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Vortex lattice in anisotropic superconductors: The crossover from small B to large B
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We discuss the tilted vortex lattice in layered type-II superconductors, using the anisotropic London
theory. We pay particular attention to the crossover region between the low-B regime, in which vortex
chain structure dominates, and the high-8 region, where the chain structure has disappeared. This
crossover region can be quite large, in some cases spanning several decades in magnetic field. We use

both numerical calculation and simple physical arguments.

I. INTRODUCTION

The London theory of highly anisotropic type-II super-
conductors has recently been a subject of great in-
terest' due to the investigation of the high-T, oxide
compounds. The theory predicts that particular phe-
nomena should arise when the magnetic field is not paral-
lel to one of the crystalline axes. In that case, when y ) 1

[see Eq. (9)], at H„ the magnetic field enters the super-
conductor in the form of chains of vortices; this contrasts
with the situation in isotropic superconductors, in which
at H„single vortices begin to penetrate the material. At
low flux densities the vortices form widely separated,
weakly interacting chains; the chains constitute a highly
distorted triangular lattice.

London theory can be used to compute how the lattice
constants of the system vary with magnetic field. 13ae-
men et al. , in a pioneering paper, have investigated this
problem. They find two simple regimes of behavior. At
very low field the separation between two neighboring
vortices in a chain, denoted by a, is essentially constant
and independent of the magnetic field B. The distance
between two chains, L/2 is a strong function of B, going
as 1/B. At very high field, quite different behavior re-
sults; both a and L vary as 1/V B.

In this paper we discuss in some detail the crossover
between the low-B and the high-B regime. One point we
stress is that this crossover region can be quite large,
spanning several decades in field. Over this range, the be-
havior of a and L is not particularly simple. In many
ways the crossover region is the most interesting; the
chainlike structure persists, yet the chains are close
enough together to be strongly interacting. We use both
numerical evaluations of the London free energy, and
simple analytic approximations to develop our under-
standing of this system.

a, =ax,
a2=1.y . (2)

n 1 1+ 2 2 where n i and n 2 a e integers. Vor-
tices parallel to the z axis are located at the position
R+P, where

Here we follow the notation of Daemen et al. A, is the
average penetration depth, +o is the superconducting flux

quantum hc/2e, and M," is the dimensionless effective-
mass tensor, normalized so that det(M)=1. The anisot-
ropy axis of the crystal is c, so we have

M,, =M, c,c, +M, (&,a, +b, b, ), (5)

p= —x+ —y .
4 4

The equation satisfied by the local magnetic field h(r) is

h, +k e, kE„,Mk, BJ.B,h, =z, 4&op[5' '(r —R —p)'
'IRI

+5' '(r —R+P)] . (4)

II. LONDON THEORY

We consider a vortex lattice of the form shown in Fig.
1. We describe it as a rectangular Bravais lattice in the
xy plane with a two-point basis. The rectangular lattice
is generated by the following two basis vectors:

FIG. 1. Geometry of the vortex lattice. The distance between
chains is I./2, and the separation between neighboring vortices
within a chain is a.
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with M, M, =1. The vortex axis z is rotated by O with
respect to the anisotropy axis c. Thus

The reciprocal-lattice vectors [Cr] are given by
z=c cosO+a sinO,

x= —c sinO+a cosO,

y=b .

the anisotropy parameter y is defined by

(7)

(8)

2"- 2~-

where n, and n2 are integers.
The London free energy per unit volume is given by

(10)

(p2 [1+A, &G (1+E cos 9) ] cos (Cx.P)
F(a, l. ) = g ItI(G )

2ma l. (G) (1+A,,G )[1+A,,G~(1+E)+A.,G, (1+ecos 8)]

where we have defined a new length scale k, by

(12)

and a parameter c by

c.=y —1 .2 (13)

P(Cx) =exp[ —a(G, g„+G~(» )] . (14)

Here a is a numerical parameter and the coherence
lengths g„and g are defined by

The function II)((x) is a cutofF function, which is equal to
unity at small values of GI, and goes to zero at large
values of ICOSI. This is a necessary evil, since otherwise
the sum over [6] diverges at large I

6 I; this simply
reAects the failure of the London theory at short length
scales. For our calculation we have followed the sugges-
tion of Brandt, and employed an anisotropic Gaussian

III. RESULTS

In Fig. 2 we show computed values of a/A, , as a func-
tion of magnetic field, for three angles of O=80, 70', and
60. We follow Daemen et al. in choosing y=55 and
~=60; many of the high-T, oxide compounds, such as
Bi2Sr2CaCu~08, are indeed highly anisotropic.

As expected a/k is constant at small B, and assumes a
1/&B behavior at large B. The broad crossover region
is clearly seen. For example, for O=60, it extends from
B=0.016+0/A. to B=2.5@0/k . In Fig. 3 we show re-
sults for O=30', 40', and 50'. Again the crossover region
is quite broad.

We can make simple theoretical estimates to under-
stand the origin of the crossover region. We discuss the
small-B limit first. For small B we can approximate I' by
the following formula:

=cos O+ sin O
g2 y2

(15)
0 60 I I I I I I I I I

I
I I I I I I I I I

I
I I I I I I I I I

I
I I I I I I I I I

(16)
0.50— 60'

Here ~, defined by Daemen et ah. , is an averaged
Ginzburg-Landau parameter, which we expect to be
much larger than unity for the extremely type-II high-T,
materials. We will usually follow Daemen et al. and
take s =60. The magnetic field h(r) generated by (4) has
nonzero components in the x, y, and z directions. How-
ever, the average over a unit cell of h (r) and h~(r) van-
ishes, and we define B as

O

0.40—

0.30—

Vo'

80'

B= J d rh, (r) .
1

QL cell

It is easy to check that

2@oB=
aI.

(17)

(18)

0.20—

0.] Q I I I I I I I I I I I I I I I I

—1

log, (VB/24, )

I I I I I I I I I I I I I I

For a fixed B, we must then find the choice of a and L
that minimizes I', subject to the product al. being fixed.

FIG. 2. a/A, as a function of B, for three difT'erent angles. In
this calculation we took ~=60 and y =55; the cuto6'parameter
was set at a =0.02.
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I I I I I I I I I I I I I I I I I I t
I

I $ I I I I I I I
I

I I I I I I I I I TABLE I. CoeScients cp and ap for y=55, K=60, and
a =0.02.

O

1.2—

1.0—

0.8—

0 = 30'

0 = 40'

10'
20'
30'
40'
50'
60'
70
80'

ap/k

2.05
1 ~ 50
1.16
0.895
0.682
0.500
0.347
0.236

Cp

8.67 X 10-'
7.09 X 10-'
2.63 X 10
6.96 X 10-'
1.52
2.95
5.17
6.38

0 = 50'
a =ap, for small deviations from ap we write the energy
per unit length per vortex of a single isolated chain as

I I I I I I I I I I I i I I I I I I I I

Qp

2Cp Cp Q Qp

8m 2

2

(20)

@2
F(a,L)= co

8vraL

2a —ap 2sin g+
ap aA, &&1+a

X exp
L

2A, ,&1+i (19)

—1

la g, o(VB/24, )

FICx. 3.. a/A, as a function of 8, for three different angles. As
in Fig. 2, we have ~=60, y =55, and a =0.02.

This is the origin of the first term in (19). The coefficient
cp is determined numerically from computations of the
single chain energy as a function of a, as is the value of
ap. Tables I—III show the numerical values for both cp
and ap, while Fig. 4 shows a plot of the energy per unit
length per vortex as a function of a, for a particular
choice of parameters.

The second term in (19) represents the interaction be-
tween chains when L is very large. This asymptotic for-
mula is determined by Buzdin and Simonov.

If we use (18), we can rewrite (19) as

The energy of a single isolated chain has a minimum at

5..5 I I 1 I I I I I I I I I I I I 1 I I
i

1 5 I I II T I I I
I

I I I I I I I I I

1 ~'P
2 8~ Cp

2
a —ap

ap

2sin t9

ak, &1+E

CPp
Xexp

A, &aBv I+E
(21)

0

OQ

5.0— So, we must minimize F with respect to a at fixed 8; this
should give reasonable answers for small 8.

We can also make an estimate relevant to the hi h-8
end of the crossover region. The I /VB behavior in a
and L results from Eq. (11) when we are in the limit
G A, ) )) 1 for all Cx except G =0':

4.0—

TABLELE II. Coeffjcients cp and ap for y=25, ~=60, and
a =0.02.

3.5 & i i i i t i i i I i & i & i « & i I I I I I I [ I I I I I I I I I I I I

0 1 2 3
a/A

FICi. 4. Free energy per vortex per unit length (in z) of an iso-
lated vortex chain, as a function of a/k. For the calculation we
chose sr=60, y =55, a=0.02, and 0=60'.

10'
20'
30'
40'
50'
60'
70'
80'

ap /A,

2.71
2.00
1.54
1.20
0.931
0.705
0.527
0.454

cpk,

2.62 X 10
2.17X 10
8.05 X 10-'
2.10X 10-'
4.48 X 10
8.15 X 10- '

1.21
8.96 X 10-'
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TABLE III. CoeKcients cp and ap for y=5, ~=60, and
n =0.02.

0 I I I I I I I I I
)

I I I I I I I I I
]

I I I I I I I I I
]

I I I I I I I I I

10
20
30
40
50
60'
70
80

ap /k

5.34
4.02
3.23
2.67
2.28
2.06
2.13
3.46

Cpk,

7.75 X 10
7.51 X 10-'
2.84 X 10
6.84 X 10-'
1.18X10 '
1.39X10 '
7.92 X 10-'
2.55 X 10

0.8—

0.6—

CIo IIIO(1+E cos 8)F~ +
27Ta L 2~a2L

cos (Cy.P)
(G~o) (1+e)G~+(1+acos 8)G„

(22)

2m. l

L
(23)

As shown previously' in the high-B limit we have
1/2

3(1+E)
1+6cos 0

(24)

We can then ask, if we start at a very high B and then
lower B so that a and L increase, when does the approxi-
mation (22) begin to break down? Since L )a and e) 0,
this condition is

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

—'1

log, (x'e/24, )

FIG. 6. Comparison of several simple approximations with
the true London theory results (solid line) for ~=60, y=25,
+=0.02, and 0=60. The dashed line comes from Eq. (A5), the
dash-dot line from Eq. (19), and the dash-three-dot line comes
from Eq. (A5) with a cubic term added to the intrachain energy.
The arrow marks the B field predicted by Eq. (26).

Thus, when (23) holds we have 5 I I I I I I I I I
)

I I I I I I t I I
i

I I I I I I I I I
I

I I I I I I I I I

I I I I I I I I I
i

I I I I I I I I I
i

I I I I I I I I I
i

I I I I I I I I I

2.0—

1.5—

O

04—

I I I I I I I I I I I I I I I I I I I I I t I 4. ~' I I I I I I I I I I I I I I

—1

log„(x*e/2@.)

—1

)os „(~*e/2C.)

FIG. 5. Comparison of several simple approximations with
the true London theory result (solid line). %'e have chosen
~=60, y=55, a=0.02, and 0=60'. The dashed line comes
from Eq. (19) and the dash-dot line from Eq. (A5). The arrow
marks the B field predicted by Eq. (26).

FIG. 7. Comparison of several simple approximations with
the true London theory result (solid line), for ~=60, y=5,
a=0.02, and 8=60'. The dotted line comes from Eq. (19), the
dashed line from Eq. (A5), and the dashed-dot line from Eq.
(A5) with a cubic term added to the intrachain energy. The
dashed-three-dot line is the prediction of the high-B theory [Eq.
(24)], while the arrow marks the B field predicted by Eq. {26).
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1/2
1+6,cos 0
3(1+a) (25)

this predicts that the high-field limit of the crossover re-
gion is given by

~'o 3(1+a)
2' A, ) 1+6cos 0

1/2

(26)

In Fig. 5 we compare the prediction obtained from Eq.
(21) to the results obtained from minimizing the full free
energy [Eq. (11)]. We see that the quite simple approxi-
mation embodied in (21) predicts nicely the initial down-
turn in a/A, as B increases but for large B it goes wrong
badly. We also show in Fig. 5 the results of minimizing
an improved approximate formula. The improved ap-
proximation is discussed in the Appendix. Finally, the
arrow in Fig. 5 denotes the prediction of Eq. (26); for 8

larger than this, a and L should both scale as I /V'8.
In Figs. 6 and 7 we show results for y =25 and y=5;

in both cases we chose 8=60'. We note that the approxi-
mations (21) and (31) fail sooner as B increases into the
crossover regime, particularly for y=5. As discussed in
the Appendix, one of the reasons for this is that as y gets
smaller, the parabolic approximation for the intrachain
energy [Eq. (20)] becomes less satisfactory. Thus in these
two figures we also show the result of adding a cubic term
to the intrachain energy. The coem. cient of the cubic term
was determined from the numerically computed single
chain energy.
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APPENDIX

In this Appendix we discuss in more detail the derivation of approximate free-energy formulas. The starting point is
Eq. (11) for F(a,L); we follow the path described by Buzdin and Simonov. In Eq. (11) we perform the sum on G using
the Poisson summation formula. To do this, we set the cutoff function, P(G), equal to 1. This yields the following re-
sult:

F(a,L)=F'"(a,L)+F' '(a, L), (A 1)

F'"(a,L)=
@2 s;n2g +1+A,, G (I+scos 8) cos~g 1

8rra L (G )
A, ,&l+s 1+A,,G sin 8X 2" 2. 2

+
(I+A, G sin 8)+1+A, G

T

(A2)

4p s;n18 +1+A, ,G„(1+vcos 8) +1F' '(a, L)=
4rra L (G )

A, ,&1+v I+A, ,G, sin 8 exp[(L/(2k, v I+a))QI+kfG2(1+a cos28)]+ 1

t

cos 0 1 +1
(I+A&G sin 8)+I+X&G e px[(L 2/A&)+I +X&G„]+1

(A3)

In the sum, the upper sign has to be used for even or zero m and the lower sign for odd m, where 6 =2m.m /a.
Here, F'"(a,L) represents the energy density of a set of independent chains, and F' '(a, L) is caused by the interac-

tion energy between the chains.
The sum in (A2) diverges and needs a cutoff; this simply replaces the cutoff function P(G) used in Eq. (11) with a

different cutoff procedure. We are interested in (A3), the chain-chain interaction term. Our goal is to evaluate the dom-
inant, large-L behavior of (A3). We first note that the G„=O term is most important at large L. Next, we note that if
&1+s ))1, the first term in brackets in (A3) dominates the second. We are thus led to the following approximation for-
mula:

(p2 2
F(2}( L )

0 2 s111 8 1

8rra L A, &v I+a exp(L/(2A, &&1+a))—1

ap

Combining this with Eq. (20), we arrive at the following approximation for F(a,L):
2

1 @'P a ao 2sin 8 1F a, L =— Cp
2 8sr a A, 1&1+s exp(L /(2A, &+ I + a ) ) —1

(A4)

(A5)

We stress that this approximation is best for highly anisotropic superconductors, which have c, )&1. The smaller the
value of c., the more quickly neglected terms become important as L decreases. Another important effect is that as c. gets
smaller, the parabolic approximation of Eq. (20) breaks down more quickly as 8 enters the crossover region. When co
is too small, the parabola is not stiff enough to prevent a from assuming unrealistically small values.
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