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Vortex-lattice solutions of the microscopic Gorkov equations for a type-II superconductor
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We derive solutions of the Gorkov equations for a type-II superconductor using the fact that the vor-
tex lattice is a consequence of translation and gauge covariance. We thus generalize the Abrikosov solu-
tions of the vortex lattice to include Cooper pairing in higher-order Landau indices relevant to low tem-

peratures and high quantizing second critical fields where the semiclassical assumptions of the
Ginzburg-Landau theory break down. Detailed calculations of the pairing amplitudes are presented for
triangular and square lattices in a diagonal Landau-state approximation illustrating the effects of temper-
ature and magnetic field on the vortex lattices. These solutions are also of interest because they give a
purely microscopic view of the vortex lattice and the correlations responsible for it.

I. INTRODUCTION

The discovery of the vortex lattice solutions within the
Ginzburg-Landau (GL) theory of type-II superconduc-
tivity by Abrikosov' in 1957 has spawned a large variety
of investigations. ' Most of these are based on the semi-
classical approximation for the effects of a magnetic field
within the GL theory. The underpinning of all this is the
well-known microscopic theory of Gorkov within a BCS
scheme from which the GL theory follows as an approxi-
mation near the superconducting phase transition. '

Recent advances in scanning tunneling microscopy
and high-field magnets have opened new windows on the
electronic structure of the vortex state, generating hope
of eventually accessing the regime of quantized cyclotron
orbits. ' This would be of great interest because recent
theoretical investigations by several authors' ' " have
pointed toward the possible coexistence of superconduc-
tivity and high fields by showing that the superconduct-
ing state for a spinless electron persists well above the
semiclassical phase boundary. Further analysis by Rieck
et al. ' have shown that a nonzero paramagnetic g factor
is detrimental to this state although the above phase
boundary is still quite unlike that predicted by the semi-
classical theory.

Investigations of the vortex lattice within this context,
using the Bogoliubov-de Gennes equations, have only re-
cently appeared' and employ a two-dimensional model
in the extreme high-field limit —only a single Landau lev-
el within the shell of attraction. Except for the ground
level, this assumption is violated of necessity in three di-
mensions because of the momentum dispersion along the
field direction, and the mean-field theory is known to be
suspect in two dimensions. Other authors' have also
employed the Bogoliubov-de Gennes formalism. Howev-
er, this formalism is not readily generalizable to include
strong-coupling interactions needed to incorporate the al-
terations in the effective phonon and Coulomb-mediated
interelectron interactions that would certainly appear at
such high fields. '

Attempts to. self-consistently include

the induced magnetic field have also been made, ' but
only a single vortex has thus far been considered.

The purpose of the present work is to construct the
vortex lattice solutions of the Gorkov equations in the
presence of a quantizing magnetic field within a
constant-field BCS model, thereby providing a consistent
theory applicable over the whole phase boundary, and as
far below it as the constant-field assumption will allow.
This not only enables calculation of detailed electronic
structure, but also provides insight into the microscopic
detail of the correlations responsible for the vortex lat-
tice.

We construct the vortex lattice by exploiting the
translation and gauge covariance of the Gorkov equa-
tions. ' lt is well known that a translationally invariant
superconducting state in a magnetic field is impossible be-
cause of the destructive interference of the Aharanov-
Bohm phases between electron pairs. However, a super-
conducting state invariant under a discrete set of transla-
tions is possible if translation around any closed path en-
closes an integral number of Aux quanta. This is the con-
dition for constructive interference of the Aharanov-
Bohm phases. In this way, the lattice is formed by corre-
lations among electrons whose orbit centers satisfy the
above condition, while pairing is suppressed among all
others. It follows that, unlike the semiclassical approxi-
mation where the magnetodynamics of the internal Coop-
er pair motion is not discernible, we find that the relative
or intrapair correlations consistent with the formation of
a lattice are essential in determining the superconducting
state. We also find the form of the original Abrikosov
solution to be a special case of the solution presented
here, in which Cooper pairs occupy only the lowest Lan-
dau level.

The importance of these results is threefold. One, it
gives an intrinsically microscopic view of how the vortex
lattice is formed from the states of the normal system;
two, it applies to the basically quantum regimes that may
soon be accessible in both the low-T, and high-T, super-
conductors where Landau quantization effects cannot be
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ignored, ' ' and three, it applies to low temperature
where the semiclassical approximations break down. We
begin in Sec. II by presenting the translation and gauge
properties of the Gorkov equations, and use these proper-
ties in Sec. III to identify the electrons whose correlations
readily give rise to pairing. In Sec. IV we illustrate the
solution within a simple diagonal approximation, and
conclude with some remarks on applicability and future
directions in Sec. V. In the Appendix we give the trans-
formation properties of the Landau states under rotations
and the associated implications for the square and tri-
angular vortex lattices.

II. TRANSLATION COVARIANCE

We begin with a discussion of the covariance of the
Gorkov equations. ' The equations are

[ I tp, —Hp( A) ]G ( I 1,12, l CO )

—b(r] )F (r],r~;ice ) =5(r, —r2),

F (r&, rz, icp ) =exp[ —ie(r&+r2)- A(a)/Pic ]

XF (r, +a, r2+a;imp ),
b, (r) =exp[ —i 2er A(a)/Pic ]b, (r+ a),

(3b)

(3c)

are also solutions of the same Gorkov equations. This is
the fundamental covariance of the Gorkov equations un-
der the combined translation and gauge transformation
(magnetic translation group), showing the translation-
induced Aharanov-Bohm phases. Notice that the phase
of the pair correlation function, F, depends upon the
center of mass of the pair, (r&+r2)/2, with charge 2e.
These are then the position and charge of the Cooper
pair.

We now choose A(r)=HXr/2, H=(O, O, H) and em-
ploy the orbit center representation for the solutions of
Hp( A) as in Ref. 19, where for simplicity, we focus on
the two dimensions perpendicular to the field, leaving the
possibility of including other isotropic or layered struc-
tures in the third dimension

[ its, Hp—( A)]—Ft(r„rI;is) )

+6 (r, )G(r„r2; imp„) =0,
Hp( A)q»(r) =..q»(r),
g»(r ) =exp(ixy /2l ) exp( iXy /l —)Pz(x —X),

(4a)

(4b)

VX [VX A(r)]= lim lim
2m o r' r

e A(r)
C

+ i~V, , + Ae

C

where X is the orbit center, N is the Landau quantum
number, [/~I are the orthonormal harmonic oscillator
eigenfunctions, Ez =Acp, (N+ 1/2) are the Landau-level
energies, and the cyclotron frequency and Larmor radius
are respectively defined as

Here

X G(r, r';t) . (lc)
co, =eH/mc, l =ch/eH .

Hp( A) = [ ifiV, +e—A(r)/c] /2m, (2a)

(2b)
III. LATTICE SOLUTIONS

G(r&, r2', iso ) =exp[ie(r& —r2). A(a)/Pic ]

X G(r, +a, rI+a;iso, ), (3a)

co being the usual Matsubara frequency and V is the at-
tractive interaction that promotes Cooper pair formation
in the BCS scheme within an energy shell around the Fer-
mi surface. In the extreme type-II systems of our in-
terest, the spatial variation of the magnetic field,
H(r) =VX A(r) (penetration depth A, ), is slow compared
to those of the superconducting correlations (coherence
length g) so that H(r), to a good approximation, may be
taken to be constant, and A(r) may be chosen to be
linear in r. In the above equations spin has been neglect-
ed but may easily be incorporated by including the Zee-
man term in the Hamiltonian, whereby G, F, and 6 carry
spin indices as well.

The most important observation is that if G, F, 6, A~

are solutions of the above equations, and we translate r,
and r2 by a constant vector, then G, F, 5, 6 defined by
the following set:

We now use the above set of states as our basis to ex-
pand the anomalous Green's function F, suitably adopted
to a lattice reflecting the translation properties discussed
in Sec. II. For a stable configuration, the only nonzero
pair correlations will be those between electron states
whose center of mass satisfies the proper constructive
Aharonov-Bohm interference condition, X& =ma„ /M
+X and X2=ma /M —X, where m is an integer. This
defines a subset of the translation group that defines a lat-
tice with periods a and a =Marl /a where M is an in-

teger that determines the number of Aux quanta per unit
cell.

Similarly, a single electron propagating in the presence
of such periodic pairing can only be scattered into a state
differing from the original by a reciprocal lattice vector.
Since the orbit center X is equivalent to the momentum in
the y direction we must have bX/1 =2mm /a, where m

is an integer. This is used in expressing G in terms of the
above set of states by restricting the orbit centers to
Xi =X+~l m/a and X2=X—~l m/a . These con-
straints satisfy the translation properties [Eqs. (3a), (3b)]
and the following expansions for the Green's functions
are obtained (where we have used a„ /M = Irl /a ):



47 VORTEX-LATTICE SOLUTIONS OF THE MICROSCOPIC. . . 8845

X
0fCG(r&, r2'im )= g g 2 gN~ X+a m/M(ri)PN2 X a m/M(r2)GN N (X,m;i~ ),

N, N2 m 2ITl

F (r„r2, iso )= g g gN, /M+x(r, )QN, /M «(r2)FN N (m, X;iso, ) .dW

2ml

(5a)

(5b)

The lattice periodicity is achieved by requiring where

and

FN N ( m +M, X; i co„) FN N
—( m ) X;i co„)

GN N (X+a,m;ice )=GN N (X,m;ice ) .
1 2 1 2

(6a)

(6b)

P!(N, +N2 P)!—
(
—1)

N&|Net (N& +N2 )/2

p
Xg( —1)~ (8)

The values of M and the ratio of a /a as well as the rela-
tionship between the M di8'erent I' functions determine
the geometry of the lattice.

The resulting form of 6 is best illustrated by using the
transformation to relative and center-of-mass coordi-
nates, i.e.,

4N), „/M+X( 1)PN~, ma„/M —X( 2)

N) +N2

N~N& Pp, ma /M( cmWN&+N& —P, 2« (rrel )
P

r, =(r, +r2)/2, r„t=ri —r2, and the functions ir/™and
it/"' have the same form as Eq. (4b) but with the associat-
ed magnetic length l replaced by 2 ' l and 2'~ l, respec-
tively. It can then be seen that the gap function 6 quite
generally takes the form

(1)=g itjp *, /M(r)A (m) (9)
p, m

where the coefficients A (m) are defined by

and

(m)= —2 ' g CN2N~ f 2pV~+N2 P(X) gFN~N (—mX; coi~)
N

l N2 27rl
(10)

(m+M)=A (m)

follows from Eq. (6a). [Here we have used P"'(2X)=2 '/ P' (X)]. The problem of determining the structure of the or-
der parameter is therefore reduced to a self-consistent calculation of the coeScients A . We would like to emphasize
here that P is the Landau index of the Cooper pair and 3 is the probability amplitude of finding a Cooper pair in the
P'" Landau level. P has nothing to do with angular momentum. ' The A (m) coefficients can be compared to the ex-
pansion coefficients C in the Abrikosov solution (Refs. 1 and 21). The Abrikosov expansion is a variational solution
for which the Cooper pairs are all in the lowest Landau level, and therefore P =0 is implicit in all the C coeKcients.

The determination of [ A ] proceeds by solving the Gorkov equations using the above constructions [Eq. (5)] with F
and b, self-consistently connected via [ A ) through Eqs. (9) and (10). The Gorkov equations acquire the following
form:

GN N (X,m;ice )=GN (ice )6N N 5 p+GN (ia) ) g g bN N (m+m', X m'a, /M)—
N3 m'

XFN N (m', (m'+m)a„/M X;iso );—
3 2

FN N (m, X;ice„)=—GN ( ice ) g—g bN N (m'+m, X am'/M)GN N (—(m'+m)a /M —X,m';ice ),
N3 m'

where the integral of h(r), using Eqs. (7) and (9), is

(m&X) 2 g CN N pN +N p(X)A (m)
P

(1 la)

(1 lb)

(1 lc)

and it should always be remembered that the Landau-index sums are restricted to values lying within the energy shell.
We note that the free-particle Green's function is correctly obtained from the first term in Eq. (11a). For M =1 and
M =2 (corresponding to the square and triangular lattices), this set of equations can be diagonalized in m with the fol-
lowing transformations:
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6& & (R i' )=g e '6& & (X+a m/M, m i co, ),
1 2 1 2

(12a)

y~/(2 —2m'im Y/a
F& & (R i' )=e' ' g e ~F& & (m, ma„/M X—ice ),

1 2
(12b)

(12c)

with a definition for 6 similar to that of I', which
yields, from Eq. (11c),

~N)N~(R) X N(N) X A ( )WN +/v~ —I', /M(
P m

(13)

We see that 6 (R) is periodic while F is quasiperiodic ' in
X and Y with respective periods a„and a . We note that
R defines the magnetic Brillouin zone.

For present purposes, the cases of M =1 with a =a
and M=2 with a„=3' a (or a =a /3' ) are all that
are needed to include the square' and triangular lat-
tices, respectively. Insisting upon equivalence of lattice
and basis points in the triangular lattice ' defines the con-
nection between the two distinct A (m) coefficients:
A (1)= iA (0). W—e will therefore find it convenient
to write A (m)=exp( i8 )A —with 6 =~m /2 and
express the order parameter in the form

h(r) =g A +exp( i 0 )gP, —&M(r)
P m

= g A 6 (r) .
P

The integro-matrix equations are thus reduced to a set
of matrix equations in the Landau indices, with the order
of the matrices determined by the ratio of the cyclotron
frequency to the width of the energy shell, and the disper-
sion of the energy in the third dimension:

G(R;ice )=[1+6 (ice„)b(R)G (
—ici) )b, (R)]

XG (iso, ),
F (R;i' )= —6 ( —ice )b (R)G(R;iso, ),

(14a)

where the underbar denotes matrices in the Landau-level
indices (or partitioned spin matrices for nonzero g fac-
tors). These equations thus determine F as a function of
A, closing the self-consistency loop of Eqs. (10) and (13)
and hence also the BCS superconducting state within the
constant-field approximation.

Symmetry of the lattice can be used to simplify the cal-
culation by eliminating those values of A that are incon-
sistent with the rotational invariance of the lattice. For
the square lattice, we find that all nonzero 2 's have I'
values of 4k+2j where j is determined from free-energy
considerations and can take values of 0 or 1, and
k =0, 1,2, . . . , and for the triangular lattice I' =6k+2j,
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FI&. 1. Contour plot of the (a)
~
b, o( r )

~

2 and (b)
Re[A. (r)b, *(r)] in one unit cell of the square lattice. Zeros are
found at the corners. Dotted contours represent negative
values.
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where j can have values of 0, 1, or 2. (Rotational proper-
ties of the lattice are given in the Appendix). It will be
shown below that the largest T,2 is obtained for Cooper
pairing in the P =0 Landau index so that j =0 is the only
physically relevant solution, in contrast to Ref. 13, where
the j =1 solution was discussed.

The spatial form of the Abrikosov solution is identical
to the P =0 lattice construction. However, as Cooper
pairs are formed in higher Landau indices, the spatial
profile of the order parameter, density of states, and
current distribution etc. will differ significantly from the
Abrikosov solution. As the temperature is lowered, the
first deviation from the Abrikosov form of the order pa-
rameter squared is the real part of b, (r)b, *(r) for the
square lattice, and b, (r)b, *(r) for the triangle. It is in-
teresting to note that these terms give both positive and
negative contributions to the order parameter as is illus-
trated in Figs. 1 and 2.

IV. DIAGONAL APPROXIMATION

FICx. 2. Contour plot of the (a)
~
b, (r)

~
and (b)

Re[A (r)A *(r)] in one unit cell of the triangular lattice. Zeros
are found at the corners and at the center. Dotted contours
represent negative values.

As an illustration of the above procedure, we examine
a simple model of an isotropic three-dimensional super-
conductor with the Debye energy cuD, the zero-field Fer-
mi energy Ef, and the zero-field critical temperature T,
taken to be Ef =1000T,. and co~ =100T,. The energy ei-
genvalues are E~=ro, (N+1/2)+k, /2m —p, so that the
states participating in the pairing are all the states with N
below N, „=(p+roD)/cu, —1/2 and with momentum
between p —ru, (N+ 1/2) —

AD & k, /2m &p —co, (N
+1/2)+coD for each N. Linearization of the right-hand
side of Eq. (10) in A gives the condition for the onset of
the pairing instability at temperature T,2 first given in
Ref. 19. Here this equation takes the form, independent
of the lattice structure,

VN(0)ro, tanh(PE~ /2)+tanh(PE~ /2)
(CP )2 J'

2(Ex +ex )
(15)

where kf is the zero-field Fermi wave vector,
N(0)=mkf/2vr is the zero-field density of states at the
Fermi energy, and the bounds of integration on k, are as
given above. This shows that there will be a different T,2

for each value of P. However, only the P value that
yields the highest T,2 is of significance since growth of
the corresponding 3 will render invalid the lineariza-
tion of Eq. (10) near lower-T, ~ values. If one considers
only the pairing between two electrons in one Landau
level with index N, keeping only the N, =Nz=N term,
the onset of the instability in the P =0 and P =2N pair-
ing channels would occur at the same temperature'
[C&)v =( —1) C»]. However, since an electron can pair0 N 2N

with other electrons within the attractive energy shell,
other terms in the above equation will lead to more elec-
trons pairing in the P =0 channel than in any given 2N
channel. Therefore, the P =0 pairing channel will have

the largest T,2. A calculation of T,2 shows the appear-
ance of the superconducting state at co, /Ef =0.750,
0.422, 0.29S, and 0.227 with 0.004 respectively. In Fig. 3
we plot the values of T,2 for N „=2,3,4, along with the
chemical potential, illustrating that the T,2 peaks appear
each time the Fermi level crosses a Landau level. We will
refer to these field values by their N „values, since the
major contribution to pairing —at high fields where there
is only a single peak of the density of states in the pairing
shell —comes from the N, „states.

We now calculate the first few nonzero A 's for some
of these magnetic-field values at which the superconduct-
ing state appears. For calculational simplicity we ignore
all inter-Landau-level pairing, which is a good approxi-
mation in high fields. ' In fact, we find no discernible
difference between the results shown in Fig. 3 and those
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restrictions mentioned above, neither P =1 nor P =2 is
allowed in either lattice so that only A is nonzero. As
the field is decreased to X,„=2, electrons can pair in the
P =4 channel, and then A becomes nonzero for the
square. At X,„=3,no new pairing channels are allowed
in the square lattice, but P =6 now appears in the tri-
angular lattice. These results are shown in Figs. 4 and 5.
It is interesting to note that the relative strength of the
P =4 amplitude is smaller for X,„=3 than for X „=2.
This is because the N, „pairing in P=2N „is always
stronger than for P between zero and 2N, „, due to the
ov«»p in«gr»s ( C~~ I

= ICg~l ) IC~~ for 0 & P &2N).

0.1

FIG. 3. Plot of T,2 vs magnetic field showing the
N,„=2,3,4 peaks. Also shown (dotted line) is the chemical po-
tential.

0.08

0.06

0.04

with

VN(0)co,
X Cxx I 4zX —~(R)
N Qy

X b, t~(R) T~(R), (16a)

obtained with the diagonal approximation. For lower-
field values, the number of off-diagonal terms increases
rapidly, rendering the diagonal approximation invalid.
The matrices in Eqs. (14a), (14b) are diagonal, resulting in
the following self-consistent equation for 2

0.02

-0.02
0.013

0.05

0.04

0.01 5 0.017 0.019 0.021 0.023

(b)-

dk, tanh[PE~(R)/2]

kI 2E~(R)
T~R=

where EN are the quasiparticle energies given by

E (R)=[E +lb, (R)l ]'~

(16b) C)

l-
EL

CI5

0.03

0.02

0.01

and with b, given in terms of 2 by Eq. (13). The area of
integration covers one period in the P direction and is
infinite in the X direction.

Near T,2, A can be calculated by expanding TN in the
above expressions (16a) and (16b) to second order in A
This facilitates an analytic evaluation of the R integral in
Eq. (16a). We display these results in Figs. 4 and 5 show-
ing the growth of A a ' as the temperature is decreased
below T,2 for %,„=1,2, 3,4 for the two lattice struc-
tures. The factor of a' is convenient because the free
energy calculation from the CsL expansion of the free en-
ergy to order lb, l is

Cl

I-
Q.

g$

0.009

(c)-
0.01 5

0.01

0.005

0..01 I I I I I I I I I I I I I I I I

0.005 0.006 0.007 0.008

T/T c0

0.02

9,—P„~a~ g [A+(2P+1)C/I ]l A
P

(18)

where C is the coeKcient of the derivatives of 6, 2 & 0,
C&0, and A+C/l (0 for a type-II superconductor.
In this way it is easy to see that the triangular lattice has
a lower free energy than the square.

For X „=1, the electrons would energetically be able
to form pairs up to P =2. However, from the symmetry

-0.005
0.0025 0.003 0.0035

T/T

0.004 0.0045

FIG. 4. A vs Tfor the square lattice with X „=(a) 2, (b) 3,
(c), 4.
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This is illustrated even more clearly when the field values
reach X „=4. Here we see that P =8 pairing is not
only possible in the square lattice, but has a greater am-
plitude than for P =4 pairing. It can also be seen that
there is more pairing of electrons in higher Cooper pair
Landau states for the square lattice than for the triangu-
lar lattice at the same field strength.

As the field is decreased further, higher-X level partici-
pate in the pairing. At low enough fields, there are multi-
ple levels lying within the pairing shell and the pairing is

no longer dominated by electrons within a single level.
The numbers of possible interlevel pairings and possible
intralevel pairings increase as X and N, respectively.
The diagonal approximation thus becomes increasingly
inappropriate for such low fields. Eventually we pass into
a semiclassical regime where large-N values dominate and
a different scheme is necessary to handle the % sums in
the above equations. This limit is expected to approach
the original Abrikosov solution in the semiclassical ap-
proximation. The details of this will be discussed in a
separate publication.

CL

cd

0.1

0.08

0.06

0.04

0 ~ 02

-0.02
0.013

0.05

0.04

0.03

0.02

0.01

G.015 0.01 7 0.01 9 0.021 0.023

(b)—

V. CONCLUSION

We have presented a theory of vortex solutions of the
Gorkov equations in strong magnetic fields. We have
solved these equations in a simplified model to illustrate
the appearance of Cooper pairing in higher-Landau in-
dices (A, PWO), showing how the profile of the order pa-
rameter differs from the Abrikosov solution. This formu-
lation provides an insight into the microscopic origin of
the vortex structure as being due to correlations among
the degenerate states of the single-particle Landau states.

We have also shown that the set of amplitudes, I A
determine fully both the one-particle Green's function
and the anomalous Green's function from which quanti-
ties of interest such as the local density of states at any
energy (useful in interpreting STM data) and various
response functions can be calculated. In the present
work we have limited ourselves to a constant-field regime
near T,2,

' to go beyond this regime, the induced magnetic
field must also be calculated self-consistently along with
the amplitudes. While this requires a more involved cal-
culation with different forms for the Careen's functions,
the form of the order parameter remains the same with
only the values of the pairing amplitudes being affected.
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C$
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In this appendix we discuss the rotational-translational
properties of the Landau states which generate the lat-
tice. The symmetric gauge A(r) =H Xr/2 is of clear ad-
vantage when treating rotations since it transforms as a
vector. The wave functions in the rotated frame have the
form of Eq. (4b) with x' and y' expressed in this frame.
The transformation matrix is defined as

-0.005
0.0025 G.003 0.0035

T/T

0.004 0.0045

d T&~+~D(~)~&'&'& = f 2 &Nx(r)D(~)&xx('»
2+i

(A 1)

where the operator D(8) rotates the vector r through an
angle 0 about the magnetic-field direction

FIG. 5. 2 vs T for the triangular lattice with % „= (a) 2,
(b) 3, (c) 4. D(0) =exp(iOL, ), (A2)
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Similarly, the magnetic translation operator is given by

T(a) =exp [i [p+ (e /c) A(r ) ] a],
with the corresponding transformation matrix

(XX~T(a)~X'X'}=6tv tv exp(ia a /21 )

(A4)

X exp( —iX'a /l )5(X—X'+a ) .

(A5)

Point-group operations about the zeros of the order pa-
rameter will leave its absolute square invariant. It can be

with the generator of rotations in the symmetric gauge
Lz xp~

—yp„given by

2ie pl/2
(XX~D(e) ~X X }=S„„,[

2~i (sine(

. (X +X' ) cos6) —2XX'
Xexp i

2I sinO

(A3)

shown that all even P terms have zeros in the same place
as the I' =0 term, and that all A for odd I' can be elirn-
inated by inversion symmetry. It should be emphasized
that the use of symmetry here introduces no new assump-
tions. Direct application of Eq. (16) will produce the
same results without a priori use of rotational symmetry
arguments.

Zeros of b, (r) for the square lattice fall on all points
equivalent to the origin. Application of D(6) directly to
Eq. (9) [with I in Eq. (A3) replaced by l /2' ] with the re-
quirement b, (r)~ = ~D(9)b, (r)~ for O=tr/2 or 3vr/2,
leads to exp[i(P P')0—]=1. Therefore the only nonzero
values of 3 must have I' values differing by a factor of 4.

The zeros of b(r) for the triangular lattice are found at
r=(a /4, a /4) and (3a„/4, 3a /4). Therefore the sym-
metry operations of the lattice are a combination of a
translation of the origin to one of the zeros, rotation
through an integral multiple of ~/6, and a translation to
return the origin to its original location:
~b, (r)~ =~T 'D(8)Tb, (r)~ . In this case, the only
nonzero values of 3 must have I' values differing by a
factor of 6.
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