
PHYSICAL REVIEW B VOLUME 47, NUMBER 14 1 APRIL 1993-II

Metals in a high magnetic field: A universality class of marginal Fermi liquids
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Parquet equations, describing the competition between superconducting and density-wave insta-
bilities, are solved for a three-dimensional isotropic metal in a high magnetic field when only the
lowest Landau level is filled. In the case of repulsive interaction between electrons, a phase tran-
sition to the density-wave state is found at finite temperature. In the opposite case of attractive
interaction, no phase transition is found. With decreasing temperature T, the efFective vertex of
interaction between electrons renormalizes toward a one-dimensional limit in a self-similar way with
the characteristic length (transverse to the magnetic field) decreasing as ln ' (u, /T) (u, is a cut-
off). The residue of the one-particle Green function vanishes at the Fermi surface indicating the
marginal character of the Fermi liquid.

I. INTRODUCTION

The behavior of an isotropic three-dimensional (3D)
metal in a high magnetic field attracted the attention of
physicists for a long time. In this system, the energy of
an electron depends only on the momentum along the
magnetic Beld. Thus, the system exhibits effects char-
acteristic of one-dimensional (1D) metals, while intrinsi-
cally it is 3D. As an immediate consequence of this fact, it
was suggested that the system could be unstable with re-
spect to charge- or spin-density-wave (DW) formation. i
Another suggestion was that the system could remain
superconducting (SC) in an arbitrarily high magnetic
field, since the 1D dispersion law still allows for a SC
instability. It was pointed out in Ref. 3 that both in-
stabilities must be taken into account simultaneously in
the so-called parquet approximation. The parquet equa-
tions were written correctly in Ref. 4, where it was found
that the DW solution is indeed an asymptotic solution of
the equations. s However, the equations were not solved
numerically, thus the question of when the asymptotic
solution develops remained open.

In this paper, the parquet equations for an isotropic
3D metal in a very high magnetic field, with only the
lowest l.andau level flied, are solved numerically. It is
found that in the case of repulsive interaction, a phase
transition to the DW state occurs, in agreement with the
analysis given in Ref. 4. In the case of attraction, no
phase transition occurs, and the system remains a non-
trivially correlated metal to arbitrarily low temperatures.
With decreasing temperature T, the system becomes pro-
gressively more one dimensional, with the characteristic
interaction length perpendicular to the magnetic field de-
creasing as ( i~s, where g = 1n(u, /T), and io, is a cutofF
of the order of the cyclotron energy. However, the system
never becomes strictly 1D. For this reason, various cor-
relation functions have new forms neither characteristic
of 1D nor of conventional 3D metals. Thus, the system

represents a new nontrivial example of an unconventional
Fermi liquid, neither of the Landau, nor of the Luttinger6
type.

The paper has the following structure. In Sec. II, the
parquet equations for a completely spin-polarized case
are derived and solved. In Sec. III, the SC and the
DW susceptibilities are calculated. In Sec. IV, the one-
electron Green functions are calculated. In Sec. V, the
consideration is generalized to the case, when electrons
of both spin orientations are present, and to the cases of
layered and quasi-one-dimensional systems. The issue of
the high field superconductivity is discussed in Sec. VI.
Conclusions are given in Sec. VII.

II. PARQUET EQUATIONS

Let us consider an isotropic 3D metal with an efFective
mass m and a parabolic dispersion law. We assume that
magnetic field is so high that only the lowest Landau
level is filled, and the spins of all electrons are completely
polarized in the direction of magnetic field. Dispersion
law has the form e = pz/2m, where p, is the momentum
along the field. The Fermi surface consists of the two
Fermi points p, = +@~ = +2+ hnlH, where n is the
volume concentration of electrons, and l~ = (hc/eH) ~

is the magnetic length. Coordinates X, Y in the plane
perpendicular to the Beld will be measured in units of
lH. The wave functions of the lowest Landau level are7

Q (X, Y) = vr ~ l~ ~ exp[i2:Y —(x —X) /2]. (1)

Another representation can be obtained making a super-
position of states (1):

Q&(X, Y) = (2z) ~ dx exp( —ixy)@ (X, Y)

= ~-'~'1H"' exp[iX(Y —y) —(y —Y)'/2].
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To be distinguished from the running variables X and
Y, the quantum numbers x and y, which label the wave
functions (1) and (2), are denoted everywhere by the low-
ercase letters.

l,et us introduce now the operators at (x, p, ) and

b (y, p, ) which create electrons in the eigenstates (1) and
(2) with p, close to+p~ and —p~, respectively .Near the
Fermi energy, the electron spectrum can be linearized in
p„and the Hamiltonian of the model can be written in
the form H = Hp + H~, where

Hp ——2vrlH '„vF (p, —p~) dxat(x, p, )a(x, p, ) —(p, +pp) dybt(y, p, )b(y, p, ) vF = pF/m,

Hg ——g (2~6)' dxdy dx'dy'exp( —ixy'+ iyx')pe(x —x', y —y')a (x, pq)b (y, p2)b(y', ps)a(x', pq + p2 —ps), (4)

pe(r —r') = exp(ir h r')l~ dX dY Q*(X,Y)Q„*(X,Y)g& (X, Y)Q~ (X, Y)

= exp[ —(r —r') /2]. (5)

In Fq. (5), r = (x, y) and r' = (x', y'), and r h r' =
xy' —yx'. In Eq. (4), the interaction amplitude is

g = g2 —gq, where gq and gq are the amplitudes of for-
ward and backward scattering which are conventionally
used to parametrize the interactions in 1D systems. The
combination g2 —gq is the interaction amplitude of elec-
trons with parallel spins. We assume that the interaction
has a certain dependence on the momentum p, on the
scale of 2p~, so that gq g gq and g g 0. A priori, g
may be positive or negative . The function po (5) is the
form factor of the interaction between electrons in the
representation given in (1) and (2). We assume that the
spatial range of the original interaction is much shorter
than /H, so that the point interaction can be used in Eq.
(5). It will be argued in Sec. II B that a deviation from
expression (5) for the amplitude of interaction could not
change results qualitatively. The interaction is assumed
to be weak: lgl (( v~lH.

The so-called parquet diagrams, which consist of the
electron-hole and electron-electron loops inserted into
each other in all possible ways, are the most important
many-body corrections to the interaction vertex pe(r). s 4

The corrections form a series in powers of

(2~)svF /2
ln

max(»~ «lip. l
pFI)—

where a is an energy, since both of the one-loop diagrams
are logarithmically divergent. The renormalized vertex
of the interaction p(r, () obeys the following equation,
shown graphically in Fig. 1:

&'Y(r ()
0(

d r'p(r', ()p(r —r', ()(1 —e" ' ), (7)

p(r, 0) = sgn(g)We(r).

Equation (7) can be obtained from Eq. (2) of Ref. 4 via
a Fourier transformation over the variable k~.

Another useful representation of the parquet equa-
tions, introduced in Ref. 4, can be obtained via two-
dimensional (2D) Pourier transformation p(r, ()
I'(k, () of Eq. (7):

( & () ~g(k () & 2 P(k ()P(k () i(kg&k+kAkg+kyAkg)
ci(

'
(2~)2

I'(k, 0) = sgn(g)I'o(k), I'o(k) = 2vr exp( —k /2).

(9)

(10)
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The rhs of Eq. (7) [or Eq. (9)I is a difference of two
terms. The erst term is the contribution of the electron-
hole loop, the second term of the electron-electron loop.
If only one of these terms is retained, that corresponds
to a ladder approximation instead of a parquet one, then
the equations can be solved analytically.

A. Repulsive case

FIG. 1. Parquet equations for the vertex of interaction
p(x2 —xz, y2 —yr, t) which is shown as a fille circle. The
bare vertex pp(x2 —x&, y2 —yr) is denoted as a dot. The
Green functions of electrons v:ith moInenta p, close to +@~
are shovvn as solid and dotted lines, respectively.

If one neglects the second term on the rhs, then Eq.
(9) has a solution:

r(k, q) =-
sgn(g)r (k) —g



METALS IN A HIGH MAGNETIC FIELD: A UNIVERSALITY. . . 8853

In the case g ) 0 (repulsion), solution (ll) is called a
"moving pole, "9 because the position („(k) = I'z (k) of
the pole singularity in ( depends on the value of k. The
vertex (11) becomes singular when ( reaches the mini-
mum value of („(k) which, according to Eq. (10), is at-
tained at k, = 0 and is equal to (, = 1/2vr. As it was
shown by the calculation of the appropriate susceptibil-
ity in Ref. 4, the moving pole singularity (ll) indicates
a phase transition to a DW state, where the densities
of the electron charge and spin are modulated along the
magnetic field with the wave vector 2pF/h, and are ho-
mogeneous in the perpendicular plane (since k, = 0). As
shown in Ref. 4, once the moving pole (11) develops, the
second term on the rhs of Eq. (9) indeed can be neglected,
because this term contains the integrations over kq and
kq which make it less singular than the first term. Thus,
the moving pole is a possible self-consistent asymptotic
solution of Eq. (9).

Solving numerically the full equation (9) at g ) 0,
we do find the moving pole singularity occurring at
k, = 0 and (, = 1.3/2x. The value of (, is re-
lated to the transition temperature by the formula T, =
u, exp[ (2n) (—,vFlH/[g~] [see Eq. (6)]. Thus, the only
effect of the second term on the rhs of Eq. (9) in the re-
pulsive case is a certain decrease of the transition temper-
ature. Otherwise, the ladder approximation gives quali-
tatively correct results.

B. Attractive case

If the first term on the rhs of Eq. (7) is neglected,
then the resulting equation can be solved by performing
the Fourier transformation p(xi, y, () —+ A(xi, x2, () over
the variable y and introducing the function h(xi, x2, () =
A(xi —x2, xi + x2, () obeying the following equation:

Oh(xi, x2, ()/8( = — dx h(xi, x, ()h(x, x2, ().

FIG. 2. The vertex of interaction p(r, () as a function of
r at 2vr( = 0 (a), 5 (5), 500 (c), and 3200 (d).

With initial conditions (8), Eq. (12) has a solution:

(13)
sgn(g) + x(

In the case g ( 0 (attraction), Eq. (13) has a pole sin-
gularity at (, = 1/n that indicates a phase transition to
a SC state. i Solution (13) is called a "standing pole, "s
because the position of the pole in ( does not depend
on any continuous variable. For this reason, when ex-
pression (13) is substituted into the f'ull equation (7), the
first term has the same singularity as the second one, thus
the SC ladder approximation can never be justified. s This
fact explains why it is important to solve numerically the
full equation (7) in the case g ( 0.

Since the initial vertex po(r) (5) depends only on r,
which is the absolute value of r, then the same holds
for p(r, (). Eq. (7) can be rewritten for a new function
p(r, () = p(r, (), which depends on one spatial argument

Bp(r, ()/8( = 8 ri dr i
'([4( ")'-("+:-")'1"/4)

r2dr2 p(ri, ()p(r2, ()
[4( )2 (

2 + 2 2)2],(2 (14)

p(r, 0) = sgn(g) exp( —r /2).

The numerical solution of Eqs. (14) and (15) in the case g ( 0 is shown in Fig. 2 for several values of "time" (. After
a short initial evolution, the function p(r, () attains the self-similar form p, [tU(()r], where m(() is a monotonically

growing function of (. The ansatz p(r, () = p, [w(()r] is consistent with Eq. (14) provided m is sufficiently big. In this

case, the sine in Eq. (14) can be replaced by its argument, and Eq. (14) decouples into two equations:

dw(()/d( = Am s((),

2Ap~~. (p)/~p = pidpi
P+P&

p2dp2 fc(pl)pc(p2) ['4(pl p2) (pi + p2 p ) ]
—Pi I

(17)

A is a constant. It follows from (16) that m(()-= [A((—
(0)]i~s. This dependence indeed was found numerically
with (o = 0. The function p, (p) is also known numeri-
cally: with the convention A = 1, p~(p) = p(p( i~s, (),
where for the latter function one can take any of the plots 1(r, () = 1,(r(' ), (18)

I

in Fig. 2, except the plot corresponding to ( = 0.
ln summary, the solution of the parquet equations in

the case g & 0 has the self-similar form
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where we introduced a function of two variables p~(r) =
p, (r) .Equation (18) is neither a moving nor a stand-
ing pole; it is rather a "squeezing" solution: the effective
range of interaction contracts as ln / (tv~/T), thereby
making the system increasingly one dimensional as tern-
perature is reduced.

It is rather difficult to study analytically the stability
of the solution since the function p, (p) is known only nu-
rnerically. However, the solution persists in the computer
up to the biggest employed value of ( = 1600/vr without
any sign of instability. Since some noise is always present
in numerical computations, we conclude that the asymp-

totic solution is stable and, presumably, has a finite basin
of attraction. This means that even if the primary inter-
action is not local, and the initial vertex differs from Eq.
(5), the solution of Eq. (7) may still fiow to the same
asymptotic form.

III. SUSCEPTIBILITIES

In order to calculate susceptibilities, let us add to the
Hamiltonian (3) and (4) the fictitious external fields, fsc
and fDw, which create electron-electron and electron-
hole pairs:

'dxdy [fsc(x, y)at(x, p. )ti (y, —p. ) + fDw(x y) exp( ixy)ri —(x,p. )6(y, p. —2pz)j+ H c

@(r o) = fsc(r). (21)

Let us start with the SC susceptibility. i According
to the parquet rules, it is necessary to calculate first
a vertex @(x,y, (), which is determined by the graphic
equation shown in Fig. 3(a):

:-(x,x, 0) = C'sc(»z) (23)

where the function h was introduced in Sec. II B. Equa-
tion (22) is diagonal and degenerate with respect to x,
the center-of-mass coordinate of a Cooper pair, so this
variable can be omitted. Taking into account Eq. (18),
one can rewrite Eq. (22) in the form

To solve this equation, let us make a Fourier transforma-
tion over the variable y: iIr(xi, y, () —+ A(x»z2, () and

fsc(xi, y) ~ Fsc(xi, x2); then, introduce the new vari-
ables: =(x, x, () = A(x —x, x + x, () and Csc(*,z) =
Fsc(z —z, x + x). In the new variables, Eq. (20) reads

dx' /', 2x x'
(1/3 I ' (i/6 (1/3

/x=-
I
z+ (,/, ()I (24)

(22)
!

where A, (xi, xq) is the Fourier transform of p, (xi, y) over
the variable y. An approximate solution of Eq. (24) is

:-(x,() = Csc(z) exp d rp(r, () —x d rr p(r, ()

= c'sc(x) exp
I

—3rix ( //3r, ('/3
2 ) '

(25)
27rrp, (r)dr = 3.1, I'i =— 2vrr p, (r)dr = 2.2.

The contribution to the free energy b~F due to the
external field fsc is shown graphically in Fig. 3(b):

~ jg 2
d( d* l=-(z, () I' (26)

Substituting Eq. (25) into Eq. (26), one finds the suscep-
tibility with respect to the creation of an electron pair
with the relative distance between electrons equal to x:

(1/3
y(x, () = exp(3re( —6I'iz ( ). (27)

FIG. 3. (a) Parquet equations for the vertex ilI(x, y, ()
shown as a filled triangle. The external field fsc(z, y) is de-
noted as a square. (b) Contribution to the free energy biF
due to the field fsc.

When ( ~ oo (T ~ 0), the susceptibility diverges
following an unusual law (i/3 exp(const(2/3). This be-
havior can be understood qualitatively in the following
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way. The total amplitude of scattering to all possible
channels,

v~(() = ~(, () =- Fo
(1/s '

goes to zero with increasing (. This means that the sys-
tem renormalizes toward the noninteracting limit. How-
ever, the interaction decreases rather slowly, so that the
integral —Jo pi(g)dg, which appears in the exponents of
(25) and (27), diverges as (z/s. At the same time, the
characteristic distance between electrons in a Cooper pair
in (27) squeezes as ( /, which indicates the increasingly
1D character of the system.

The behavior of the susceptibility is diferent in the
case of genuine 1D Tomonaga-Luttinger model. In this
model, p does not depend on ( since the electron-hole and
electron-electron loop diagrams completely cancel each
other in the parquet equations. Thus,

(g ~/~v p
giD exp( —2'Y() =

T (29)

where the variable ( = (2vrtH) ( was introduced which
does not contain the factor 2xlH specific to the magnetic
field case [see Eqs. (3) and (6)].

In our case, due to the 3D nature of the system, the
cancellation of the two terms in the rhs of Eq. (7) takes
place only at r = 0. Otherwise, the DW channel dom-
inates and pushes p(r g 0, () to zero. For this reason,
the total interaction (28) decreases in absolute value, and
susceptibility (27) contains a fractional power of ( in the
exponent instead of the first power in (29). When ( ~ oo,
susceptibility (27) is less singular than in the 1D case
(29). Unlike (29), Eq. (27) is not a power-law function
of temperature and represents a new universality class of
Fermi liquid correlation functions. The powers 2/3 and
1/3 of ( in Eq. (27) are universal constants.

Following an analogous procedure, one can find a con-
tribution to the free energy due to fDw

—d A:[EDw(k)~ exp 2
g ~l/6 ) ~l/s

IV. ONE-ELECTRON GREEN FUNCTIONS

The one-electron Green functions G~, where the in-
dices + refer to the a(x, p, ) and b(y, p, ) fermions, re-
spectively, are diagonal in the transverse indices x or y
and do not depend on these indices even if the interac-
tion is taken into account exactly. In the framework of
the renormalization group (RG) approach, the Green
functions can be written as

G~ (~,p, ) = Z(()G~ (~,p, ), (30)

where EDw(k) and I', (k) are the 2D Fourier transforms
of fDw(r) and p, (r). For all values of k the DW suscep-
tibilities have finite limits at zero temperature.

malization factor which depends on parameter (6). The
RG equation for the factor Z can be written taking into
account the lowest-order logarithmic diagram shown in
Fig. 4:

» Z(() lg[

2(2vr)svp /Hz

Z(O) =1.

d rp (r, (),

(31)

F2 —— 2vrrp, (r)dr = 1.9.

It follows from Eq. (32) that, when cu —+ 0
(( —+ oo), the "residue" Z(() vanishes at the Fermi
surface (~p, ~

= pF) at T = 0. This means that the
considered system belongs to the class of the so-called
marginal Fermi liquids. They are distinguished from
the conventional Fermi liquids where Z has a finite value
at u —+ 0. The only well-studied marginal Fermi liquid
is the so-called I uttinger liquid6 which exists in the 1D
Tomonaga-Luttinger model. In the latter model, Eq. (31)
does not have integration over r, and p does not depend
on (, thusi2

g g /s7I' t/P

Zi D —exp
4irvp ) (u, ) (33)

An agreement between Eq. (33) and the exact solution
of the Tomonaga-Luttinger modeli confirms the validity
of the RG approach in the 1D case. We believe, that the
B.G approach is applicable to the considered 3D system
in magnetic field too, because this system is essentially
one dimensional, though highly degenerate.

The rhs of the RG equations (7) and (31) are writ-
ten using the lowest-order diagrams: the one loop in the
case of (7) and the two loop in the case of (31). Higher-
order contributions, which contain more loops, can be ne-
glected because they contain higher powers of the small
constant g and higher powers of the amplitude p which
decreases in absolute value upon evolution. The latter
point is crucial: the system does not renormalize toward
the strong interaction limit, thus the perturbational ap-
proach is applicable. This statement is also supported
by the fact that, when Eqs. (7) and (31) are stripped

y ~ +(~ + ~ Op

+

X41

ty~)) ~ ~ ~

Equation (31) is the same as in the 1D case, i except that
the integration over the transverse variable r is added.
Substituting Eq. (18) into Eq. (31), one finds

Z(() = exp[—3I' ( / [g[/4(2') v t J,

(32)

where G~ (w, p ) = [cu ~ v~(~p, ~

—p~)] are the Green
functions of noninteracting electrons, and Z(() is a renor-

FIG. 4, The lowest-order logarithmic correction to the
one-electron Green function.
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of the transverse variable r, they describe correctly the
behavior of the 1D Tomonaga-Luttinger model, which is
known from the exact solution. Thus, we believe that
the results, obtained in this paper, are true and are not
artifacts of approximations. The results are nontrivial
because the B.G equations electively describe a summa-
tion of an infinite number of specially selected diagrams.

Comparing expressions (32) and (33), one notes a dif-
ference between the one-electron Green functions of the
considered model and of the Luttinger liquid. Equation
(32) is not a power-law function of cu, and vanishes more
slowly than (33) when u ~ 0. Thus, the considered sys-
tem represents a new universality class of marginal Fermi
liquids. The index 2/3 of the fractional power of ( in Eq.
(32) is a universal constant.

V. SOME GENERALIZATIONS

the magnetic field perpendicular to the layers provided
the bandwidth of the electron motion across the layers is
much higher than the amplitude of interaction.

If the latter condition is not fulfilled, the system is
strongly correlated, and the perturbational approach,
employed here, is not valid. This happens because in a
strong magnetic field electrons have no kinetic energy of
the motion inside the layers, and the only kinetic energy
comes from the motion between the layers. To decide
whether the system is weakly or strongly correlated, one
has to compare the kinetic energy and the interaction
(see also Ref. 15).

The approach of the paper is inappropriate, particu-
larly, for a strictly 2D system, where there is no kinetic
energy at all, It was emphasized in Ref. 16, that in the
2D case there is no logarithmic parameter to justify the
selection of the parquet diagrams.

A. Spins

Let us consider now the case when electrons of both
spin orientations are present and occupy the lowest Lan-
dau level only. This is possible when the spin g factor is
less than 2. In this case, the electrons with spins up and
down have different Fermi momenta equal to p~ kAz/v~,
where Az is the Zeeman energy. In addition to the ampli-
tude of interaction between electrons with parallel spins,
represented in Eq. (4), there is also an amplitude of inter-
action between electrons with antiparallel spins. Due to
the difference of the Fermi momenta, the process, where
the o and b fermions exchange their opposite spins, in-
volve momenta far from the Fermi surface. Thus, this
process does not contribute to the logarithmically diver-
gent corrections and can be neglected. The remaining
amplitudes of interaction between the o and 6 fermions
with the parallel and the antiparallel spins do not mix
in the parquet equations. The equations have the same
form (7), while initial conditior"s (8) and the definitions
of ( (6) contain g = g2 —gi and g2 for the amplitudes
of interaction between the parallel and the anti-parallel
spins, respectively. (See also discussion of this subject in
Ref. 10.)

The behavior of the system depends on the signs of
g and g2. If at least one of them is positive, then the
electron-hole pairing (DW) with the parallel or the anti-
parallel spins appears in the system. If both amplitudes
are negative, then the system is a marginal Fermi liquid
as described above.

If Ez (( w„ then in the intermediate energy range
Lz (( u &( u, the Zeeman splitting may be neglected,
and the parquet equations have to be modified. We will
not study this case here.

B. Layered systems

The results, described above, are valid also for an
anisotropic system with a parabolic dispersion law per-
pendicular to the magnetic field and any dispersion law,
which is reasonable to linearize, along the magnetic field.
Particularly, the results are valid for a layered system in

C. Quasi-one-dimensional systems

Parquet equations, similar to Eq. (9), also describe the
behavior of a 2D metal with quasi-1D anisotropy in a
strong magnetic field. In that case, the main kinetic
energy comes from the 1D motion along the chains, and
the magnetic field aKects the electron motion between
the chains, Numerical solution shows that the phase
transitions to the DW states take place in both cases
of repulsive and attractive interaction between electrons.
Even if initially the interaction is attractive (favorable for
superconductivity), in the course of renormalization the
sign of the interaction is electively changed giving rise
to a nontrivial DW state exhibiting the integer quantum
Hall efFect. ~7

VI. THE ISSUE OF THE HIGH FIELD
SUPERCONDUCTIVITY

Several groups discuss theoretically the possibility of
existence of superconductivity in very high magnetic
fields: see the most recent papersis 2i and references
herein. Here, we limit the discussion to the orbital ef-
fects only. The efFects of spins are considered in detail in
Ref. 22.

The authors of all the above-mentioned references em-

ploy a ladder or a mean-field approximation with respect
to the Sc channel only, thus neglecting the influence of
the competing DW channel. As shown in the present pa-
per, such an approach is certainly wrong at least in the
case, discussed mostly in Ref. 18, when only the lowest
Landau level is filled. Other groups 2 pay more atten-
tion to the case when several Landau levels are filled. In
this case, the competition with the DW channel is more
complicated, and a further investigation is necessary.

Another warning is that the authors of Refs. 19—21 do
not pay enough attention to the difference in physical
behavior of SD and 2D systems in magnetic field. Math-
ematically, the mean-field equations are similar in the 2D
and 3D cases. However, physically, there is a big diEer-
ence. As discussed in Sec. V B, in the 3D case there
is a kinetic energy of the electron motion along magnetic
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field. As a consequence, the perturbational approach can
be applied, and the logarithmic parameter justifies the
selection of the parquet or the ladder diagrams. In the
2D case, there is no kinetic energy, thus the system is
strongly correlated, so the perturbational approach and
the selection of the ladder diagrams cannot be justified.

However, the results of the present paper should not
be interpreted as a "no-go" theorem for the high field su-
perconductivity. In a 3D system, periodically modulated
perpendicular to the magnetic field, the degeneracy of the
Landau wave functions is lifted. Due to the additional
energy dispersion, the SC and the DW channels are de-

coupled and do not suppress each other. The mechanism
of decoupling is the same as in quasi-1D conductors with
the interchain electron hopping.

An extreme case of such modulation can be found in

layered systems when magnetic field is applied paral-
lel to the layers. 2s A particular case is represented by
quasi-1D organic superconductors (TMTSF)zX' (where
TMTSF is tetramethyltetraselenfulvalene, X is a mono-
valent anion), which also have a layered structure. In
this geometry, the magnetic field can suppress the elec-
tron hopping between the layers, however, it has no effect

on the electron motion inside the layers. Thus, the mag-
netic field should not suppress superconductivity. 2s'24 It
is important that the electrons in the layers have a 2D,
not 1D, dispersion law, thus the competition with the
DW channel is suppressed.

VII. CONCLUSIONS

An isotropic 3D metal in a high magnetic field is de-
scribed as an infinite set of coupled 1D systems. A self-
similar "squeezing" solution of the corresponding renor-
malization group equations is found for the first time.
The solution describes a new type of the marginal Fermi
liquid 3 where the residue Z of the one-electron Green
function vanishes at the Fermi surface. Correlation func-
tions in this system have unusual non-power-law forms
indicating that the system represents a new universality
class of Fermi liquids. This solution enriches our intu-
ition beyond the Landau and the Luttinger schemes in
consideration of what happens when many 1D channels
interact. 25'26
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