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Attractive pairing potential from the repulsive Hubbard model
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We have examined the two-dimensional repulsive extended Hubbard model on a square lattice,
using standard many-body diagrammatic techniques. By summing an infinite series of two renor-
malized loops for the self-energy, we have found that for specific regions in the parameter space
of (U, W), the renormalized Coulomb interaction can become attractive. In addition we have also
studied the effects of second-order diagrams, pertaining to paramagnon effects in BCS superconduc-
tors. Our results are in agreement with numerical simulation studies and may form the basis for a
mechanism of high-T, superconductors.

I. INTRODUCTION

At the heart of any microscopic theory for supercon-
ductivity subject to a pairing hypothesis, lies the ori-
gin of an attractive interaction between electrons, holes,
or other quasiparticles which form Cooper or Schafroth
pairs. ~ 2 Traditionally the role mediating this attractive
interaction has been played by phonons in conventional
superconductors, which forms the basis underlying the
BCS mechanism. s Fairly quantitative evaluations in the
context of the random phase approximation (RPA) are
possible which demonstrate that renormalization of the
Coulomb interaction and electron-phonon vertex can lead
to a net attractive interaction. More elaborate calcula-
tions are made using the strong coupling Eliasberg or
Nambu-Gorkov formalism. Unfortunately the magni-
tude of the electron-phonon interaction seems to disfavor
the role of phonons in the oxide high-T, superconduc-
tors. This has been demonstrated by fairly elaborate
computations along the above traditional route involv-

ing phonons. 5

An alternative method to understand the mechanism
of superconductivity is a charged Bose gas condensation
of Schafroth pairs2 with an important difference that in
the normal state (above Tc) the pairs exist and are in-
coherent. Unlike the BCS mechanism the pair breaking
takes place at a high temperature. The bipolaron picture
is an obvious example. Unfortunately the high bipola-
ronic mass poses difficulty in getting the high transition
temperature. 6

In the search for mechanisms to explain high-T, super-
conductivity, several proposals have been made involv-
ing plasmons, excitons, resonating valence bonds, etc.7

For this purpose there has been a considerable revival
of interest in the two-dimensional (2D) Hubbard model
and its variants, known to be apparently suitable for the
Cu-0 planes pertinent to oxide high-T, superconducting
compounds. s However, recently elaborate computer
simulations raised the question as to whether a Hub-

bard (U ) 0)-only model can do it alone. In fact
Hirsch was motivated to look to the extended Hubbard
model for pairing as his numerical quantum Monte Carlo
results appear to disfavor the U-only Hubbard model.
Recently Imada has provided rather strong numeri-
cal evidence against superconductivity in the 2D U-only
Hubbard model near half filling. Consequently other
variants, notably the extended Hubbard model with U
and W, are now favored, with some evidence that U
and W can do it. ~s s The crucial question is whether
a Hamiltonian containing repulsive electron-electron in-
teractions alone could lead to pairing and superconduc-
tivity. This is a difficult question either theoretically or
experimentally. The latter because U and W or other in-
teraction parameters are not directly experimentally ac-
cessible, nor do we yet have unambiguous evidence for
a Coulombic or electrostatic pairing mechanism. ~s The
theoretical difficulties are due to the absence of exact sol-
ubility or a completely reliable approximation scheme to
handle the many-body problem, nor do we yet have suffi-
cient computational power to perform decent size lattice
numerical simulations. It looks plausible from various
calculations that the intersite repulsion R' may stabilize
pairing by bringing in an indirect attraction. This we
shall demonstrate in the present paper within an RPA-
like approximation. It is of course easier to obtain pairing
in a phenomenological negative U and/or W Hubbard
model, but this has doubtful experimental support.
Here our intention is to test the capability of a stan-
dard repulsive extended Hubbard model, whether it can
give rise to pairing purely from interelectronic interac-
tion. Before proceeding to report the details we must re-
mark that the philosophy currently adopted by ours and
other works on 2D superconductivity requires the as-
sumption that a degree of anisotropy and/or interplanar
coupling is operative in order to stabilize 2D supercon-
ductivity at Rnite temperatures. o 3 This degree of com-
plication however need not be pursued at this stage for
the crucial question that this paper attempts to answer
is whether in fact the ground state is superconducting,
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FIG. 1. Bare interaction lines U (dashed) and W(q) (wig-
gled). The solid lines are bare particle propagators. Note that
U is spin dependent, whereas W(q) is not.

before addressing if such a superconducting state could
be stabilized at a relatively high T,.

II. MODEL AND FEY'NMAN DIAGRAM

Consider the repulsive (U ) 0, W & 0) extended Hub-
bard Hamiltonian H in two dimensions:

H= t) -c,.c,.+ U) n, ,n;,
(ij)cr

+ W ) n,.n,..
(ij)oa'

Here (ij) denotes nearest-neighbor sites on a square lat-
tice of supposedly oxygen atoms, ct (c, ) the creation
(destruction) operator of Wannier electrons, n, = c, c,
the number operator, U and W are the on-site and
nearest-neighbor interactions, respectively. Also t is the
hopping or transfer integral which gives a bandwidth
Egg ——4t. We change to momentum representation with
Bloch electrons akt and rewrite Eq. (1) as

S„(qI

FIG. 3. Renormalization series for the interaction U(q).
We define S~(q) to contain all one-loop graphs connected to
W(q).

Our purpose at this stage is not to attempt to solve
this Hamiltonian, i.e. , discuss variational ground states,
oK-diagonal propagators, etc. We merely seek to ask
the question whether a net attractive effective interac-
tion can emerge at a manageable level of renormalization
approximation. Figure 1 shows the bare interactions U
and W(q), where we note the spin dependence associ-
ated with the former. This implies that there are two
particle-hole loops differing by a factor of half due to spin
summation (Fig. 2). Our purpose is to seek an answer
for the renormalized net interaction V(q) = U(q) + W(q)
which therefore carries the spin dependence of U. With
these definitions we show the partial summation of the
infinite series for U(q) shown in Fig. 3 which leads to a
definition for the renormalized loop S~(q) (Fig. 4). The
corresponding series for W(q) is shown in Fig. 5 which
leads to a definition of the renormalized loop S~(q) (Fig.
6).

AH = ) e(k)akt2akt2 + —) ak&ak'& k' —q&ak+qt'
kyar kk'q

1 At At AA+ ). W(9) ak~akt~t ak' —q~'ak+q~
kk'go o'

(2)

III. CALCULATIONS

The above Feynman diagrams show that it is straight-
forward to calculate the effective interaction V(q) within
our approximation.

where

s(k) = —2t (cos t' + cos ks)

is the square lattice band structure and

tt'(q) =—2W(cosq, + costts) (4)

V(q) = U(q) + W(q),

where from Figs. 3—6 we see that

U(q) = U

1 —SU(q)U'

is the nearest-neighbor interaction in momentum space.
We shall use the notation q = (q, a) where q = (q~, q„)
is the momentum transfer and u the angular frequency,
adopting atomic units (h = c = ao = 1) throughout.

w(q) =
1 —S~ (q) W(q)

K (q)
2

(i)

Z (™q)

FIG. 2. Particle-hole loops. The left loop (i) marked with
a cross (x) is associated with a U interaction while the right
loop (ii) is associated with a W(q) interaction line.

FIG. 4. Renormalized one-loop graph S~(q). Note that it
involves bare propagators and interaction lines W(q) in our
approximation.
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FIG. 5. Renormalization series for the interaction W(q).
We define S~(q) to contain all one-loop graphs connected to
U.

FIG. 6. Renormalized one-loop graph Sgr(q). Note that
it involves bare propagators and interaction lines U in our
approximation.

with

-UZ q

We note that Eqs. (6) and (7) are notably uncoupled,
which is a distinctive feature of this approximation. All
the physics is contained in the processes inherent in these
Feynman diagrams. The dominating quantity which con-
trols these processes within our approximation is the bare
loop function Z(q) or the analogous Lindhard function for
this model:

Z(q) = 2i— dp dpi' 8(eF —s(p+ q))8(e(p) —eF)
2~ 2vr e(p) —e(p+ q) —~+ ill

~(e(p+ q) —«)e(eF —e(p)) g~0+,
t(p) —e(p + q) —(d —2'g

(Io)

where e(p) is the band structure given in Eq. (3) and eF
is the Fermi energy. Unfortunately no analytical evalu-
ation for this double integral appears possible for arbi-
trary q, cu, and e~ except in the limiting cases, e.g. ,

eF ~ 0, q ~ (x, x) (the nesting vector). Therefore we
have evaluated this double integral numerically check-
ing the result against the above analytical limiting cases,
which involve elliptic integrals. To do this we divide
the Brillouin zone into n x n meshes and integrate each
mesh using a four-point double integration rule. 2 We
note that complex function evaluations are needed for the
integrand and in particular a compromise between com-
puting time, mesh sizes, and rl (resolution factor) has to
be made. Eventually the compromise which gave excel-
lent agreement with analytical results for the integral was
found to be n = 40 and g = —„.No significant improve-
ment in accuracy was gained by increasing to n = 100
which more than doubles the computing time of 0.2 sec
on a Vax 8700 for each q value. Prom this evaluation of
Z we can immediately obtain V using Eqs. (5)—(9).
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IV. RESULTS AND DISCUSSIONS U
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In view of the many parameters in this problem, no-
tably ~, q=(q, q„), eF, U, and W (all energies are rnea-
sured in units of the bandwidth E~ = 2t), we have
confined ourselves to the case u) —+ 0+ and ep —+

0+, i.e. , near half-filled band, in presenting our results.
This is believed to be relevant for the high-1; oxide
superconductors. Figure 7 shows various plots
in the parameter space (U, W) for different values of the
momentum transfer g. The shaded regions in these plots
are those where Re V ( 0, i.e., an attractive interac-
tion. We see from Figs. 7(a) and 7(b) that for small

0
0 0.4

W
Q.S

FIG. 7. Parameter space (U, W) in which the renormal-
ized interaction Re V is negative. The momentum transfer
q in these figures are (a) (0.02vr, 0.02vr), (b) (0.05~, 0.05m),
(c) (0.25m. , 0.25m), (d) (~~, s~), (e) (0.5vr, 0.5m), (f) (vr, m. ).
Other parameters are u = 0.01 and e~ = —0.1. All energies
are measured in units of the bandwidth E~ = 4t and atomic
units are used throughout.
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there appears many issues in the recent past. ~ We out-
line below some important questions, one of which at
least we have an answer to.

An important issue pertains to second-order interac-
tions, most notably the paramagnon interaction. For this
purpose the last term of Eq. (1) should be amended to
include a more general spin exchange interaction:

-pg
0.00 004 0.08

(atomic: units)

FIG. 8. Frequency dependence of Re V and I' = ~imV~, for
q = (0.25vr, 0.25m), es = —0.1; U = 0.6 and W = 0.3.

kk'qo 7.v'cr'
W(q) ak ak ak' —qv'ak+qn',

which includes spin exchange terms as in Fig. 9(a). Thus
the renormalized paramagnon interaction P includes the
diagrams for the series in Fig. 9(b). We now note that
the renormalized interaction W which includes the above
paramagnon interaction is:

momentum transfer q, an attractive interaction seems
to be induced by U (( W with W of the order of the
bandwidth E~. One however expects that the physical
situation might require U ) W. Figures 7(c)—7(e) show
that the attractive region now encompasses a larger re-
gion containing U & W, perhaps a more physical situa-
tion but at the expense of a larger momentum transfer.¹ne of the above cases shovj that U can do it alone
In Fig. 7(f) we show the interesting q = (m, vr) nesting
case. Equation (4) indicates that W(q) itself is negative,
a point perhaps well known but not widely emphasized in
the literature. ~3 The attractive region disappears
rapidly with increasing U but the interest here comes
from the physically appealing case where U + 0 and
W & 0. We have also investigated the frequency depen-
dence and damping rate (or inverse lifetime) of V. For
the case of q = (4, 4) for example, Fig. 8 shows the fre-

quency dependence of Re V and I' = ~lm V~ (inset to Fig.
8). Re V exhibits a cutofF u, at u, = 0.05, the analogue of
a Debye frequency co~ in the BCS theory, and I' increases
with frequency w. Again the nesting case q = (vr, vr) is
particularly interesting. We have found in this case for
U = R' = O.l that Re V is negative for u over the whole
bandwidth with a vanishingly small I'. We expect that
these factors may be important in determining T, .

W(q) = W(q) + P(q), (12)

k-p k -p-q

with W(q) given by Eq. (7). Irrespective of U, this in-
teraction can be negative on its own. The pairing in
this case is a singlet pairing irrespective of U. We note
however that such an interaction must involve spin ex-
change and is incompatible with the Hubbard U which
has a difFerent spin dependence. While such effects ought
to be included when higher-order approximations beyond
RPA are to be investigated, results of numerical studies
and experimental data point against such a magnetic
pairing mechanism. The inclusion of spin exchange inter-
actions as in Eq. (12) is therefore not likely to be relevant
for high-i, superconductors.

However other questions remain which we must eventu-
ally address. Most notably an assessment of our approx-
imation is essential. Will higher-order graphs or renor-
malization of propagator lines not seriously afFect our
results? Given the good agreement between our results
and numerical studies, 27 the answer seems to be no, yet
this remains to be proven. In particular diagrams like

V. SUMMARY AND CONCLUSIONS

The results shown in the last section are interesting and
intriguing. They appear to be consistent with numeri-
cal simulations. i ' s A perusal of results from quantum
Monte Carlo and other finite systems studiesz~ seems to
suggest that the attractive interaction associated with a
charge transfer pairing mechanism can be found within
our RPA-like approximation, without recourse to more
complicated two-band Hubbard models involving Cu-0
transfers. Given that the effective interaction can be neg-
ative, it would seem to be a straightforward task to de-
velop a theory either via a Gorkov-Nambu type of pair-
ing or a charged boson condensation via a Schafroth-type
theory. 8 This difference depends crucially on how one
has to treat the normal state of the system, on which

(b)

FIG. 9. (a) Bare spin exchange interaction, (b) renormal-
ization series for the interaction P(q).
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Fig. 10 will be involved at higher orders and this would
imply that Eqs. (6) and (7) will be coupled, to be solved
self-consistently. The difEculty is to find a more accurate
but manageable approximation scheme which is not at
all obvious.

Next it is necessary to have some idea of the param-
eters in our model. From the state of the art density
functional band structure calculations, the estimates of
U and W compare reasonably well with experiments. so

Example U on Cu (0) is about 10 (6) eV, whereas W ( 1
eV.

Also what are the effects of other competing ordering
states'? The Hubbard model, though the simplest many-
body fermionic Hamiltonian, is notoriously complicated.
It is susceptible to many exotic ordering properties, e.g. ,
antiferromagnetic spin density wave (SDW), charge den-
sity wave, quantum spin liquid, etc. A two-band model
employing copper d and oxygen p with oxygen vacancies
would be a more realistic modelz7 but then our results
seem to indicate that, as to a renormalized attractive
effective pairing potential, such complications are unnec-
essary.

Finally the q dependence of V clearly dictates the sym-
metry of the superconducting order parameter, e.g. , s, d,
or s + id pairing. What is the symmetry of the super-

FIG. 10. Examples of higher-order renormalization loops
left out in our approximation.

conducting order parameter? It is an issue yet to be
unambiguously resolved.

To summarize, in this paper we have analyzed using
a manageable approximate scheme similar to RPA con-
taining two renormalized loops, the effective Coulombic
interaction in the (U, W) parameter space of the extended
Hubbard model in two dimensions. Our results appear
to be consistent with quantum Monte Carlo simulations
and the general picture thus derived that U cannot do
it alone. Further analysis may indicate that our results
could form the basis for a viable microscopic theory for
high-T, superconductivity.
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