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We investigate the phase diagram of the two-dimensional t J model using a recently developed

technique that allows one to solve the mean-field model Hamiltonian with a variational calculation.
The accuracy of our estimate is controlled by means of a small parameter 1/q, analogous to the

inverse spin magnitude 1/s employed in studying quantum spin systems. The mathematical aspects
of the method and its'connection with other large-spin approaches are discussed in detail. In the

large-q limit the problem of strongly correlated electron systems turns into the minimization of a
total-energy functional. We have performed this optimization numerically on a finite but large L x L
lattice. For a single hole the static small-polaron solution is stable except for small values of J,
where polarons of increasing sizes have lower energy. At finite doping we recover phase separation
above a critical J and for any electron density, showing that the Emery et at. picture represents the
semiclassical behavior of the t J model. Quantum fluctuations are expected to be very important,

especially in the small- J—small-doping region, where phase separation may also be suppressed.

I. INTRODUCTION

The discovery of high-temperature superconductors
has renewed interest in the study of strongly interacting
electron systems in one and two dimensions, because it
is widely believed that the anomalous properties of such
materials may be related to the strong Coulomb repulsion
and to the low effective dimensionality.

One of the most interesting models which exactly in-
corporates the constraint of strong Coulomb repulsion is
the well-known t-J model, which will be the main topic
of the present paper. Several approximate techniques
have been proposed so far to deal with this model Hamil-
tonian. We mention, for example, the self-consistent
Born approximation, ~ the semiclassical approach, s and
recently the limit of infinite dimensionality, s which have
been developed for the one-hole case. In the general
case of arbitrary density, the large %expansion -with
slave-boson and the slave-fermion techniques should also
be mentioned, as well as the vast amount of numerical
and variational works. 5 The results of all these differ-
ent methods are quite controversial, especially concerning
the question of the presence in the model of superconduc-
tivity and/or of marginal Fermi liquid behavior.

Quite recently, Emery, Kivelson, and Lins tried to ex-
plain the full phase diagram of the model, basing their
analysis both on a variational argument in the small-J
region and on some numerical evidences emerging from
a 4 x 4 lattice exact diagonalization. They speculated
that phase separation should occur throughout the full
phase diagram: The electron-system phase separates into
a phase where the holes move in a fully polarized state
and into an electron-rich phase characterized by a Neel
antiferromagnetic spin order. Accordingly, phase separa-
tion occurs below some critical doping b„where 6, —+ 0
for J —+ 0. Castellani et al.7 then argued that super-
conductivity may occur close to the phase separation

boundary. A numerical work by Ogata et at.s provided
a complete determination of the one-dimensional phase
diagram and evidenced this property in one dimension.

After the work of Emery, Kivelson, and Lin, Putikka,
Luehini, and Rice performed a systematic high-
temperature expansion on the t-J model and found ev-
idence that the separated phase should appear only for
large values of J. Although this work is surely noncon-
clusive, they pointed out that there is not convincing ev-
idence that the separated phase should be continuously
connected through the whole phase diagram, because the
small- J and large- J regions should behave in a very dif-
ferent way.

Because of the present controversy, we derive here a
consistent mean-field calculation on the t-J model using
a recently developed technique o allowing control of the
accuracy of the mean-field estimate by means of a small
parameter 1/q, which is similar to the parameter 1/s
the inverse spin magnitude used in the spin-wave theory
of quantum spin systems. This technique has the follow-
ing advantages: (i) It conserves the symmetries of the
t-J model Hamiltonian, (ii) takes exactly into account
the constraint of no-double occupancy, and (iii) ensures
that the classical estimate of the energy is variationat for
any value of q. In this way we generalize a very useful
property known to hold for spin systems; i.e. , the clas-
sical solution is independent of the spin magnitude and
the corresponding energy is therefore variational.

With our mean-field approach we are able to reproduce
the phase separation over the small- and large- J regions,
supporting at the semiclassical level the picture of Emery,
Kivelson, and Lin. We have made an intensive and sys-
tematic numerical work in order to calculate the true
phase diagram at the mean-Geld level without imposing
any a priori order parameter. At the end the phase di-
agram looks extremely simple, but unfortunately poor.
However, our calculation represents only the Grst step
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towards a complete determination of the phase diagram.
As standard in any semiclassical approach, the second
step would be to include quantum Huctuations about the
mean field. With the present technique corrections to the
classical energy can be introduced systematically.

The paper is organized as follows: In See. II we review
the graded Holstein-Primakoff map P for the graded alge-
bra spl(2, 1) and present the associated coherent states.
These mathematical tools are developed starting from
the observation that spl(2, 1) is the algebra of the opera-
tors entering the strongly correlated electron systems and
that it has a series of representation characterized by a
parameter q analogous to the spin magnitude. The small
parameter 1/q allows a systematic definition of distinct
large-spin limits of the t J model. In Sec. III we inves-
tigate the physical implications underlying the different
generalizations of the model and show that previously
proposed effective Hamiltonians, notably the Kane-Lee-
Read and the spinless fermion hopping Hamiltonians,
can be derived as particular cases of our approach. In
Sec. IV we then derive the variational total-energy func-
tional which solves our mean-field theory and present the
results concerning the numerical investigation. Section V
contains the conclusions.

II. spl(2, 1) COHERENT STATES

The t-J model Hamiltonian is defined by

J (' 1-
HiJ = t) 0;jc„cj + —) Aij I

S; Sj — N, Nj—

ci, = (1 —c,c2,)cl, , c„=c„(1—c2,.c2,),

c2i = (1 —ciicli)c2i r c2i = c2i(1 —cricli)
-t t t

are hole creation-annihilation operators,

(2.2a)

Ni = (Ciicli + C2ic2i) r r-rsi =
2 (Clicli —C2ic2i) r

t

(2.2b)

~ri = —(Ciie2i + C2icli) r ~2i = —.(Ciic2i C2icii)
2z

are charge and spin operators, where ctl, , c2t,. are the elec-
tron operators, and doubly occupied sites are excluded.
The exchange constant is always positive: J ) 0.

The 3 x 3 Hubbard matrices are defined by taking the
expectation values of the operators (2.2) in the restricted
single-site Hilbert space IO;), I1,) = ct„IO,), I2,) = c2t;IO;):

x '=&n'Ic-lp, ), &; = &n, lN, Ip,),
(2 3)

y, = (n;Ic, IP,), Qi = (n, IS, IP,), n, P = 0, 1, 2 .

(2.1)

where a = 1, 2 are spin-up and spin-down indices, respec-
tively; A,j is the adherence matrix with periodic bound-
ary conditions connecting nearest-neighbor sites, i,,j de-
note the lattice coordinates,

The meric~a ~,. and ~; are conjug
However, for later convenience we prefer to use the
notation with the raised index. The matrices (2.3)
are useful because the constraint of no-double occu-
pancy can be automatically taken into account by re-
placing in Eq. (2.1) the operators (2.2) with the cor-
responding matrices (2.3). Defining Qp, =—(I —zC, ),
where I is the identity matrix, the Hubbard matri-
ces (2.3) can be divided into odd (i.e. , fermionic) gen-
erators y«, t'ai and even (i.e. , bosonic) generators
Q„, = (Qp, , Q, )—which we collect in four-vectors—
satisfying the commutation-anticommutation relations of
the spl(2, 1) graded algebra, lp l

(Q~' Q jl = 4&«~ Q»
h' QW] = ~'j 2 (~~)~ &,'
(Xair Xj) = ~ij (o )aQirj r (Xair jr'„bj ) = 0 r

(2.4a)

(2.4b)

(2.4c)

Iq q q3) q3 = —q —q+1 " q (25a)
Iq+2 q —

2 q3) q3= —q+-" q —— (25b)
which we assume as even and odd, respectively (the grad-
ing of the states is a pure matter of convention). The
relative normalization of the two multiplets is not a pri-
ori fixed. For the isospin value q =

2 the states (2.5)
are the real spin-2 and hole (spin-0) states, respectively,
and the matrices defining the representation turn in the
3 x 3 Hubbard matrices. Thus the operators (2.2) en-
tering the t-J model belong to the fundamental q =

~
atypical representation of spl(2, 1). According to Eqs.
(2.5), models of strongly correlated electron systems can
be generalized in a natural way by enlarging the dimen-

where the completely antisymmetric tensor is normalized
by «i2 = 1, whereas the spin four-vector is built from
the standard Pauli matrices as (o")~ = (6ai„crai, ). The
Greek four-vector indices are raised and lowered using
the metric tensor g» ——diag(l, —1, —1, —1), and a sum-
mation over repeated Lorentz and Latin (spinor) indices
is understood. The generator Qp, has to be introduced
in order to close the spl(2, 1) algebraic rules [Eqs. (2.4b)
and (2.4e)]. For the time being our considerations will
refer mostly to single-site quantities and to simplify the
notation the site index will be dropped if not otherwise
needed.

As explained in detail in Ref. 14, the several classes
of irreducible representations of the spl(2, 1) graded alge-
bra are labeled by the eigenvalues of the operators Qp,
Q, and Q3, respectively denoted qp, q(q + 1) (q is called
isospin and is an integer or half-integer number), and
q3 ~ The basis vectors are thus denoted with Iqp, q, q3).
Among them, those relevant for our investigation are
the so-called atypical representations. They are char-
acterized by a linear relation between qp and q and are
thus identified only by the value of the isospin q, this be-
ing the parameter which we shall use analogously to the
spin magnitude s in the standard spin-wave theory of the
Heisenberg Hamiltonian. In each such atypical represen-
tation, of dimensionality (4q + 1), the basis vectors can
be grouped into two multiplets of (2q+ 1) and 2q states
with quantum numbers
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Qs =s —ata,

Q+ ——/2s —ata a,
Q =at+2s —ata,

(2.8)

where ata & 2s (using the standard symbol s instead of
q), in agreement with the result that at half-filling the g-

Jmodel becomes the antiferromagnetic (AF) Heisenberg
model.

As for spin systems, we wish to describe spin con6gura-
tions classically. To this aim we need the transformations

sionality of the spl(2, 1) representation. In particular we
are naturally lead to identify the multiplet (2.5a) as the
generalized spin state and the multiplet (2.5b) as the gen-
eralized hole state. The difFerent value of qp between the
two multiplets is related to the grading. De6ning the
"fermion number operator" F = 2Qp —2qI, where I is
the unit matrix of the q representation, then the spin
multiplet (2.5a) has F = 0 and the hole multiplet (2.5b)
has F = 1. Thus for a many-particle system the conser-
vation of the number of particles can be rewritten as the
conservation of the fermion number,

N N

) F = ) (2Qp —2qI) = Nh = N —N i, (2.6)
i=1 i=1

where N, i is the number of electrons, N is the number of
sites, and thus Nb is the number of holes.

Assuming the maximal isospin state as the reference
vacuum, IO) = lq, q, q) (not to be confused with the elec-
tronic empty state), and introducing a canonical boson
a and a canonical spinless fermion c, then the (4q+ 1)-
dimensional Hilbert space spanned by the states (2.5)
ean be put into correspondence with the Fock space gen-
erated by the states IB,n = (a~)"IO) [corresponding to
Eq. (2.5a)], and IF, n) = c (at)" IO) [corresponding to Eq.
(2.5b), with IF, O) = lq+ q, q —2) q —z)], satisfying the
operatorial relation a~a+ c~c & 2q.

In this basis, the generators (2.4) can be represented
as10

Qp =q+-', ctc, yi = c'/2q —ata —ctc,

Q, = q —ata ——,'c'c, y' = /2q —ata —ctc c,
(2.7)

Q+ —/2q —ata —ci'c a, g, = cta,

Q = at /2q —ata —ctc, g = atc,
where Q~ = Qi + iQz. Note that the representa-
tion of yi (and y ) can be simplified; i.e. , we have

yi = ct +2q —ata. The symmetric notation (2.7) is use-
ful to check that Eqs. (2.7) satisfy to Eqs. (2.4). These
equations represent the generalization to spl(2, 1) of the
usual Holstein-Primakoff (HP) transformationi5 for su(2)
and in this respect are similar to those of the Swinger-
bosons —slave-fermion representation. Using the realiza-
tion (2.7) of the generator Qp, the conservation law (2.6)
becomes the conservation of the spinless fermion num-

ber operator; Nb = Q,. c,"c, = Nb, , so that at half-filling
(i.e. , Nh = 0) Eqs. (2.7) reduce to the standard su(2) HP
transformation

(Q„,y ) ~ (P„,X ) of the generators which preserve
the spl(2, 1) algebra. This can be conveniently done by
choosing the original fermionic representation (2.2) of the
q =

~ generators (2.3), and then considering the most
general transformation of the electron operators which
preserves the canonical commutation relations (2.4) as
well as the constraint of no-double occupancy. Simple al-
gebra shows that the odd generators transform like su(2)
operators in the fundamental representation:

Xi = e'~e ''
I

eos —e'~ pi —sin —e
2 )

X2 = e'~e'&
I

sin —e'~Xi + cos e '~Xz
I ~) '

x'=x~, x'=x~,
whereas the even generators transform as

(2.9)

Xg ~ ~2qe' e'~ sin
I

—
I

ct, X = X~t,
t'8 0

(2.12)

where we have set u = p + Q/2.
In the previous equations 8 and P are the physical an-

gles which parametrize the classical spin configuration
[see Eq. (2.11)]. Instead, the third Euler angle @ and
the global fermionic phase p are unessential. In fact, Q
can always be eliminated by redefining Q~ = e+'~Qy,
gz = e '&~ yz, gi = e'+~ yi, and p can be arbitrarily
fixed by changing the relative normalization of the two
multiplets (2.5).

Similarly to spin models, we can give to Eqs. (2.11) and
(2.12) a quantum-mechanical meaning by introducing the
even coherent state IAb) of the generalized spin multiplet
(2.5a) and the odd coherent state ]Of) of the generalized
hole multiplet (2.5b):

( el" ( e,,lf1b) =
I

cos —
I

exp I
tan —e'+Q

I
IB, O),

I~I) =
I

cos —
I

exp
I

tan —e'+Q —
I IF, O) .

( 8)'' ( 8,~
2) ( 2 )

(2.13a)

(2.13b)

The states (2.13) are orthonormal and by generalizing

Po = Qo, Pi = RbmQm (2.10)
where RA, is the SO(3) rotation matrix, whose explicit
realization can be easily derived by means of the anti-
commutation rule (2.4c). By retaining only the leading-
order terms of the HP transformation (2.7) we have
Qp = Qs ~ q, Q~ ~ 0, gi ~ ~qc, y2 ~ 0, so that
in the large-q limit the rotated even generators (2.10)
become classical c-numbers,

P„~q(1, n)—:p~,
(2.11)

n = (sin 8 cos P, sin 8 sin P, cos 8),

and the rotated odd generators (2.9) become propor-
tional to the spinless fermion operator,

Xi ~ ~2qe' e '~ cos
I

—
I

ci, X = Xit,
(8&
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standard resultsi7 on su(2) coherent states we find

(nb IQp Inb) = q(1, n) = s», (nblQ~ lnf) = o

(nflQ. lnf) = (q+ 2, (q- 2)n) =..' (2.14a)
(2.14b)

As for the su(2) coherent states, the classical c-numbers
(2.11) are equal to the expectation value of the even gen-
erators between the even coherent states. The spin ex-
pectation value (nfl+lnf) is in general finite and it is
zero only for the value q = 2, an obvious consequence
of the fact that the generalized hole is actually a spin-

(q —2) multiplet. Concerning the odd generators, it is
easily checked that

Xllnb) = ~2q e' ~' cos —
I lny),2)

x'lnf) = ~2qe '~ ~ cos
l

—
l lnb),

(0't
i2)

X2lnb) = ~Ce' +~' »n
l

—
I lnf),

(eb
k2)

X lnf) = ~2qe ' +~ sin
l

—
l lnb),

(81
k2)

x.lny) = o, x lnb) = o,

(2.15)

x'Inb) = Inf), xlnb) =0
We also have

xlny) = lnb) x'lny) = 0

(2.17a)

(2.17b)

The relations (2.17a) show that xt and x are the q-
generalized hole creation and annihilation operators, re-
spectively, and Eq. (2.17b) acquires the meaning of the
particle-hole transformation. Note that yt, y are not
spinless fermion operators, because for a generic q rep-
resentation their anticommutator (restoring the notation
with the site index) is (Xit, X~ j = b,~~ (Qp~ + Q~n~).
However, this means that the identity

(&IIX,', xa)l&) = 4 (2.18)

is satisfied, so that y, , y; act like spinless fermion opera-
tors when bracketed between any tensor product of even
and/or odd coherent states lA) = E3 ln, ) (o; = b, f)

III. LARGE-SPIN LIMIT

Here and in the following we shall refer to the large-spin
Limit whenever the single-site Hilbert space of a strongly
correlated electron system is enlarged by assuming a spin-

where we have fixed the relative normalization of the
states (2.5) by using the phase convention XilB, O)

~qe'& ~&lF, O). From Eq. (2.15) it follows that the
combination of odd generators,

+e '",
g

i'e&,
y . &81

&2) &2)

(2.16)

creates the odd coherent state out of the even one,
whereas the conjugate operator annihilates it:

q multiplet as the spin state and a spin-(q —2) multiplet
as the hole state, and then one lets q ~ oo. To develop
the coherent states for spl(2, 1) we have constantly used
the operator Qp, , because this is the generator by which
the spl(2, 1) algebraic rules (2.4) can be closed and thus
the spl(2, 1) representation theory (2.5) applied. How-
ever, in the t Jmodel Hamiltonian there enters the charge
operator N;, and we have to define its large-q generaliza-
tion. As a matter of fact, here we are faced with the more
general problem of how to generalize the tJmo-del itself,
because the large-q generalization of the charge and spin
operators has a certain amount of arbitrariness. On the
one hand, to perform the large-spin limit of the t- Jmodel
we may straightforwardly use the linear generalization of
the operators (2.2). This amounts to replacing in Eq.
(2 1)

t-ai ~ gaiq N; ~ C, = 2(2qI —Qp, ),
(3 1)

where (X«, Q&, ) have now arbitrary isospin magnitude
q. The last modification generalizes the relation C, =
2(I —Qp, ) of the original q =

2 theory. We have
&'lnb') = 2qlnbi) and &ilnfi) = (2q 1)lnfi) w»ch
means that the spin and hole states (2.5) have general-
ized spin —differing by half-unit —as well as generalized
electric charg" differing by one unit.

on the other hand, for the q =
z fundamental rep-

resentation, and only in this case, the 3 x 3 Hubbard
matrices (2.3) satisfy

1 . 2 =1 1 — 2
Ci = (Xi Xli + Xi X2i) ) Q3i 2 (Xi Xli Xi X2i))

(3 2)

1 2
Qi, = -(X,X2, +x,xi'), Q2 = 2. (x;x2' —x;xi')2l

1 a
Cai ~ Xai& Si ~ Qi =

2 Xi irabXbir Ni ~ ~i = Xq Xaii

where xa, , x, have now arbitrary isospin magnitude q.
The present generalization amounts to consider Eq. (2.1)
as a model of interacting holes and to preserve this dy-
namics for any value of the hole isospin. For any q g i,
Eqs. (3.1) and (3.3) are not equivalent and in our analysis
we shall investigate the physical implications underlying
the two choices.

The simplest generalization is obtained by choosing
the linear realization (3.1). Using the arbitrarily rotated
frame (P~, Aa) IEqs. (2.10) and (2.9)j, upon the substitu-
tion (3.1) the generalized t- Jmodel Hamiltonian becomes

a consequence of the fact that whether the constraint of
no-double occupancy is enforced, the charge and spin op-
erators (2.2b) are unchanged if we substitute the electron
operators with the corresponding hole operators (2.2a).
According to the previous equation, we may think of the
charge and spin operators (2.2b) as composite operators
of the odd generators for any value of q, so that we may
also define the large-spin limit of Eq. (2.1) by means of
the replacement
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(q) . J ( 1
HiJ —= t) nigx, xag+ —).nip I

pipg ——c'ic'g
I

ij a ij

t) n,~x, x ~
——) n,~g""p„,p„~

ij,a '.j,p-
+4q JNh,

where in the last identity we have applied the conserva-
tion law (2.6). Similarly to spin systems, using the linear
generalization we preserve all the symmetries of the orig-
inal model. Apart from a trivial constant, Eq. (3.4) is
bilinear in the spl(2, 1) generators, so that J = 2t re-
mains the "supersymmetric point" for any value of the
isospin q. Replacing the HP map (2.7) in Eq. (3.4), in
the q ~ oo limit the potential energy becomes dominant,
so that the large-spin limit of Eq. (3.4) is given by the
classical Heisenberg model

2

H, q ~ HH'"' = ) n, ~ (n, n~ —1). (3.5)
U

Thus for any electron density p = N, i/N the mean-field
solution is always the Neel spin configuration. We can
easily understand this result noting that in the large-q
limit the expectation values IEqs. (2.14a) and (2.14b)]
are equal:

tial of the spinless fermions. In Eq. (3.7) we have dis-
played only the first few terms of the systematic expan-
sion. They give exactly the Hamiltonian proposed and
applied by Kane, I ee, and Readi (Kl R) to describe the
propagation of a single hole in a quantum antiferromag-
net. In their approach the bosonic term and the three-
body term —the latter responsible for the hole propa-
gation through spin-wave emission and absorbtion —are
treated on equal footing. This assumption corresponds
to scaling t by a factor ~q and then define the large-spin
limit keeping fixed the renormalized hopping parameter
to = t/~g. Equation (3.7) is well defined for any den-
sity and from Eq. (3.8) we see that in the large-spin limit
(3.1) the dynamics of the missing bonds is present only
when quantum fluctuations are taken into account. In
particular setting q = z, we have Eo = J(2N—4Nh)/—2,
which is the energy of the classical antiferromagnet with
Nh delocalized holes.

The dynamics of the missing bonds is the essential
feature of the tJmodel -to understand phase separation
in cuprate superconductors, and it is completely not ac-
counted for by the large-spin limit (3.1). This property
can be preserved if we resort to the nonlinear general-
ization (3.3). All our considerations are simplified by
introducing the projector onto the even sector:

I

lim "' = lim "' = (1, n, ).
q —+OO q q —bOO q

(3.6)

r = (2g+1)1 —2qo. r lnb') = lnb) r'lnf ) =O

(3.9)

As a consequence in the large-q limit we still have two
distinct states Inb, ) and Inf, ) differing by the fermion
number Fi, however, their spin and charge become equal.
Hence the mean-field theory turns in the AF spin Hamil-
tonian, independently from the density. Thus in the
large-spin limit we preserve all the symmetries, but we
miss the following important property of the exact model
(2.1): If the hole is localized on site io, the four bonds
Jn, ,&

do not contribute to the energy (we shall refer to
this property as the "dynamics of the missing bonds").
This is a peculiar behavior of the present large-spin limit.
However, all the developments are mathematically well
defined and the expansion in fiuctuations about the AF
mean-field solution can be performed straightforwardly.
We divide the lattice into two sublattices, and in Eqs.
(2.9) and (2.10) set 8 = P = g = p = 0 on one sublattice
and 8 = Q = vr, P = 0, p = —z/2 on the other one. Then
the replacement in Eq. (3.4) of the HP realization (2.7)
expanded in powers of 1/q gives the effective Hamiltonian

c, = rtc, r, , g, = rtq, r, . (3.1o)

We collect the generalized charge and spin operators (3.3)
in the four-vector Q„, = I', Q„,I', (note that we have the
relation C, = rIC, r, = 2Qo, ). Applying Eqs. (3.9) and
(3.10) we then have

(nb'I Q~'lnbi) = p» (nf'I Q~'Inf*) = o. (3.11)

An independent check of Eq. (3.11) can be obtained by
using the definition (3.3) and the rules (2.15). Since the
projector (3.9) commutes with the even generators Q&,
it is easily proved that the su(2) xu(l) even subalgebra is
preserved,

lQ~' Q ~1=&4&o~ "Q~~ (3.12a)

Employing the HP transformation (2.7), it is easily shown
that the even operators (C, , Q, ) of the set (3.3) are re-
lated to the operators (C;, Q, ) in Eq. (3.1) via the pro-
jector I', :

U

—~2q t ) n, ,ctc, (at + a, ) + (3 7)

so that the operators (3.10) under the rotation (2.9) of
the odd generators, y, ~ X „are (P&, , X,), where

to describe fluctuations, where

Eo = 4NJq +4Jq) c—,". c, (3 8)

1 a A:&o'= Qo' = -,~o', &a'= ,XbaXb' = &b Q *,

(3.12b)

is the classical energy of the pure antiferromagnet plus
a quantum contribution which shifts the chemical poten-

Ri, being the rotation matrix in Eq. (2.10). Upon the
substitution (3.3) the generalized t- J model Hamiltonian
in the rotated frame (3.12b) eventually becomes
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H(x p): t) Ai~X' X~~
2$)G

1Jp / 1+-—) A,, i
P P, —-CC, i.22q, g 4 ) (3.13)

of the isospin q. Thus Eq. (3.13) has all the relevant
properties of the t J model we are interested in and we
consider it as a physically sensible generalization.

In the canonical basis the operators (3.10) are given by
the expressions

Here we have defined the model keeping fixed the rescaled
exchange constant Jo ——2q J, to weigh on equal footing
the kinetic and potential energy contributions (we explic-
itly display the dependence of

H~~&l&j
on the operators for

later convenience) .
For arbitrary values of q we lose supersymmetry at

the J = 2t point because the set of operators (Q„;,y, )
forms a representation of spl(2, 1) only for q = z. How-
ever, because of Eqs. (3.12), the model (3.13) remains
rotationally invariant and, thanks to Eq. (3.11), the dy-
namics of the missing bonds is now present for any value

C, =2qcc, , y1i ——ci 2q —a a, ,

Qs, = c,c, (q —a, a;), y,
' = 2q —a, a, c, ,

(3.14)

~+, ——cici 2q —aia, a, , y2i = c,. ai,

Q i=cica 2q —aiai, g, = aic, .

Expanding in powers of 1/q the previous realizations, the
large-spin limit of Eq. (3.13) turns in an interacting spin-
less fermion Hamiltonian embedded in a classical spin
background,

H~~&~ ~ H;z ———2qt) O,~(Ob, ]Ay~)~~c, c~ +.) A,~ (n;n~ —1) (1 —c, c,)(1 —c c~), (3.15)

E=1 i=1
(3.17)

is exactly given by the action of the efFective spinless
fermion Hamiltonian (3.15) over the free particle state
~4') obtained by replacing in Eq. (3.17) the operators y,
with spinless fermion operators c~ and the boson state
~A) with the vacuum state ~0) of the spinless fermion
representation. Here ]A) = |3~Ab, ) is the tensor product
of even coherent states and @i(i) are Nh complex and
orthonormal orbitals (t = 1, 2, ..., Nh in a d-dimensional
hypercubic lattice I"= N).

As a consequence, any variational estimate

where the overlap between even coherent states is

( e, e, , e, . e, ~
"

(Ai„~Ai,z) =
~

cos —' cos —+ e '~~' ~'l sin —' sin—
2 2 2 2)

(3.16)

[so that the factor (Qi„~Agz) ~~ q& in Eq. (3.15) is q inde-
pendent], and we have chosen the relative normalization
of the multiplets (2.5) such that u, —P, /2 = 0.

A relevant feature of the effective Hamiltonian Eq.
(3.15) is that it gives a variational estimate of the ground-
state energy. Any further inclusion of 1/q Huctuations
can only improve the estimate, and this is a remarkable
property that in our approach is naturally preserved. To
show this property, we consider the model (3.13) in the
original frame, namely, with the operators ('P&, X~) di-

rectly replaced by (Q„,y~), and denote it with H~~~l@.

According to Eqs. (2.15) and (2.16) and to the general-
ization (3.3) of the charge and spin operators (2.2b) the
action of the Hamiltonian HI~ ~+I over the state

Xl

8 = (@~'&~H~' I~@ ~'l) = 2q(4''~&~H, ~~4 ~&l), (3.18)

where Hip is the exact q =
2 model (2.1). The factor

2q simply rescales the unit of energy and this ensures
that no spurious phase transitions as a function of q are
present in connecting the large-spin "classical" solution
8 to the variational estimate of the exact model. For the
time being we thus set 2q = l.

IV. LARGE-SPIN MEAN FIELD

Despite the notable simplification given by the dis-
appearance of the constraint of double occupancy, Eq.
(3.15) is still a difficult problem to solve because the
spinless fermions interact via a four-body term. For the
infinite-U Hubbard model, i.e. , when J = 0, and for
the case of a single hole the interaction term does not
play any role. Thus in the large-q limit we end up with
the study of a free Hamiltonian with a complicated site-
dependent hopping, which can be easily solved numeri-
cally on a finit" but larg" lattice, as we shall discuss.
For low doping the Hartree-Fock factorization (3.17) is
expected to be a good approximation since few holes can
rarely interact. We extended the Hartree-Fock solution
to the full phase diagram of the Hamiltonian (3.15). Al-
though this is not completely justified, the interaction be-
tween spinless fermions should not drastically affect the
mean-field phase diagram, since for example it is known
that the Hartree-Fock solution is e~act in d —+ oo for a

(4~H;J ~4') of the ground-state energy of the spinless
fermion Hamiltonian (3.15) is also a variational estimate
of the ground-state energy of the generalized t-J model
(3.13). Moreover, simple algebra shows the notable iden-
tity
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gas of interacting spinless fermions.
Thanks to Eq. (3.18) it is possible to apply Wick's

theorem and the classical energy on a given arbitrary
state reads

netic energy —in the infinite-U Hubbard model. The Na-
gaoka theorem states that it is the exact ground state
of the model in the one-hole case. Writing the coherent
state overlap in the form

t = ) 0,, —t(Ab, ~Ab, )g, , (Ab, ~Ab, ) = (4 3)

J——(n, ir, —1)(g;;+g, ,

gi, igj,j + gi,jgj,i 1)

(4 1)

H; = t ) A,~(Ab;~Ab~)c—,c~, (4.2)

which has been phenomenologic ally introduced to
study the instability of the Nagaoka stat" i.e., the free
particle state with maximum allowed spin and lowest ki-

where g, , = Q, ", Q;(i)Qi(j).
The classical energy is therefore a function of the 2N

spin angles 0, , p, and of the Nb, x N complex variables
defining the wave function (3.17). The lowest possible en-
ergy Zo as a function of all the 2N x (I+Nb, ) real variables
represents a variational classical estimate of the ground-
state energy. We solved this optimization problem on a
square lattice numerically, following a scheme which is
similar to the one introduced by Car and Parrinellois
for the electronic structure problem, i.e. , for the simula-
tion of the stow dynamics of the ions interacting via a
self-consistent potential generated by the electronic fast
degrees of freedom. This approach can be extended to
our case because the isospin q behaves as an adiabatic
parameter: in the q —+ oo limit the spl(2, 1) even genera-
tors (2.7) ("slow variables" ) become classical objects, so
that Eq. (3.13) describes the dynamics of the odd and
projection operators (2.7) and (3.9) ("fast variables" ) in
the background of the former. Thus the electr'onic de-
grees of freedom have a much faster dynamic of the spin
angles, which in this case play indeed the role of the ionic
coordinates.

In order to minimize the numerical effort we first move
the electronic degrees of freedom at a fixed spin config-
uration and then the spin angles without changing the
electronic degrees of freedom. At each step we do not
require a fully converged Hartree-Fock solution of the
electronic part, but we make a fixed number of steepest-
descent steps, followed by a Graham-Schmidt orthogo-
nalization of the orbitals to achieve numerical stability.
After many spin moves (=10000) we get a fully self-
consistent solution of the problem up to computer ma-
chine accuracy. The solution found with the previously
described iterative scheme may not coincide with the ab-
solute mirumum —the classical ground state. The true
minimum can be identified on a reasonable ground by
resorting to symmetry considerations or by performing
several simulations with diferent random initializations.

For J = 0 the mean-field Hamiltonian (3.15) becomes
the free spinless fermion hopping Hamiltonian

where A,~ is the solid angle subtended by the vectors
rr, , n~, and a reference fixed one iro, it has been conjec-
tured that for more than one hole a nonfully polarized
spin background may have better energy than the Na-
gaoka state, because the gain in magnetic energy due to
the nonzero fiux of A,~ could overwhelm the narrowing of
the effective bandwidth tA;~ —+ tA;~ g(1+ n, n~)/2. In
this case we have performed over 10000 fully converged
minimizations on a 10 x 10 and a 16 x 16 lattice and
for arbitrary density. We initialize randomly the spins
angles and set the orbitals gi(i) at the corresponding
Hartree-Fock solution of the spinless fermion Hamilto-
nian with the chosen random spin configuration. In all
the minimizations we have never found a solution with
corresponding energy lower than the "Nagaoka energy. "
Most of the runs converge to the fully polarized solution.
Only a few remain trapped into a local minimum of the
classical energy. A particularly interesting case is at dop-
ing 6' = Nb/N = 1/2. In this case we have indeed found
a stable planar solution with P, = 0 and 0, = z i, where
i = 0, 1, ..., L —1 are the lattice coordinates along the
2: axis. This minimum configuration is similar to the one
proposed by Doucgt and Wen for few holes. However,
we have found that this kind of state is always unstable
except for this particular doping 6 = 1/2, and its energy
is only degenerate with the Nagaoka energy. For large L
this state tends (locally) to the Nagaoka state and leads
in fact to the same correlation functions. Contrary to
the Nagaoka state, this planar solution is not an exact
eigenstate of the infinite-U Hubbard model. This fact
represents a very simple proof that the Nagaoka state is
not the true ground state at b = 1/2. Although our re-
sult about the stability of the Nagaoka state is based on
a numerical optimization problem which is never com-
pletely reliable, we at least may argue that there is no
evidence of any exotic spiral, fiux, or chiral phase in the
t J model for J = 0 at the mean-field level.

For J g 0 we consider first the interesting case when
only one hole is present. A recent reason of debate is
whether the spiral mean-field solution of Shraiman and
Siggia~ has lower or higher energy compared to the po-
laronic solutions (see Fig. 1). As we have anticipated,
also in this case we are left with the study of a free
Hamiltonian with a complicated site-dependent hopping,
to be adjusted as to minimize Eq. (4.1). The results of
our numerical investigation confirm that the polarons are
the lowest-energy configurations of the large-spin limit
of the t-J model. The small-polaron solution, also called
the five-site polaron [the hole is trapped in a given site
and its nearest neighbors, see Fig. 1(a)j, is stable for
J/t ) 0.243. For smaller J/t the size ( of the polaron is
gradually increased [the eight-site polaron in Fig. 1(b) is

stable for 0.148 & J/t & 0.243j until ( J &, consistent
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FIG. 2. Variational hole energy in unit of ~t~ as a «n«i»
of J on a 10x10 lattice. The dashed line is the semiclassi-
cal spiral solution of Shraiman and Siggia with momentum
k = ($, ~). The solid line represents our large-q mean-field
solution: A static polaron of increasing size as J is lowered.
The abrupt changes of the energy at small J are due to cor-
responding erst-order transitions to larger and larger polaron
size.

(c)
FIG. 1. Polaronic solutions. The symbols o and ~ indicate

spin up and spin down, respectively. The symbols and Q
indicate spin up and spin down, and in addition a nonzero hole
density on the site. For the one-hole case we report the small
polaron (a), the 8-site polaron (b), and the 13-site polaron
(d). For the four-hole case is shown the 2x2 plaquette (c)
and the 13-site polaron (d).

with theoretical arguments, so that in the J/t ~ 0 the
polaron solution eventually turns in the Nagaoka state.
With the polaron spin background the mean-field en-
ergy and the orbital can be easily evaluated analytically.
We report the case of the five-site polaron localized at
site ip. Writing the orbital in Eq. (3.17) in the form
Q(i) = f6',» + g, A,«, the diagonalization of Eq. (3.15)
gives

J
Ep = —(2N —4) —2tAp,

2

3J
8t

+ sgn(t) 1 +
~

C3J)
(St)
0

2+1+ X2

(4 4)

The energy of the antiferromagnet with four missing
bonds is recovered in the J/t ~ oo limit, because we
have Ap —+ 0 so that f ~ 1, g; ~ 0, which means
that the hole is statically placed on site ip The one.-
hole energy (referred to the half-filled ground-state en-
ergy SAF = JN) for the Shr—aiman and Siggia state
at momentum k = (z, 2) and the polaron estimate is

plotted in Fig. 2 as a function of J/t in a 10 x 10 lat-
tice. The comparison of the two energies is meaning-
ful because both represent a variational estimate of the
ground-state energy of the t-J model. However, the two
variational wave functions refer to difFerent order of ap-
proximation, because the hole in the Shraiman and Siggia

j (E~ —E)N(E) dE
J,(b) -4i~i

it] 2B

N(E) dE, (4.5)

(4.6)

where the spinless fermion density of states N(E) is ex-
pressed in terms of the complete elliptic integral of the
first kind K, E~ is the spinless fermion Fermi energy at

estimate has a definite momentum. Propagating the po-
laron through the whole lattice via processes as depicted
in Fig. 3 (highly nonperturbative in 1/q, as discussed in
Ref. 21), eventually decreases the energy, but the present
data shown in the Fig. 2 clearly indicate that the spiral
has lower energy than the static polaron, unless for small
J/t.

We consider next the case of four holes. For large J/t
the stable state is clearly localized in a 2 x 2 plaquette [see
Fig. 1(c)]. As we decrease J, for J/t & 1.09 the four holes
prefer to remain localized in a polaron of 13 sites, tilted
by 45' with respect to the 2:, y axes [see Fig. 1(d)], rather
than to split into a couple of bound pairs. For J/t smaller
and smaller the size of the polaron smoothly increases
until the spins are fully polarized in the given finite 10 x
10 square lattice. These results support the scenario of
Emery, Kivelson, and Lin. s At least at the mean-field
level the classical solution consists of a hole-rich phase
fully polarized and a classical antiferromagnetic region
which are completely phase separated for arbitrary J.
The exact phase boundary in the thermodynamic limit
may be obtained by minimizing the energy of the phase
separated phase. Following Emery, Kivelson, and I in we
get a critical J, above which phase separation occurs,
given by
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FIG. 4. Phase diagram of the t Jmodel obtained with the
Hartree-Fock large-spin approach.
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cause lowering J/t favors the polarized solution.
At the large-spin mean-field le@et we therefore end up

with a very simple phase diagram consisting of a ferro-
magnetic phase for J & J, and a separated phase for
J& J,.

V. DISCUSSION AND CONCLUSIONS

FIG. 3. Second-order process for the q =
2 theory that

allows the small-polaron propagation. The wave function
~
@;)

of the polaron at sitei is written as ~4;) =
~ f,)+Qz A;t~g, q).

In (a) we have the state ~g, q) entering the polaron at site i. In
(b) we have the intermediate state ~b'~) Hqz~g, g) which is a
one-particle excited state and corresponds to a local minimum
of the energy functional (4.1). In (c) we have the state

~ f~)
entering the polaron at site j, which is obtained by a further
application of the Hamiltonian:

~ f~) ~ Hqg~b~) Because of.
(4', ~H, ~~@J) g, ft J, for i p j, an effective intrasublattice
hopping is generated.

the corresponding doping b, and B is the classical en-
ergy per bond (B = 1) of the Heisenberg antiferromag-
net. The resulting phase diagram in the J-p plane, where
p = 1 —b, is shown in Fig. 4. Here we note the charac-
teristic b v J singularity occurring at low doping as

1
the size ( J & of the polaron increases in a singular
way. At low density Eq. (4.5) is valid only if electrons
do not form bound states. This is actually the case for
the exact t-J Hamiltonian, where two electrons form a
bound singlet pair for J/t ) 2. In this approach, how-
ever, the paramagnetic phase at low density is clearly
not well characterized since the spins are frozen in some
fixed direction. As a result two electrons never bind-
as we have tested numerically —and the phase boundary,
which is like that of Emery, Kivelson, and Lin, represents
the exact mean-field phase diagram. I et us discuss now
what happens for J ( J, at fixed density. At J = J, the
Nagaoka state is stable by construction since the hole-
rich phase exhausts all the allowed space at the given
density. It is then easy to convince ourselves that if we
decrease J/t the Nagaoka state is even more stable be-

In this paper we have presented the coherent states
that allow to give a variational foundation to the large-
spin limit of the tJmodel. T-hese states are obtained by
grading according to the spl(2, 1) algebra the standard
su(2) spin coherent states. We have emphasized how the
large-spin limit can be performed in distinct schemes,
and applying one of them we have rigorously derived
the Kane-Lee-Read Hamiltonian. We have discussed the
shortcoming of this approach, related to the fact that in
this scheme the mean-Beld solution turns out to be the
classical Neel state, independently from the density. As
a consequence phase separation cannot be recovered at
the mean-field level.

We then have presented and numerically investigated
the effective spinless fermion Hamiltonian obtained by
means of a different and more satisfactory definition of
the large-spin generalized t-J model. This mean-field
model Hamiltonian has the essential properties and sym-
metries of the original Hamiltonian; in particular, it ex-
actly takes into account the constraint of no-double oc-
cupancy. The mathematical tools we have employed
are similar to other proposed techniques, notably the
Swinger-boson —slave-ferrnion representation. However,
we hope to have better clarified the mathematical and
physical assumptions underlying the large-spin limit of
the t-Jmodel. More important, by means of the spl(2, 1)
graded coherent states we have shown that the mean-field
solution is independent of the magnitude of the expan-
sion parameter and therefore the corresponding energy is
variational. In this way we have generalized a very useful
property of the spin systems.

Our numerical investigation confirms that the polaron
solutions are the lowest-energy configurations of the t J
model in the large-spin limit. However, we do not find
that the static small polaron has lower energy compared
to the Shraiman-Siggia spiral state as reported by Auer-
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bach and Larson, at least when in the definition of the
t-J model three-site contributions are neglected. The in-
vestigation of the full phase diagram at the mean-field
level support the picture of Emery, Kivelson, and Lin:
In the J —b plane a critical Jc = J,(6) with Jc ~ 0
for b —+ 0 separates the ferromagnetic and the phase-
separated phases.

For J = 0 the large-spin solution is always fully polar-
ized and our numerical analysis suggests that the insta-
bility of the Nagaoka state cannot be found at the mean-
field level. The mean-field picture is exact for a single
hole, likely for small doping, but is incorrect for large
doping, where existing numerical works and the varia-
tional singlet Gutzwiller projected wave-function2s result
seems to suggest that the Nagaoka state never survives at
finite concentration of holes. On the other hand for J = 0
the energy Zp obtained by minimizing the functional (4.1)
has the particle-hole symmetry, i.e. , Ep(b) = Sp(1 —6).

This is not a true symmetry of the infinite-U' Hubbard
model and thus we expect that 1/q fiuctuations play a
relevant role, especially for small density. Nonperturba-
tive processes may be of some relevance; however, we ex-
pect the mean-field picture to be reliable in the large J/t-
region.
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