operators do not ful-
fill fermionic or bosonic commutation relations. There-
fore, we apply a difFerent approach to the evaluation of
dynamical correlation functions being especially suitable
for strongly correlated systems. In this formalism, there
is no restriction with respect to the form of the unper-
turbed Harniltonian Ho.

As in the standard diagrammatic technique the time
evolution operator U(t) = exp( —itH) is divided into an
unperturbed and a perturbed part. Usually a time de-
pendent operator Hi(t) = exp(itHO)Hi exp( —itHO) and
a time-ordered exponential expT are introduced, which
leads to the representation

t
dt' H, (t')

~

.

Instead, we apply the decomposition

e) e)
ln

DAi (9A~

A, X,

=0

Applying this definition one obtains, for example, the
following results:

(Xr), = (X'i),
(Xixz), = (Xr Xz) —(Xi) (X2),

(Xix2xs), = (Xix2X3) —(XiX2)(xs) —(Xixs)(X2)
(X2X3)(Xi ) + 2 (Xi) (X2) (X3) .

Equation (12) is in a proper form to be evaluated by
the Mori-Zwanzig projection technique. In the frame-
work of that formalism, the dynamics of the correlation
function G(w) is restricted to a relevant subspace of the
full operator or Liouville space which is spanned by the
operators A~. Within this subspace, G(w) can be calcu-
lated exactly. A reasonable choice of the projectors A~
is certainly the most important step in such an approach
since the coupling to the remaining part of the Liouville
space is neglected. We introduce the projection operator
'P being normalized by the inverse of the susceptibility
matrix y:

U(t) = exp[ —it(Hi + 2,)] exp( —itHO). (10)

The Liouville operator 2,, is a superoperator acting on
normal operators X according to the definition

'p=) ~A n), y i (nA„~,
fA )7L

& „=(n~At A„]n)..

(15)

(16)

z.x = [ H(), x ]

With the help of Eq. (10) the dynamical correlation func-
tion of Eq. (8) can be transformed into an expectation
value with respect to the ground state of Ho symbolized
by the bracket

~
). The details of the derivation are de-

scribed in Ref. 2. The Laplace transform of G(t) takes
then the form

G(~) =(0
i

A' ( A
I (0).,

l0=1 + lim Hg.~-p 2: —2 —H&0

(12)

If expanded in powers of Hi the operator n represents
the usual Rayleigh-Schrodinger perturbation series. It
contains the transformation of the unperturbed into the
full ground state

~
4). 8 denotes the Liouville operator

belonging to H. Most important in Eq. (12) is the index
"c" at the right bracket of the expectation value. This
abbreviation signals that the cumulant of the operator
product with respect to A, 2, Hi, and the expression in
large parentheses with black dot (. )' has to be taken.
By definition of the cumulant all statistically independent
processes, which would contribute to the normal expec-
tation value, drop out of the calculation. Therefore, we

G(~) = ct (u y —I' c,
F „=(n i

At (ZA„)' in)„
c =(niA~ Ain), .

(»)
(»)
(20)

One can always find a representation of the projection
operators spanning the relevant subspace for which the
corresponding frequency and susceptibility matrices both
become diagonal. The required similarity transformation
is given by the eigenvectors v, of the generalized eigen-
value problem

+v. = ~'Xv' (21)
The eigenvectors v, , i = 1, . . . , n, are normalized with
respect to the susceptibility matrix y according to the

In the projection technique, the dynamical correlation
function of Eq. (12) is approximated by the expression

G(~) =(nlA'I & ~ &A
I ~n), . (17)

1

After the restriction of the dynamics to a relevant part
of the full operator space, G(cu) can also be expressed in
form of a matrix equation containing only the coupling
vector c, the susceptibility matrix g, and the frequency
matrix I" (see, for example, Ref. 127
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relation v,.

yves

——b,~. For diagonal frequency and suscep-
tibility matrices the inversion of the expression [u y —L]
in Eq. (18) is a simple task and G(cu) takes its final form

( ) )~ [c vi)

i4=1
(22)

The corresponding spectral function S(cu) represents sim-
ply a sum over 6 functions with pole strengths ~ctv,

~

and
pole positions at the eigenvalues e, .

In conclusion, the program of a projection calculation
consists of two steps: First, a reasonable approximation
of the full ground state has to be found by expanding 0
in powers of H1 up to a certain order. Second, the rele-
vant operator space is specified. Afterwards, the spectral
function is obtained by diagonalizing the matrices F and
y. In the next section we describe the ground-state ap-
proach in detail. The choice of the projection operators
will be discussed separately for the photoemission and
inverse photoemission spectra in the subsequent two sec-
tions.

IV. GROUND STATE

The unperturbed Hamiltonian Ho is easily diagonal-
ized. The eigenvalues form four oxygen bands centered
around the orbital energy e„and include two copper lev-
els at ed. At half-filling the unperturbed copper system
contains one hole per site. Therefore, additional holes
created by doping are forced to occupy the lowest oxygen
band states. Transitions of holes between the two sub-
systems arise as soon as the perturbation Hi is turned
on. Consequently, an expansion of the 0 operator in
terms of Hi corresponds to a power series in t„~/6 We.
consider that ratio to be the small parameter in the the-
ory. Two types of relevant processes are included in the
approximation of the ground state, first an exchange of
two neighboring copper spins, which is proportional to
t4&/As and second an exchange of an oxygen and a cop-

per hole within a plaquette proportional to t d/A. The
resulting Neel order of the copper spins and the modifi-
cation of the band structure of H& are described in the
following.

The ground state of Ho is highly degenerate since the
spin direction on each copper site is arbitrary. This de-
generacy, however, is lifted by the superexchange inter-
action, which can be described through an antiferromag-
netic Heisenberg Hamiltonian H„acting on the copper
spins with an exchange constant between nearest neigh-
bors of the form J = 4t4d/As. By adding the Ising part
of Hs to Ho and subtracting it again from H1 a Neel or-
dered copper spin system is obtained as the ground state.
We will simply assume this ordering of the copper spins
in the following and suppress the additional Hamiltonian
H„. For the A sublattice the up spin is chosen and for
the B sublattice the down spin (see Fig. 1).

It is well known from experiments that a system
like La~ ~Sr~Cu04 is indeed an antiferromagnet for
x = 0. In addition, the spin dynamics measured
by neutron scattering is perfectly consistent with spin-

wave excitations in a two-dimensional, spin- z Heisenberg
antiferromagnet. These experimental observations sup-
port the assumption of a N'el-ordered copper spin sys-
tem in the ground state. Although the long-range order
disappears with increasing hole concentration, antiferro-
magnetic correlations between neighboring copper spins
are present even at high doping concentrations x. In our
approach, the destruction of long-range order by addi-
tional charge carriers is ignored since we are interested
here in energy scales larger than the one given by the
Neel temperature.

As t„d/6 —
s an expansion of all matrix elements

in Il and y up to second order should be a reasonable
approximation to determine the excitation spectra cor-
rectly on an energy scale of tenths of electron volts. The
expansion of the full ground state ~A ), contains in sec-
ond order the exchange process of oxygen and copper
holes mentioned before. Looking at Fig. 2 it becomes
clear that this exchange leads to an effective propaga-
tion of oxygen holes from one corner of the plaquette
to another. Thereby one has to distinguish between the
cases of parallel [Fig. 2(a)] and antiparallel [Fig. 2(b)]
spin orientations. In the latter case, the moving oxy-
gen hole Hips the spins on the copper sites and thus de-
stroys their antiferromagnetic order. The second-order
terms can both be combined and expressed in form of
a Kondo-lattice Hamiltonian (see, for example, Ref. 14).
Obviously oxygen holes can propagate even in the case
of vanishing direct O-O hopping, i.e. , for t» ——0. The
indirect O-O hopping proportional to t„d/6 modifies the
band structure given by Ho. Thus, the second-order ex-
change processes have to be included in the unperturbed
Hamiltonian, at least approximately. For that reason we
construct an exchange Hamiltonian H,„,which is added
to the unperturbed part Ho ——Ho+ H,„and subtracted
again from the perturbation H1 ——H1 —H,„.With this
the Anal partition of the Hamiltonian H into Ho and H1
is fixed.

In order to obtain an effective exchange operator H,„
which can easily be diagonalized we apply a mean-
field approximation to the aforementioned Kondo-lattice
Hamiltonian. Thereby the spin-flip terms are eliminated.
This kind of approach is well justified if the direct hop-
ping between oxygen sites exceeds the indirect one via
copper sites, that is if t» )) t„&/A. When expressed

in the basis of the creation operators p,k and d~ k the

{a)

{b)

FIG. 2. Second-order exchange processes of an oxygen
hole with up spin and a copper hole with parallel (a) or an-
tiparallel (b) spin direction. The exchange leads to an effec-
tive propagation of oxygen holes.
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Hamiltonian H,x takes the form

24t„)
Hex = ~, ) dnkodnko

ako.

pd X ik(r, —r~)+ g ).V'V'j(e ' ' Pikgpjki
ijk

+e—ik(r, —rd ) t
)

0

2-

I IH, Hi —lH,„),
0

C

(24)

Here, ll ), denotes the ground state of H0. As it turns
out, the corresponding exchange processes with spin flip,
which are also present in the ground state, do not enter
most of the frequency and susceptibility matrix elements
and are neglected. Consequently,

l
0 ), is given by the

first two terms on the right-hand side of Eq. (24). The
omission of the spin-flip processes in

l 0), is justified,
since we are not interested in ground-state properties of
the Emery model but in the dynamics of added particles.
In the dynamical part of the calculation, which depends
crucially on the proper choice of projection operators, it
is essential to maintain the exchange processes with spin
flip. Thus they are only omitted in the static part of our
approach, i.e. , in the ground-state approximation but not
in the dynamical part.

According to the definition of H,„ the diagonalization
of the Hamilton operator Ho ——Ho+ H, includes the
second-order exchange processes with parallel spin ori-
entation. We introduce new creation operators c„k for
holes in oxygen bands n=1, . . . ,4 with energy ink. Their
coeflicients in terms of the ptk are denoted by p„,(k).
As abbreviations we use the phase factors ink and p„k.

c.'k, = ) .~*'(I )&,'k, (25)

(26)

e„ + ed (e„—ed)4 = e„ —ed = e„ — + + 4t„d.

The energy differences between oxygen bands and the
copper level entering the denominators have been re-
placed by the average value 6'. The terms in the second
sum describe the effective hopping of oxygen holes with-
out spin-flip processes as in Fig. 2(a). In second order
there is also a back and forth hopping of holes between
copper and oxygen states. These charge fluctuations of
the ground state lower the copper energy from ed to ed
and are represented by the first sum. If we expand the
0 operator up to second order in t&d/4 the contribu-
tion from the effective Hamiltonian H,x cancels the terms
caused by exchange processes with parallel spin:

4

(0, 0) (——)2'2 (0, 0)

FIG. 3. Band structure of the unperturbed Hamiltonian
Hp for the parameter values tpp: 0 ~ 5 A = 3.5, and t„q ——1
taken as the unit of energy. All k points on the horizontal
axis lie in the antiferromagnetic Brillouin zone.

4

4 k=2 ) V'e '""P.",(k).
'=1

(27)

The Hamiltonian Ho becomes diagonal with respect to
the operators c~k . Since it is convenient to use that
representation of oxygen operators in the further calcu-
lations we also express the remaining operators H1 and
H,x in that basis:

The corresponding matrix elements T"
k and T'„k

are given by

pd
2tpdV n ( 4'mk~nA'4( + Wmk~nA~oi

+4'mk~nB@) + 0'mk~nB4l ) ~

ex
Tmnko

4t2d
(4'

krak~

i+4'k4 k~ i) (32)

In Fig. 3 the band structure of Ho is plotted for the
parameter values t„„=0.5, e„= 0, and ed ———3.5.
For better comparison with the following quasiparticle
dispersion curves the scale on the vertical axis refers to
electronic energies (opposite sign). The copper level is
shifted from 3.5 to higher energies due to the inclusion of
ground-state fluctuations in Ho. Compared to the bare
oxygen band structure of Ho the highest oxygen band
is much flatter. At the same time the band maximum
increases from 4t» to 1.2. Consequently, the distance
between the copper level and the band maximum is sig-
ni6cantly enlarged through the action of H, and the ex-
pansion parameter t„d/b, ' —

4 has become smaller. As
regards to the ground state the application of H1 in the
second term on the right-hand side of Eq. (24) transfers

HO = &d ) dnkodnko + ) &nk CnkoCnkoc (2S)
nkcr nko

H,' = ) (r „k d k c„v + (T „k )'c„k d g ), (29)

2

Hex = Tmnko-Cmko Cnko ~ dekko dekko'
mnko' o.ko
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a part of the copper holes into unoccupied oxygen states.
Thus, the hole occupation number of copper sites nd, at
half-filling deviates from one. Using 4 = 3.0 we find
nd ——0.85 for t» ——0 and nd ——0.73 for tpp: 0 5.

In this set of equations, e~ denotes the Fermi energy of
the unperturbed system, N is the number of lattice cells,
and the spin-flip operators 8+k are defined through the
relations

V. PHOTOEMISSION SPECTRA —ik Rl g+
Elk ~+ ~ cRI

I
(43)

(»~) = (fl
I

cmki
I c„kt. I I

~)

(-"".(k, ~) =(~I
I d» I

(33)

(34)

According to Eqs. (15) and (17) these dynamical correla-
tion functions are evaluated by inserting a projector 'P.
We will use the same projector for both, GP~„and G".
Therefore, the corresponding matrix equations difI'er only
in the selection of the coupling terms cP and c":

6"(k,~) = [c"(k)]' ~.X(k) —F(k) c"(k) (35)
ci' „(k) = ( 0

~

At (k) ct „, ~

0 )„(36)
6"(»~) = [c"(k)]' ~ X(k) —L'(k) c"(k) (37)

c" (k) =(0
i

A~ (k) dt„„ i fI),. (38)

The frequency matrix F(k) and the susceptibility matrix
)((k) are given by Eqs. (19) and (16), respectively.

We now turn our attention to the choice of the projec-
tors A~. Our search for appropriate operators is guided
by two principles: First the chosen set should couple in
the frequency matrix F to the hole creation operators

c„k, or d k, since the latter generate the initial configu-
rations in Eqs. (33) and (34). Therefore, the projection
operators A~ are determined by calculating successively
the commutators l ic„)„,(l i) c„z,, (l i) c„k, , etc. Sec-
ond, one has to make sure that the corresponding sus-
ceptibility matrix y is positive definite. Due to the use
of cumulants this is not obvious. If A = XiX2 replaces a
product of operators Xi, X2 subjected to cumulant for-
mation, an expression of the form (AtA), is not nec-
essarily positive. But this feature does not pose strong
restrictions on the choice of operators A~.

The projection operator 'P for the photoemission spec-
tra contains four difI'erent types of operators A~:

A„(k) = ct „„, n = 1, . . . , 4,

As(k& q) = paq, Sa(i, ), if eiq 0' ep&
+

.paqgipaqgida(qi+qi —i)i&
g1 +2

if ink +&I) (39)

(4O)

(41)

~mq~»qadi &(q.—qi) Sa(k —q, ).
fAQ1 Qg

In the sudden approximation the photoemission and
inverse photoemission spectra are given by the one-hole
spectral densities. With regard to photoemission we
will consider the following correlation functions G
m, n e (1, . . . , 4), and G~, n c (A, B), for oxygen and
copper holes, respectively:

where S+I ——d I,d I, . The operators Ai(k), . . . , A4(k)
generate an oxygen hole with up spin in one of the four
bands m. Thereby the corresponding state has to be un-
occupied in the unperturbed ground state since otherwise
the susceptibility matrix element y~~(k) vanishes.

The next type of operator A5(k, q) consists of an oxy-
gen hole with Hipped spin in a symmetric state and a
spin-wave excitation in the B sublattice. Roughly speak-
ing, the set of operators As(k, q) represents the third
configuration in Fig. 2(b). This is seen by introducing
the integrated operator As(k):

A5(k) = ) As(k, q) = ) e '" 'pal, 'Sar.

(44)

If the operator @~1,S~I is applied to the Neel state the
final configuration of Fig. 2(b) arises. In the frequency
matrix, the operator As(k) couples to Ai(k), . . . , A4(k)
through the exchange processes with spin flip. We have
decomposed the spin-flip operator As(k) into single q
components since, as before, the susceptibility matrix el-
ements referring to occupied oxygen band states vanish.

As mentioned before, all projectors A~ are constructed
by considering the commutators (l."i)"ct k, . The expres-

sion for n = j., Sic k, , leads to the copper creation oper-/

ators d k, . The spin-flip operators As(k, q) then appear
as a component of l'. id k, . Some relevant commutators
are shown in Appendix A. As(k) is a part of the com-
mutator l:iA5(k). It can be called a dynamical charge
excitation operator.

Finally, A7(k) is found by considering (l i)2A5(k).
As one realizes by inspection of Fig. 2(b), a propagat-
ing oxygen hole successively Hips more and more cop-
per spins. The configuration produced by As(k) is only
the beginning step. Aq(k) generates a succeeding state
with a string of two overturned spins. The projectors
Ai(k), . . . , A7(k) coincide at half-filling with the opera-
tor set used in Ref. 6 if the operator type As(k, q) is
replaced by its integrated version As(k).

One might ask why we have not also included the cre-
ation operators of copper holes d k, in the list of projec-
tors in Eqs. (39)—(42). However, such a choice proves to
be unfavorable due to the fact that in the susceptibility
matrix y the corresponding diagonal elements are small,

whereas the overlap with the oxygen operators c k, is
not. Due to the large overlap between copper and oxy-
gen it is easier to determine the photoemission spectrum
of copper holes solely through their coupling in c" to the
operators Ai(k), . . . , A4(k).

With respect to the set of projection operators of
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unocc

( ) ~ PBki I~ 1 PBqi B(k—
q)~

(, unocc

PBki + ~ ) ~ PBqi B(k—q) (46)

Thereby, N„ is the number of unoccupied k points (with) cy'). As can be seen, S(k) and T(k) are lin-

ear combinations of the projectors Ai(k), . . . , A4(k) and

As(k, q). One should point out, however, that there is
also an admixture of the remaining two operator types

Eq. (39) we calculated the frequency and susceptibility
matrix elements using the ground-state approximation of
Sec. IV. The results are found in Appendix B. Numeri-
cally, the spectra are evaluated by diagonalizing L'(k) and
y(k) at all k points of a rectangular net in the antifer-
romagnetic Brillouin zone. For a fixed k point, As(k, q)
operators are taken into account at those q points of the
net which are unoccupied (i.e. , for eiq ) e~).

In Fig. 4, the photoemission spectra of oxygen and cop-
per holes at half-filling are presented for the parameter
values t» ——0 and 4 = 3. In the following t„d = 1 is
taken as the unit of energy. The spectra are integrated in
reciprocal space and refer to the local creation of an oxy-

gen hole @~~I, or a copper hole 1j~2(d~&i, + dtBI, ). The
dominant maximum in the oxygen spectrum at u = 0
consists of antisymmetric linear combinations of oxygen
orbitals which do not couple to copper holes. Therefore
they form a dispersionless, nonbonding band for t» ——0.
As a consequence of strong correlations in the Emery
model the remaining spectral density is dominated by
two-particle states, which are absent in any type of mean-
field description. In real space, they are formed by the
symmetric linear combination p I and the d orbital in
the center. The lowest unoccupied states at ~ = 1.0 in
Fig. 4 are singlets. The corresponding triplets appear in
the energy range between u = —0.5 and ~ = —1.0. They
hybridize with two bands and lead therefore to a double
peak structure. The eigenoperators S(k) and T(k), be-
longing to the singlet and triplet maxima for a given k
point, are roughly of the form

(OBIT BIi +BIJ BI])''
2

(47)

If S(k) of Eq. (45) acts on the Neel state of the copper
spins, a singlet with wave vector k is generated. On a B
plaquette it is described by Eq. (47). The considerations
of Zhang and Rice have also been confirmed by exact
diagonalization studies of small copper-oxygen clusters
with periodic boundary conditions. '7' " Our photoe-
mission spectra are in good agreement with these calcu-
lations. This statement refers not only to the appearance
of singlet and triplet states in the spectra but also to the
peak positions and intensities. One difference is the fact
that the triplet states are distributed over two bands,
which are either not present or cannot be resolved in the
calculations for small clusters.

When the direct O-O hopping t„„ is turned on, the
large maximum of nonbonding states in the oxygen spec-
trum transforms into a broad structure of band states.
This can be seen in Fig. 5, where we have used the pa-
rameter values t„„=0.6 and 4 = 4. Although the largest
peak in the oxygen spectrum remains close to u = 0 its
physical origin is different. Now this maximum is formed
by triplet states, which have been shifted together with
the singlet states to higher energies. The described trend
is reflected in the form of the copper spectrum. The
bandwidth of the singlet states is only weakly affected
by the O-O hopping and remains to be small. However,

As(k) and A7(k), which is shifting the singlet position
to higher energies. At ~ = —2.6 one finds a weak maxi-
mum due to the string operator A7(k). The small peak
referring to As(k) appears first at u = —6.2, outside the
energy range of Fig. 4. The photoemission spectrum for
copper holes contains only the singlet and triplet maxima
since there is no coupling to the antisymmetric oxygen
states at u = 0. We find for the singlet peak 80Fo oxygen
and 20% copper weight.

As has been recognized by Zhang and Rice, is the low-
est unoccupied hole states (with respect to half-filling) in
the Emery model are singlets. Within one B plaquette of
oxygen orbitals surrounding the central copper site the
singlet is of the form

PES
O

G.6—

x=o
0.8

0.4—
Ct

0.2—

-1 0

Energy l tea
-1 G 1

Energy l ti,s

FIG. 4. Photoemission spectra (PES) of oxygen holes
(thin line) and copper holes (thick line) at half-filling (x=O).
The parameter values are t„„=0 and 4 = 3.

FIG. 5. Photoemission spectra of oxygen holes (thin line)
and copper holes (thick line) at half-filling (x=O). The pa-
rameter values are t» ——0.6 and A = 4.
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VI. INVERSE PHOTOEMISSION SPECTRA

To determine the inverse photoemission spectra of oxy-
gen and copper holes in the Emery model we proceed
similarly as in the last section. We start out by intro-
ducing the dynamical correlation functions G „(k,w),

m, n E (1, . . . , 4), and G (k, u), cr E (A, B). All quan-
tities of the inverse spectra will be marked by overlined
symbols:

G „(k,u))=(n[c k, ] c k, i ln)„
$4J —2 )

G (k~)=(nldt„, l
d k, l ln), .nkr

(48)

(49)

These relations are again expressed in form of simple ma-
trix equations by inserting the projection operator T as
done in Eq. (17):

the overall width of the spectrum clearly has increased.
After the discussion of the photoemission spectra we

turn our attention to the inverse problem. Another sub-
ject of the next section is the change in the spectral den-
sities for increasing hole concentration.

ond case, e1k & e~, an additional hole occupies the lowest
oxygen band state. For small doping concentrations con-
sidered here the higher oxygen bands m = 2, 3, 4, remain
always empty. The variable N denotes the number of
occupied k points.

A1 represents the annihilation operator of copper holes
on A sites. The corresponding operator for B sites, d~k„
drops out of the calculation because its susceptibility ma-
trix element vanishes. This is due to the fact that within
the approximation made for the ground state there are
no copper holes with spin direction opposite to the Keel
order. For the same reason, there is no contribution from—dthe correlation function GB(k, cu) to the inverse spectral
density. The operator dgk, is a good starting point for
the construction of the remaining projection operators
A . Similar as in the case of the photoemission spec-
tra they are determined by calculating the commutators
Zrd~k, and (l:r) d~k„. The results are shown in Ap-
pendix A.

In the commutator Z1d~» two relevant types of pro-
jection operators appear:

A2(k) =p~k„ (58)—//

A2 (k~ q) p~qi SA(k — )
' (59)

~=) lA n), &-r (nA„l. (50)

The pole positions of the correlation functions G „(k,w)—d
and G (k, a) follow from the corresponding susceptibil-
ity and frequency matrices y and F. The coupling terms
c"(k) or c"(k) inHuence merely their weights in the spec-
tral densities of oxygen or copper holes:

G (k, ~) = [c"(k)]t

cr „(k)= ( n
l

A (k)

G (k, ur) = [c"(k)]t cu

c" (k) = ( n
l

A. (k)

X(k) —F(k) c"(k),

c„k, ln)„
X(k) —F(k) c"(k),

d k, ln), .

(51)

(52)

(53)

(54)

The frequency matrix F(k) and the susceptibility matrix
X(k) are defined through Eqs. (19) and (16), respectively,
if we replace the operators A by the corresponding pro-
jectors of the inverse spectra A~.

Four diferent types of projectors enter the calculation
of the inverse photoemission spectra:

A.i(k) = d~k„ (55)

~&~j.~~(v —~) 1k Q6I
Ag(k, q) = &

P&kr p&qiS~(k —q) I ~rk +eF',
V o

As(k) =

for all q with ~1q

2
4'mq(t mq Bqi A(k q}.d S

mq

(56)

(57)

Thereby the operator A2(k, q) is split into two diferent
expressions. In the first case, t'1k & e~, the four oxygen
band states at point k are unoccupied, whereas in the sec-

The first one, Az(k), describes the annihilation of an
oxygen hole in a symmetric state with respect to the
A plaquette. For the corresponding susceptibility matrix
element to be sufficiently large, a high occupation num-
ber of the state to which p~k, is applied is necessary. If
e» & ez this condition is fulfilled since the lowest oxy-
gen band states are highly symmetric for t» ) t~d jA.
In the opposite case, i.e., e1k & e~, the possibility to
annihilate oxygen holes with momentum k arises solely
through the presence of charge fluctuations in the ground
state. Therefore, the corresponding susceptibility ma-

trix element is small and the operator A2(k) appears—//

a be irrelevant. The second projector A2(k, q) resem-'.s the spin-Hip operator As(k, q) considered previously
[Eq. (40)]. Here, it represents a spin-wave excitation on
sublattice A together with a symmetric superposition of
oxygen holes on an A plaquette, p~~, . For the same—//
reasons, A2(k, q) is only a relevant operator in case of

If the operators A2(k) and A2(k, q) at an occupied
k point (ark & eF) are applied separately as projectors
the diagonalization of the corresponding frequency and
susceptibility matrices creates the eigenoperators S(k)
and T(k):

( )=
~2 l

p»T y~ ) PAqiS„(k q) (60)v2 ( v'N,

1 ( 1
( ) = p~kr + ).p~qiS„(k )

. (61)v'2 ( N,

S(k) and T(k) are annihilation operators of holes in sin-
glet or triplet states. Their pole positions coincide with
the corresponding eigenvalues of the singlet and triplet
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linear combinations S(k) and T(k) [Eqs. (45) and (46)].
The singlet maxima due to S(k) appear in the inverse
spectral densities as soon as the system is doped with
holes. They join directly the singlet peaks in the photoe-
mission spectra. This behavior reflects the fact that the
additional oxygen holes occupy the lowest energy states
of the strongly correlated system, namely, the singlet
states. Therefore, these singlet states can be annihilated
causing peak structures adjacent to the photoemission
spectrum. We do not consider the triplet operators any
further. Otherwise we should work with an improved
approximation for the ground state. For that reason we
have chosen at occupied k points (with sqk & e~) a super-
position of the operators p~k, and p~&, S&~k ~

allowing

only for the singlet formation. At unoccupied k points—ll
(elk & ez), we use the spin-flip operators A2(k, q) only,~/
since, as discussed before, the operators Az(k) are not
relevant in that case.

The remaining projection operator As(k) is obtained
starting out from an integrated version of the spin-flip

operator A2 (k, rI):

(62)

As (k) arises as a part of the commutator l ~A& (k), which
is shown in Appendix A. A copper hole on the sublattice
B is accompanied by a spin-wave excitation. Therefore,
A3 (k) may be called spin-flip operator for copper holes.

The bare annihilation operators of oxygen holes c~k,
enter the set of projectors A~ solely in form of the sym-
metric linear combination p~k, for aqua & e~ as a com-
ponent of As(k, q) [Eq. (56)]. The corresponding anti-
symmetric linear combinations are useless as projection
operators because they do not couple to the copper sys-
tem. Thus, they are not occupied through the occurrence
of charg Huctuations in the ground state and their sus-
ceptibility matrix elements disappear. For that reason,
we are left with the symmetric linear combination p~k, .
In case of e~p ) e~ the possibility to annihilate a sym-
metric oxygen hole is taken into account in the matrix
~c as a coupling between the oxygen operators c~k, and
Aq(k). Therefore including»k, exclusively in A2(k, rI)
for elk &e~ turns out to be sufficient.

Figure 6 shows the photoemission spectra (left, thin
lines) together with the inverse photoemission spectra
(right, thick lines) of oxygen holes at half-fllling and a
doping rate of x = 0.2. We have chosen the parameters
t„„=0.6 and 4 = 4. The corresponding spectra for
copper holes are presented in Fig. 7. Just as before, the
spectral densities are integrated in reciprocal space. The
intensities in the inverse spectra refer to the local annihi-
lation operators pal, and I/~2(dAI, + dpi, ) for oxygen
and copper holes, respectively.

We begin our discussion with the inverse spectra at
half-filling. The most important result is the existence
of an energy gap of width Le = 2 between the photoe-
mission and inverse photoemission spectra. It is limited
in the inverse spectra at u = 4.5 by the upper Hubbard
band. In the corresponding eigenoperators, the Aq(k)-
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FIG. 6. Oxygen holes: Photoemission spectra (PES, thin
lines) and inverse photoemission spectra (IPES, thick lines)
for half-filling (x=0, above) and hole doping (+=0.2, below).
Parameter values: t„„=0.6, A = 4.
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FIG. 7. Copper holes: Photoemission spectra (PES, thin
lines) and inverse photoemission spectra (IPES, thick lines)
for half-filling (x=0, above) and hole doping (@=0.2, below).
Parameter values: t» ——0.6, A = 4.

components are dominant. The appearance of a gap at
half-filling is a remarkable consequence of the strong cor-
relations in the Emery model, which turns out to be a
charge transfer insulator. The eigenoperators of the sec-
ond pole at w = 6.2 have a strong admixture of As(k).

If the system is doped with additional holes the energy
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gap vanishes. This can be clearly seen in Figs. 6 and 7.
In the inverse oxygen spectrum as well as in the inverse
copper spectrum, new structures appear around an en-
ergy a = 2, joining directly the highest states of the
photoemission spectrum. These structures result from
new linear combinations of projectors which are of sin-
glet character since the operators Aq(k, q) have a large
weight. Due to the fact that the holes in the states close
to the Fermi energy are delocalized, the doped system
shows metallic properties. In conclusion, the doping of
the Emery model with holes leads to an insulator-to-
metal transition. Comparing the spectra at half-filling
and for finite hole doping reveals two additional many-
particle effects: Firstly, under doping the position of the
singlet poles as a whole moves to lower energies whereas
the upper Hubbard band shows the opposite trend. Sec-
ondly, spectral weight is shifted from the outer regions
of the hole spectral densities to states near the Fermi en-
ergy. We will discuss these observations in greater detail
in the next section.

The insulator-to-metal transition in the Emery model
as a consequence of hole doping has previously been
found in exact diagonalization studies of small (Cu02)4
clusters. 7 The basic form of the inverse spectral
density shown in Figs. 6 and 7, namely, the singlet struc-
ture, the upper Hubbard band, and the smaller peak
at high energies, coincides very well with the results of
Tohyama and Maekawa for t» ——0.4. Furthermore,
the shift of the singlet maxima and the upper Hubbard
band, which are accompanied by a change of spectral
weight, has also been found in the work of Eskes and

co-workers.

VII. DISCUSSION

tance between the singlet and the triplet peak is decreas-
ing with doping. Thereby the triplet position remains
nearly unchanged. At energies u ( 0 the spectra are
almost unaffected by the additional holes. According to
a sum rule, the total weight of the oxygen spectra has
to become smaller under doping. However, the spectral
weight of the singlet states is not reduced as one would
expect in a one-particle picture. On the contrary, the
total spectral weight of the singlet states increases with
hole doping although some of them are now occupied by
additional holes and therefore disappear from the pho-
toemission spectra. At x = 0.2 the total singlet intensity
is about 20% larger than at half-filling. This kind of be-
havior is a surprising consequence of strong correlations
between holes in the copper system.

The shift of the singlet maximum to lower energies and
the increase of its spectral weight under doping are both
of the same origin. As was mentioned before, the sin-
glets are formed by a symmetric linear combination of
operators Ai(k), . . . , A4(k) with the spin-flip operators
As(k, q) [Eq. (45)] at unoccupied q points (ei~ ) ep).
With increasing doping the number of unoccupied q
points becomes smaller and the energy gain due to sin-
glet formation de"reases. Therefore, the singlets move in
the direction of the oxygen orbital energy e& ——0. The
admixture of spin-flip operators As(k, q) to states close
to the Fermi energy is diminished whereas the contribu-
tion of Ai (k), . . . , A4(k) increases. This increase leads to
a rise of the singlet weight in the oxygen spectrum. The
gain in spectral weight overcompensates the loss caused
through the occupation of the lowest singlet states by
additional holes. As is seen in Fig. 8, also the maximum
of the triplet states around ~ = 0.2 becomes more pro-
nounced under doping.

In the inverse photoemission spectra, the strong cor-
relations lead to similar effects. In Fig. 9 the inverse
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The inHuence of hole doping on the photoemission
spectrum of oxygen holes can be seen in detail by con-
sidering Fig. 8. For comparison, the spectral densities
at half-filling (x = 0, thick line) and for a doped system
(x = 0.2, thin line) are shown. The parameter values
t„„=0.6 and 4 = 4 were used. Obviously, the dis-
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FIG. 8. Comparison of photoemission spectra for oxygen
holes at half-filling (x=0, thick line) and hole doping (x=0.2,
thin line). Parameter values: t„„=0.6, Z = 4. The singlet
weight increases with doping.

FIG. 9. Inverse photoemission spectra of copper holes
for the hole concentrations x=0 (full), x=0.1, and x=0.2
(dashed). The parameter values are t„„=0.6 and A = 4. The
intensity of the upper Hubbard band decreases with growing
hole concentration and spectral weight is shifted to the new

states at the Fermi energy (on the left side). Simultaneously
the distance between the singlet peaks and the upper Hub-
bard band increases.
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-2 0
~ ii

spectrum of copper holes is shown for half-filling (x = 0,
solid line) and for two doping concentrations (x = 0.1,
x = 0.2, dashed lines). The same parameter values are
used as in Fig. 8. At half-filling, the system has an energy
gap and there are no states at the Fermi energy. When
the system is doped, new states with singlet character
arise in the energy range from u = 2 to w = 3 and the
system undergoes an insulator-to-metal transition. As
can be seen in Fig. 9, the states near the Fermi energy
shift to lower energies with increasing hole concentra-
tions. The same trend is found for the highest states in
the photoemission spectra of Fig. 8. Simultaneously, the
upper Hubbard band moves to slightly larger energies.
Thereby its intensity decreases steadily. Since the total
spectral weight of the inverse copper spectrum is given by
the hole occupation number of copper sites nd, it grows
in case of hole doping. Clearly, the intensity of the sin-
glet states close to the Fermi energy is becoming larger.
But their weight is increasing more rapidly than the total
spectral weight. For example, at a doping rate of x = 0.1
the singlet intensity exceeds the increase in ng by 82%.
To summarize one may say that hole doping leads to a
shift of spectral weight from the upper Hubbard band to
states close to the Fermi energy.

In Fig. 10, we show the dispersion of dominating quasi-
particle poles in the photoemission (black dots) and
inverse photoemission spectrum (circles) at half-filling
(t» ——0.6, 6 = 4). The k points on the horizontal axis
all lay within the antiferromagnetic Brillouin zone. The
upper Hubbard band at u = 4.5 and the smaller peak
at u = 6.2 in the inverse spectrum are nearly disper-
sionless. The energy gap between 2.5 &u &4.5 is limited
in the photoemission spectrum by the flat singlet band.
The corresponding triplet states between 0&m &0.5 also
show only a weak dispersion. By comparing with Fig. 3
it is noticed that the two bands with lowest energy have
a similar form as found for the band structure of the
Hamiltonian Ho. One may conclude that the perturba-
tion Hi has only a minor influence on the corresponding
states.

Of special interest is the dispersion of the singlet band

2 .2—

Ct
Qi 24

~ il

(——)2'2 (ir, 0)

FIG. 11. Dispersion of the singlet pole in the photoemis-
sion spectra at half-filling (x=O) for the parameter values
t» ——0.6, A = 4. The k points at the horizontal axis re-
fer to the antiferromagnetic Brillouin zone.

since it contains the states at the Fermi energy in case
of hole doping. Figure 11 is an enlargement of Fig. 10 in
the energy range from u = 1.9 to u = 2.6. In spite of the
large value of t„„=0.6, the singlet bandwidth 8, = 0.5
remains rather small. The band maximum is at the I'
point (0, 0). For t» ——0, A = 3 the singlet bandwidth
lV, = 0.2 is even smaller as Fig. 12 shows. The band-
width and the form of the dispersion agree very well with
exact diagonalization results for a single hole in the t-J
model. Apparently, t» and the indirect O-O hopping
processes proportional to t d/A have a counteracting in-
fluence on the singlet dispersion. By comparing Fig. 11
with Fig. 12 one realizes that the effective propagation
lowers the energy at (0, 0) as against the one at (2, ~) or
(ir, 0), whereas t» has the opposite effect. For that rea-
son, the singlet bandwidth remains small for t» ——0.6.

Since the introduction of the Emery model a large
amount of work has been devoted to its electronic ex-
citation spectra in case of half-filling and low levels of
doping. A number of authors applied the slave-boson
method to it. At half-filling, they also find an energy
gap between the photoemission and the inverse photoe-
mission spectra in a parameter range which seems to
be reasonable for high-temperature superconductors like
Laq Sr Cu04. As a consequence of hole doping,
new states appear in the energy gap, which turn the in-
sulator into a metal. These states are in the vicinity
of the Fermi level and form a flat band. They corre-
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FIG. 10. Dispersion of dominating peaks in the oxygen
spectrum (black dots) and inverse oxygen spectrum (circles)
at half-filling (x=0). The pole positions are shown within the
antiferromagnetic Brillouin zone. (t„„=0.6, A = 4).
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FIG. 12. Dispersion of the singlet pole in the photoemis-
sion spectra at half-filling (x=O) for the parameter values
S„„=O,A=3.
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spond to the Abrikosov-Suhl resonance obtained when
the slave-boson method is applied to heavy fermion sys-
tems. In spite of some similarities they differ consider-
ably from the singlet states presented in this work. In
particular, the resonancelike structure vanishes at half-
filling. This property is in contrast to our results and the
ones of exact diagona1izations of the CuO2 cluster where
the energy gap extends from the upper Hubbard band
to the singlet states. Similar results as in slave-boson
calculations have been presented in Ref. 25 applying a
self-consistent Green's function technique to the Emery
model. Thereby, the same shift of singlet states to lower
energies with increasing doping has been found as ob-
served in Figs. 6 and 7.

An equivalent type of singlet and triplet states as in our
ease arises in the photoemission spectra of Refs. 6 and 26.
In Ref. 26, the Emery model has been mapped by canon-
ical transformation to an effective singlet-triplet model.
Starting out from the reduced Harniltonian the authors
calculated the photoemission and inverse photoemission
spectra at half-filling for a paramagnetic ground state.
The resulting photoemission spectrum shows roughly the
same form as in Fig. 4. As mentioned before the projec-
tion method has previously been applied to calculate the
photoemission spectrum of oxygen holes for the half-filled
case. The results obtained here for x = 0 are similar to
the previous ones. The distribution of spectral weight
in Figs. 4 and 5, however, differs due to the inclusion of
direct and indirect O-O hopping in the ground state of
Ho thereby improving the agreement with exact diago-
nalization results.

The effects of strong correlations on the photoemission
and inverse photoemission spectra of the Emery model
which have been discussed here are in agreement with ex-
perimental results for high-temperature superconductors.
0 18 absorption edge measurements of La2 Sr Cu04+p
for different doping concentrations 0 (x & 0.3 (Refs. 27
and 28) reveal the same form of the inverse photoemission
spectra as in Fig. 9. At half-filling (x = 0), the energy
gap is limited by the upper Hubbard band. When the
system is doped with holes (x ) 0), new states appear
at the Fermi energy. With increasing doping, additional
spectral weight is shifted to these states from the upper
Hubbard band. Simultaneously the distance between the
two peaks in the absorption spectrum is growing with
doping. Although, quantitatively, the experimental de-
crease in intensity of the upper Hubbard band exceeds
our theoretical results and the shift of the peak positions
is weaker as in Fig. 9, the qualitative behavior coincides
in both cases.

In photoemission experiments on Biq Sr2CaCu208
(Ref. 29) a fiat band is observed which crosses the Fermi
energy. Its part below e~ has only a width of 0.2 eV and
is much smaller than the LDA predictions, which exceed
0.8 eV. However, these experimental findings agree very
well with the width of the fIat singlet bands of Figs. 11
and 12. On the other hand, looking at their dispersion
in greater detail one recognizes also deviations between
theory and experimental observations. Because the sys-
tem is nonmagnetic the measured form of the dispersion
curve shows no antiferrornagnetic symmetry. Further-

more, there seems to be a more fundamental discrepancy
between theory and experiment with respect to the vol-
ume of the Fermi sphere. In the Emery model in the
limit Ug —+ oo, there is no Fermi surface at half-filling
since the system is an insulator. Consequently, only those
charge carriers contribute to the Fermi sphere which are
introduced by doping. In photoemission experiments on
Bi2Sr2CaCu20s, however, the measured Fermi surface
agrees quite well with LDA calculations, which predict a
large volume.

By comparing the photoemission spectra of
YBa2Cu30y for different hole doping in the range 6.3 &

y & 6.9 (Ref. 30) one observes an increase in spectral
weight of the states close to the Fermi energy with grow-
ing hole concentration. This behavior is also found in
the photoemission spectra of Fig. 8 for the singlet states
although the increase in the measured spectra is more
pronounced. Furthermore, there is some controversy
whether or not these states are already observed at half-
filling. Besides the increase of the singlet weight with
hole doping there is also experimental evidence for a
simultaneous shift of the singlet position to lower en-
ergies. The doping dependence of the Fermi level for
Bi2Sr2Caj „Y„Cu208+p has been investigated in Ref.
31 by comparing the positions of deep-lying core lev-
el." for different stochiometries y. The Fermi level for
a hole concentration of x = 0.2 is 0.2 eV lower in energy
thorn in the case when the chemical potential just enters
th. top of the valence band. Since the highest valence
band is of very small width this observation may be in-
terpreted as a shift of the singlet states to lower energies
by 0.2 eV. This value is in good agreement with the afore-
mentioned 0 ls absorption spectra but smaller than in
Figs. 6 and 7. Furthermore, this shift of singlet states is
supported by measurements of the optical conductivity
in La2 Sr~Cu04 (Ref. 32). As a consequence of hole
doping two new structures arise, i.e. , the Drude peak as
expected for a metal and an additional maximum in the
mid-infrared region. With increasing hole concentration
the latter moves to lower energies. The mid-infrared peak
may be explained by interband transitions of electrons
from occupied states below w = 0.5 in Fig. 5 into empty
states of the singlet band. Therefore, its movement to
lower energies indicates a shift of the singlet states in the
same direction. In conclusion, all many-particle effects
mentioned so far are confirmed at least qualitatively by
experiments. These findings support the usefulness of the
Emery Hamiltonian as a simplified model for the high-
temperature superconducting materials.

VIII. SUMMARY

It was demonstrated that the projection method is a
powerful tool for studying strongly correlated electrons.
The electronic excitation spectra of the Emery model,
which have been calculated and presented, are heavily
affected by correlations. The copper level is split into
an upper and lower Hubbard band and symmetric lin-
ear combinations of oxygen orbitals on a plaquette form
singlet and triplet states with the central copper spin.
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In order to describe these two-particle states correctly
in the limit U& —+ oo it is essential to treat exactly the
exclusion of doubly occupied copper sites. At half-filling
there is an energy gap between the fiat singlet band and
the upper Hubbard band. Hole doping turns the insu-
lator into a metal. New states arise in the inverse pho-
toemission spectra close to the Fermi energy which are
also of singlet character. With increasing doping, addi-
tional spectral weight is shifted from the outer regions
of the spectra to the states in the vicinity of the Fermi
energy. This leads to the surprising fact that for small
doping rates the total intensity of the singlets in the pho-
toemission spectra increases with hole doping. In the
inverse photoemission spectra, the upper Hubbard band
loses intensity, which is shifted to the singlet states close
to the Fermi energy. The singlet structure moves as a

whole to lower energies when the hole concentration is
enlarged whereas the upper Hubbard band shows the op-
posite trend. As mentioned before, these results are in
very good agreement with exact diagonalization studies
of small clusters. Since there is also reasonable agreement
with the measured photoemission and inverse photoemis-
sion experiments one might hope that the Emery model
is appropriate to describe the most important features of
the electronic excitations in high-temperature supercon-
ductors.
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APPENDIX A: COMMUTATION RELATIONS

The projection operators of the photoemission spectra are found by applying repeatedly the Liouville operator 8&
to the creation operators of oxygen holes c k . In a similar way the projection operators of the inverse photoemission
spectra can be determined by starting from the operator dAk„. The arising commutators Z~d k, , L~A5(k), Z~d k„
and Z&A2(k) are listed below:

= —2t
1 & t + 1

+~~~ p~(k —)~ +pdd(+
aq„»q. ~da(k q, +, ) & (A~)

2t&g — -t + 2t„gl:I A5(k) = ~ ) (t(mqi(t'mq dAq~(S~(k q~)
— ) (p~q~, p~q, d~(q~+q~ k)& + p

fogy g, g,

1 A)d(d g~ =2twgp p mr+ ~) p a, S
~k ~~

——) p q ~d z, &d tl —q+q )g (A3)

/
—// 2tpd, A

Z]A2(k) = ~ &j5mq~pmq dQqgg+A(k q, ) + (pAq&(pAq&TdA(q, +q, k)g PAqg)PAqlldA(k —qz+qz)()' ( )
mph g, g,

APPENDIX B: MATRICES OF THE PHOTOEMISSION SPECTRA

The photoemission spectra shown in the preceding sections have been calculated with respect to local creation
operators for oxygen and copper holes, p&1 and d I . In the following, we give the definitions of the local correlation
functions G~(w), G" (ru) as well as their relations to G" „(k,w) or G (k, w), respectively:

j.Gi(~) =(~Is», l „p», j&). =- —) p, (k)p„*,(k) G~„(k,~),
mnk

G (~)=(Bi x~l dpi) iA) = ).G (k~).

The matrix elements of the susceptibility matrix y(k), the frequency matrix L'(k), and the coupling matrices c"(k),
c"(k) are listed below. Thereby, we have used the abbreviation nmk = (c k cmk ) = 0[5+ —6 k). The function n
is the occupation number of the oxygen band state (m, k) in the ground state of Ho. The following matrix elements
vanish: Xm5)Xm7&X56, )(.57)+67&+7m&F67ic A for m = 5, . . . , 7, and c ~ for m g 5. The remaining coupling matrix
elements take the form

unocc

cm„(k) = ym„(k), c5~(k, gg) = " ) ', and cmA(k) = 2t„d " (1 —nmg)
5mq& —6d Emk —6d
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ym„(k) = 6 „(1—n k) —4t„d Pmk P„k(l —n k)(1 —n„k)
mk Cd Cnk Cd

(B3)

4'pd """-'
l4' q I'l4 q. l'

X5tr(k q& q2) =
N ) X55(» ql q2) = N" )

d)k nqz dJ
unocc unocc 2 2) I ) 12 4t2 ) 14'mqr I

X .(k) = -2t.d 4 k (1 - .) N ) .
nq2nqg

unocc 4~2 unocc unocc 2 2

~77(k)
1 )- l~ 12 pd )- )- 14 rqrl 14'm. q. l

( miqr d)( mzqr &d)

pd a x l@mqrl 14'rrq21 2 & 1 14'mqrl

qN ~mq, —~d)
(B6)

unocc unocc unocc 2 unocc2

X«(k) =N, ). ):14 q l'1r4.„I'+4tpd N ) ) 14' kl'
mql nqa

4rpd lr q I lr q I lr q I
r' q r' q r' q cq lr' *~ I

I
+N (6mrqr Ed)(E mqar td) (6mrqr Cd)(t m3qr Cd)m2q2 mlq1 ms

pd, y ~ y ~ y ~ 14'mrqr I 14'maq21 14'mq(qr+qq —k) I

i ma(ql+q2 —k} dp
2 (B7)

F„„(k)= ~„k ~ „(k) + 4t„',
I

6rnk Ed
(B8)

F 5(k, qi) = 4t,'d 0 k ) . "
, F6 (k) = ~ k +6 (k),

6mqr Cd
(B9)

unocc 4t2 unocc unocc
I pF»(k, q„q2) = ) ~„q, y55(n, q~, q2) — " ) )

mql Cd

urrocc ( 1
unocc

Iy Ig ]

m nq3

(B10)

unocc unocc

F56(k, qi)= 2tpd ). 14
—q, l'

N ).I&.„l',
m nqg

(B11)

F57(k, qy) = 2t„d ~ 2 )
m

14 kl'
N e„q, —ed'

nqg

(B12)
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unocc unocc unocc

&ss(k) =
~ ) ) (&m&q, +&msqs)14'm&q&I 14'm q I

+ 14'm q I 14'msqsl ) 14' kl-,q, -,q, )
(&msqx + &msqs)(14'mxqs I l&msqz I 14'msqs I

+ 0'miqi 0'mzqz 0'msqq @msqi 14'msqs I

(&miqi &d) (&msqi &d)

&q& + msqs) l&miqi I 14'msqs I 14'ms{qi+qs —k)1

( ms {qi+qs —k) 6d)

'~+ |)ld' «Ill' »lid qI)
(&mxqz d)(~msqs &d)

4t2 unocc unocc
~

+ N, ).) ) I

—
~ill 4'miqi4'm, qi@msqi4'msqx l@msqs I

miqx ms msqs

4)2 unocc unocc unocc

~mzqx-,q, -,q,
unocc unocc unocc 2 2

pd ) ) &mlql 14'miqi I 14'msqi I

8tpd ~ 10'mqi I

1 ~ 2 4tpd ~ 10'mqi I
1 ~ &nqs 14'nqs I

4'pd"""-' & l4'mq, I'

(B13)

(B14)

APPENDIX C: MATRICES OF THE INVERSE PHOTOEMISSION SPECTRA

The local correlation functions of the inverse photoemission spectra and their connection with Gm„(k, cu), G&(k, ~)
are as follows:

&&(~) =(~ lugs, I »» I I ~).= —).0' &(k)P.&(k) & .(k, ~),

Gz(~) = (~ I d~l, I d~i~ I I
fl )c = —).G&(k, ~)

(C1)

(C2)

We already mentioned in the preceding sections that the correlation function corresponding to d~l, vanishes due—//
to our ground-state approximation. The projection operator A2(k, q) is equal to Az(k, q) in case of elk ) eF. For

1 /

e&keep it takes the form 2 —2[N A2(k) —A2(k, q)]. In the following we will give separately the matrix elements

for the operators A2(k) (index "s") and A2(k, q) (index "f") The frequen. cy and susceptibility matrix elements of
Aq(k, q) are simple linear combinations of the underlying expressions for A2(k), A2 (k, q) and will not be shown here.
We start by listing the vanishing matrix elements: ps', y, f, yif, ys„F,f, Fs„cs,cs&, and for cyk ) Ep . c.&, c~A.
For the remaining coupling matrix elements we find the following results:

1
c&m(k) = 2t„d —(1 —nmk), c&A(k) = y&&(k), cz~(k, qs) = ps'(k) for

~mk —~d /2N.
and

c2m(kt q1) {tmknmk + 4tpd4mk(1 —nmk) ) or &1k ( cP
2N, i nk Cd

12

~»(k) =1 —4t„'„)
mk 6d)m

+s& ( ) tpd ) +ss(k)
&mk &dm

(C3)
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