
PHYSICAL REVIEW B VOLUME 47, NUMBER 14 1 APRIL 1993-II

Relaxation dynamics of quantum spin glasses:
Role of heat-bath coupling
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We have studied the role of heat-bath coupling in a quantum spin glass described by a previously
developed random-bond random-Beld Ising model in a transverse Beld, which accounts for quantum
tunneling of protons in a disordered hydrogen-bonded ferroelectric. In contrast to the stochastic
model considered earlier, it is assumed that proton tunneling is not directly afFected by the thermal
fluctuations and thus remains coherent. The basic mechanism that renders the system dissipative is
heat-bath-assisted jumps of protons across the potential barrier. An efFective single-spin Hamiltonian
is obtained on the basis of a thermofield dynamic approach in the short-time limit. A resolvent
expansion of the underlying time-evolution operator is then set up and the resulting resonance line
shape calculated to leading order in the perturbation theory. It is shown that at low frequencies the
line shape exhibits a singular contribution that diverges as ~w~

'~, but disappears in the classical
limit of zero tunneling frequency. This singularity is due to coherent tunneling motion and is thus
a typical quantum effect which could be observed in the NMR, NQR, or EPR line shapes in the
appropriate temperature range.

I. INTRODUCTION

A quantum spin glass is a system with quenched dis-
order described by cooperative random interactions be-
tween quantum spins. The subject is of considerable con-
temporary interest and is discussed extensively in the
literature. ~ s A complete theoretical understanding of
a quantum spin glass requires very elaborate and com-
plicated techniques, and therefore, it is considered im-
portant to analyze the statistical mechanics of simple
models. A typical example of these is a disordered Ising
model in the presence of a transverse field, which de-
scribes quantum tunneling processes.

A particular physical realization of this model is
found in so-called proton glasses, i.e. , randomly mixed
hydrogen-bonded ferroelectric and antiferroelectric crys-
tals, such as Rbq (NH4)~H2P04, also known as RADP.
Here the proton can occupy two sites in an 0—H. 0
bond which are customarily mapped onto the two states
of an Ising pseudospin variable 8' = +I/2. The static co-
operative glasslike behavior of this system is described by
a Hamiltonian for the interactions between all the pseu-
dospins at different sites, which is characterized by both
random bonds and local random fields. The additional
feature, which distinguishes RADP from its deuterated
analog D-RADP, is the presence of a transverse field
which accounts for quantum tunneling of the proton from
one site of the bond to the other. In spite of the accu-
mulation of a large body of experimental data on the
deuterated systems D-RADP, 7 no extensive studies

have been made to date on the tunneling motion of the
proton in RADP at low temperatures and, in particu-
lar, on the way this motion is affected by the stochastic
dynamics due to coupling to the heat bath.

A step toward understanding the basic quantum pro-
cesses in disordered systems has recently been made by
the present authors in a stochastic theory of the reso-
nance line shape in proton glasses. In Ref. 20, henceforth
referred to as I, we speculated also on the feasibility of
comparing various resonance experiments such as NMR,
nuclear quadrupole resonance (NQR), and EPR with the
theory. One important issue which still remains open is
concerned with the precise nature of the dissipative in-
teraction of the system with the surrounding heat bath.
The purpose of this paper is mainly to address this par-
ticular question.

It is important at this stage itself to amplify what ex-
actly is the issue concerning the role of the heat bath.
The point is that the proton can be transferred from
one site to another in an 0—H 0 bond not merely by
the quantum tunneling, but also by a classical, thermally
activated mechanism. Indeed, it is the latter which dom-
inates the dynamics of the deuteron in the D-RADP. In
proton glasses, however, one expects to see a competition
between the coherent tunneling processes and the inco-
herent thermal activation. The latter, of course, origi-
nates from thermal Buctuations that render the system
dissipative. In I we have assumed that this heat-bath
coupling not only causes random hoppings of the proton
from one site to another, but also leads to incoherence in
the tunneling process. This is by no means a unique way
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in which the heat bath can affect the dynamics of the
system. In fact, one can imagine it is only the hopping
of the proton across a potential barrier that is aided by
the stochastic forces from the heat bath, while tunneling
remains unaffected and, therefore, coherent. This mech-
anism of relaxation, different from the one assumed in I,
may at first sight appear not too relevant for line shapes,
as the heat bath plays only an indirect role H. owever,
we argue in this paper that in proton glasses, which are
characterized by quantum interactions, different forms
of heat-bath couplings lead to qualitatively different line
shapes.

The outline of the paper is as follows: In Sec. II we
introduce the basic Hamiltonian following the notation
of I and also specify the terms describing the interaction
with the heat bath. We then set up a resolvent expansion
of the underlying time-evolution operator that enters the
relevant line-shape expression. The calculational details
are presented in Sec. III and in the Appendix. In Sec.
IV we exhibit various numerical plots of the line shape
for different values of the parameters. Finally, our main
conclusions are summarized in Sec. V.

time approximation for the dynamic self-interaction. The
effective single-spin Hamiltonian in the present case reads

'Hs = AcuI'S' —hS' —AS*.

Here h = h(z) is an effective field acting along the z axis
and is due to the nonzero spin-glass order parameter q,

h(z) = ~i Jz q+ 4,

where z is the excess static Gaussian random field, and4—:4A/J2. The mean-field equations for the local po-
larization p(z) and the spin-glass order parameter q are7

p(z) = r(z) tanh[zPhp(z)]

and

+ dz /2
( )2

QQ 27l

with

II. MATHEMATICAL FORMULATION hp(z) = QA2+ h(z)~

The Hamiltonian describing the proton glass system
may be written as

and

r(z) = h(z)/hp(z).

'H = Au)) I,'S;

——) J S'S' —A ) S,* —) f,S'

In order to describe the dissipative dynamics of the
heat bath, we generalize the Hamiltonian in (4) as

Hp = Hs + Hi + H~ &

where I' is a nuclear spin operator whose eigenvalues
determine the resonance lines and Au = al, —aR is the
difference between the resonance frequency in the left
and right potential minimum of the proton. J,z is the
infinite-ranged quenched random interaction between the
pseudospins S;, A the tunneling frequency, and f, repre-
sents the random longitudinal field at site i. The random
interaction J;~ and random fields f, are assumed to be
independently distributed according to their respective
Gausssian distributions,

v'2vrJ& ( 2J )

(3)

In what follows we shall denote by [
. .]~ an average with

respect to combined distributions (2) and (3). As in I, we
want to treat the Hamiltonian (1) within the mean-field
theory of quantum spin glasses, which we expect to be
appropriate in the context of an infinite-range model. '

This then allows us to carry out further discussion in
terms of an effective single-spin Hamiltonian. We adopt
here the results of Ref. 7, which have been obtained using
the thermofield dynamic (TFD) approach and a short-

where 'HI describes the interaction between the spin sub-
system and the heat bath. We assume the following type
of interaction:

'HI = gbS*

In (11), b is an operator which acts in the Hilbert space of
the heat-bath Hamiltonian 'H~ and g is a multiplicative
coupling constant. The exact nature of the operators
6 will not be specified here, except that it is pertinent
to remark that the coupling is designed to drive transi-
tions between the eigenstates of S~. In the context of the
physical model this mimicks the hopping of the proton
from one site to another in the 0—H. 0 bond, and is
expected to lead to Glauber kinetics for the underlying
Ising model if the tunneling were absent. Furthermore,
as the coupling term is chosen such that it commutes
with the term proportional to 0, the heat bath does not
interfere directly with the tunneling process. This sce-
nario of dissipative dynamics is quite distinct from the
one envisaged in, I.

As described in I, the effects of dynamics are con-
tained in the bath-averaged time-development operator
of the system whose Laplace transform is denoted by
[U(s)], where the variable s is related to the applied
frequency 4) pp measured relative to the resonance fre-

quency cu = (ul. +w&)/2. The average [U(s)]~ was eval-
uated in I using the stochastic theory approach. In the
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[U(s)] = [s —i&~+ Z(s)1 ' (12)

where Zg is the Liouville operator associated with the
spin Hamiltonian 'Rg in (4) and Z(s) is the so-called
relaxation matrix, to be specified below. While it is pos-
sible to calculate Z(s) to arbitrary order in the pertur-
bation theory, it suffices for our purpose to use the ex-
pansion to second order in 'Hy, which gives

Z(s) =
I

&i . . &s I (13)
( 1

s —i,l:s —id~

present paper, on the contrary, we adopt a system-plus-
reservoir approach in order to give a proper treatment to
the coherent tunneling term, and systematically "project
out" the bath degrees of freedom. This can be most
conveniently achieved by writing a resolvent expansion
of [U(s)]~ in which the interaction term 'M~ is treated
perturbatively. As discussed in detail in Ref. 22, such
an expansion yields the following general expression for
[U(s)]-:

—h 0

where the rows and columns are labeled by I pv) which
take the values

I ++), I

——), I
+—), and

I

—+), respec-
tively.

The next nontrivial object is the relaxation matrix
Z(s). In accordance with our earlier statement about
the density operator, we neglect the inHuence of the term
proportional to Aw on the relaxation matrix Z(s). Then
the latter is an operator in the Hilbert space of S' alone.
Furthermore, we treat the heat bath in the Markovian
approximation, which implies that

In the next section we will present the delails of the cal-
culation.

Z(s) = Z(0) = dt (Zr exp [i (Zs + Za) t] l'-r )

(18)

III. RESONANCE LINE SHAPE where in (18) Zs is associated with the Hamiltonian

As shown in I, the line shape is obtained from the
correlation function &s = —h, S' —~~*

&(s) = T (»~ (0)([U(s)1-~'(0))) (14)

where pg is the density operator associated with the sys-
tem Hamiltonian 'Hs, and is given by

ps = exp( —P'Hs) /Zs,

where Zg is the corresponding partition function. It
should be noted that ps is not diagonal in the repre-
sentation of S'. Also, in writing (14), we have neglected
the inHuence of the term proportional to 6w on ps be-
cause usually

I
PAw I(( 1. The final step is to write out

the trace over the eigenstates of I' and 8', and obtain

Finally, the influence of the heat bath is assumed purely
dissipative; i.e. , the relaxation matrix Z(s = 0) is totally
real. Neglecting then all imaginary components, and af-
ter some lengthy algebra involving the matrix represen-
tation of Liouville operators, and regrouping of terms
as correlation function of heat-bath operators 6, we can
write down all the elements of Z(s = 0). A representative
sample is

++ ~0 ++

&(s) = ).(~l~~ l~)
VV P

&(~+ -'~ ——.
'

I [U(s)]- I

~'+ —.
' ~' —-')

(i6)

—ihpth

hpg

+
I

1 ——
I

e'"" ((b(t)&(0)))
hp&

(2o)

where the states
I 62) are the eigenstates of I', while

the states with the Greek indices p, v, etc. , are the
eigenstates of 8'. Note that the Hamiltonian (10) is
completely diagonal in the I' representation, and hence
maintaining track of the states

I kz ) is a matter of
mere bookkeeping. It is then clear from Eq. (12) that
the evaluation of the matrix elements of [U(s)]~ involves
the inversion of the matrix which in the present problem
has a dimension 4x4, as the pseudospin S' is only a
half-valued operator. The first piece of this is the matrix
of (+—

I &s
I
+—), which has the 4x4 representation as

follows:

where hp is defined in (8), and

((b(t)b(0)))—:Tr p~e'+ 'b(0)e '+ 'b(0)

p~ being the density operator of the heat bath.
As mentioned earlier, we make no attempt to calculate

the bath correlation function (21). Instead, we simply
parametrize it in terms of a phenomenological relaxation
rate A by first making use of the following Kubo relation:
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« e+'""((b(t)b(O)))
It may be remarked that A is related to the so-called
Kubo correlation time ~, via

Php «e '""((b(t)b(0))). (22)

where

A = 2~, ((b )), (26)

Using (22), we can write

~+Php/2
Ch e+'""((b(t)b(0))) = A „] „], (23)

„,((b(t)b(0))) + ((b(0)b(t)))
2((b')) (27)

where

«(e"""+e '"") ((b(t)b(0)))

Collecting all the terms and introducing the Liouville
operator (S~)" (Ref. 22) associated with S~, the matrix
of Z(s = 0) in the 4x4 space of (S')" can be written as

h( ) 1 h( ) 0 0

'""[(( ( ) (o))) + (( (o) ( )))] ( )

[((b(t)b(0))) + ((b(O)b(t)))] (25)

The quantity written in the square brackets is the time-
symmetric correlation function. Now, according to our
stated objective, the Huctuations in the heat bath are
characterized by frequencies which are assumed to be
much larger than the frequency associated with hp, in
which case A becomes real, approximately given by the
following expression:

+oo

—1+ g. (p- —p+)h

0
1 ——„".(p- -p+)

0 +2 —2

—2 +2)
(28)

where py are respective probabilities for the states
~
6).

Combining (17) and (28) it becomes evident that in
order to obtain the matrix [U(s)], we have to invert
the following matrix denoted by M:

(i(u —~24~+ 2(1 —p)

--",(1+p)

~ A
2

~ 0+i—2

—-"(1 —p)

i~ + 2 Au) + 2 (1 + P)

0+z—2
.0

2

0
2

~ 0+i—2

i(cu + h) + A

0+Z—2
~ 0—2—

2

i(~ —h)+A f

(29)

Here p = [h(z)/hp(z)] (p+ —p ) represents the local po-
larization for a given value of excess random field z. We
have performed this task analytically and the detailed ex-
pressions for the elements of the inverse matrix M are
given in the Appendix. Using these matrix elements, the
relevant correlation function can be obtained from the
expression (16). Finally, we recall that the observed line
shape is obtained by averaging the correlation function
over the distribution of local polarization p. In view of
Eq. (6), this step is tantamount to performing averaging
over the excess static noise field z which is present in the
effective single-spin Harniltonian (4). We have, for the
spectral line shape,

J((u) =
+

4' dp~(p) J(~ p) (30)

where

J((u, p) = Re[C(s = i(u)],

and C(s) is given by (16). According to Eq. (16) and
using the corresponding matrix elements of the density
operator ps defined in (15) and of [U(s = iw)] „(see the
Appendix), we finally obtain the expression for the line
shape at given configuration of local polarizations p:

8g (1 —p2)Qp + A2X2Qq + AX q + Ez(p) Q2
J((u, p) =

(~21)2+$2(~p)2Qp+~2Q2X2Qs
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where:

QQ = [X2(q+ A)z —~ ] +4A ~,

Qi = [~ —X (q+ h. )z )p + 2~((u+ p),

Q2 = 4(l —u) )(cu+ p)+2u)[~ —X (q+ h, )z ](1 —p ) —4A p (u) —p) —2cup A~X,

Qs = 2((u —1)[X (q+ A)z2 —~ ] +4A ~(~ —p) +co 0 X .

Here z(p) represents the values of z which satisfy
the Eq. (6), w represents a dimensionless frequency
u~»/Ace, and the dimensionless parameters are defined
as fI —= 20/ J, A = A/Aw, and X = J/Au. The distribu-
tion of local polarization W(p) for the present model has
been calculated earlier using the TFD approach and
the same approximation for the dynamic self-interaction
as adopted here. For the case 8' = +1/2 it reads

IV'. RESULTS AND DISCUSSION

8A Ap''( ")=Z.B, +C. (34)

Equations (32) and (33) imply that at low frequencies
the line shape J(u) will be dominated by the behavior
of J(m, p) at small values of m and p. From Eq. (32) we
find for u &( 1, p &( 1 the leading contribution

PJ 2vr(q+ 4)
6

—z /2 with

A = 4XO / tanh (PB),

( h(z) l 2Az
x

I +,p —p(hQ(z) p Ph(z)hQ(z)
(33)

B = IMC/tanh(PA)

C =4A,

(36)

(37)

where z is a function of p in view of Eq. (6). In the limit
of zero tunneling 0 —+ 0, the expression for J(a, p) [Eq.
(31)] reduces to the known result for the classical Ising
spin glass with Glauber dynamics.

and P = 1/T, where T = 4T/J.
Inserting (34) into Eq. (30) and replacing W(p) by its

value at p = 0, we obtain after carrying out the remain-
ing integration the leading singularity of the line shape
function:

2 A A 1 1 f I+~ —v2~1 ( g2- 5
J(cu)„„s= — W(0) — —ln I l + arctan „+~O(l—w)

2u 2 (1+u+ 2u) ') (38)

Here

~ = l~l(c/B)'~'

This implies that the correlation function C(t) intro-
duced in I, which is the inverse Laplace transform of C(s),
behaves at long times as

C(t) -t (41)

The singularity of J(w) at small u is a quantum efFect
not present in the classical limit 0 —+ {). This can easily
be seen from the expression (32) in which the singular

and O(x) is the usual unit-step function. Thus we see
that the line-shape function diverges at low frequencies
as

I

behavior disappears when 0 —+ 0. Specifically, the pa-
rameter A in Eq. (34) vanishes for fI —+ 0, whereas B and
C both have a finite limit. The physical reason for the
singularity of J(w) in the quantum case is the fact that
at p = 0 the field h(z) in the Hamiltonian (4) disappears.
Hence in this limit the heat-bath coupling term (11)com-
mutes with the tunneling term, the latter being the only
remaining static field acting on these spins. The protons
represented by these pseudospins can tunnel coherently
between the two potential minima without experiencing
any damping due to the heat bath. This situation is quite
different from the one envisaged in I, where by assump-
tion the heat-bath coupling term was such that always
had an incoherent effect on the pseudospin Hamiltonian
'Hg, even in the limit p —+ 0.

The difference between the complete expression for the
line shape (30) and its singular part (38) is a well-behaved
function of u and can easily be evaluated numerically.
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FIG. 3. Illustration of the temperature dependence of the
ine shape, evaluated at three different values of T/J, as in-

dicated, and with 0 = 0.1, D = 0.35, A = 1.5, and X = 1 2~ ~
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The results o tained for various representative l've va ues
o e model parameters are shown in Figs. 1—3. In
Figs. 1(a) and 1(b) the tunneling frequency 0 has been
varied from zero up to the value 2.0 with the reduced

X =10
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I
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FIG. 1. Calculated line shape J(u)—:Au) J(cu) vs re-
duced frequency &u/Ace for fixed temperature T/J = 1.0,
random-field variance b = 4A/J = 0.35, relaxation rate
A = A/b, ur = 0.4, and A = J/Ace = 0.01, and various
values of tunneling frequency 0—:2A/J, as indicated. (a)
Comparison between classical (fI = 0) and a quantum sys-
tem (f1 = 0.2). (b) Line shape in the quantum case for three
values of A. Inset: enlarged view of the central singularity.

temperature T/J, random-field variance A, and the re-
axation rate A all being fixed As sh

' F'ss ownin ig. 1 a the
central divergent component is not t 'o presen in t e clas-
sical case 0 = 0, but reappears at the smallest nonzero
value of A. The two side peaks near u/Au = +I broaden
with increasing 0 and the peak positions move closer to
the center. The inset in Fig. 1(b) shows an enlarged
view of the central singularity. In Fi . 2 th

, w ic effectively measures the frequency of random
uctuations due to the heat bath on a frequency scale

set y Lw, has been varied at a fixed value of 0 = 0.1.
The case A = 0.1 corr esponds to the slow-motion regime
in which the quantum tunneling effects are dominant.
On the other hand, for large values of A one approaches
the fast-motion limit A ~ oo and the line shape tends
to the static value J(ur) ~ W(~)/Aw. The same feature

as been found for the stochastic model discussed in I, as
well as in the case of Glauber dynamics of a classical spin
g ass. 2s Here the function W(p) represents the static lo-
ca polarization distribution as given by Eq. (33), which
itself contains quantum effects.

Increasing the temperature leads to a gradual loss of
t e three-peak structure, as illustrated in Fig. 3. All the
temperatures have been chosen such that the system is al-
ways well above the characteristic temperature To = J/4,
where in the classical limit the system would undergo
a freezing transition into the nonergodic phase and the
present approach would break down. From E . 38
can seeee that the amplitude of the singular part of the line
shape decreases with rising temperature and at the same
time the frequency scale determined b th
39~ expands. Thus for T —+ oo the central peak pro-

gressively loses significance and, as expected, quantum
effects cannot be observed.

0
~~ ...-" I

-1.5 -1.0 1.0 1.5 V. CONCLUSIONS
4)

FIG. 2. Same as Fig. 1, but for fixed A = 0.1, T/J = 1.0,
A=0.35 %=1.2, and three values of A, as indicated. Inset:
enlarged view of the central singularity.

lass
We have considered the dynamics of a quantquan um spin

g ass described by the transverse Ising model with
random-bond random-field type of disorder, in which
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quantum effects are introduced through the transverse
field representing the tunneling frequency 0 of, say, pro-
tons in a hydrogen-bonded proton glass. Specifically, we
have studied the efFects of the coupling between the quan-
tum subsystem and the surrounding heat bath on the res-
onance line shape. We have introduced a type of coupling
to the heat bath which merely assists thermally activated
hopping of the proton in an 0—H 0 bond, leaving the
quantum tunneling process untouched and hence fully co-
herent. This is to be contrasted with the stochastic model
studied in I, where both hopping and tunneling were as-
sumed to be directly inffuenced by the heat bath. The
present type of coupling leads to a dynamic model, which
thus describes an alternative approach to equilibrium in
a quantum spin glass. As in I, the effective single-spin
Hamiltonian has been obtained within the thermofield
dynamic approach and a short-time approximation for
the dynamic self-interaction, which are applicable to the
ergodic spin-glass phase above the instability surface. 7

The spin-glass phase below the instability surface is char-
acterized by a set of order parameters24 and an effective
single-spin Hamiltonian of the form (4) becomes inappli-
cable.

One of our main conclusions is that at low frequencies
the line shape exhibits a singular part, which diverges
as ~&u]

~~. The corresponding functional form of this
singularity has been obtained analytically. In physical
terms it represents the contribution of coherent tunneling
processes, which are not broadened by the heat-bath cou-
pling, and is thus a genuine quantum effect. The singu-
larity disappears in the classical case 0 ~ 0. The general
result for the line shape has been obtained by a numeri-
cal integration of the remaining nonsingular part and is
shown in Figs. 1—3. As in I, one can vary the relevant
model parameters, in particular, the coupling strength A,
and thus drive the system from the slow-motion regime
into the fast-motion regime. In the former case, the spec-
trum is characterized by a three-peak structure, which
in the fast-motion limit reduces to a single-peak one. In
both cases, the central singularity is superimposed on the
spectrum. In the high-temperature limit, the amplitude
of the singularity as well as its width decrease with tem-
perature, and thus quantum effects gradually disappear.

In real systems, both mechanisms of heat-bath cou-
pling, i.e. , the stochastic type studied in I and the coher-
ent tunneling plus thermal hopping studied here, could
be efFective, depending on the temperature range. We
expect that in general the present mechanism is domi-
nant at low temperatures, whereas at high temperatures
some incoherence in the tunneling process due to direct
efFects of the heat bath should be included. In a previous
work2s we offered some suggestions regarding the experi-
mental verification of the predicted line shape in classical
deuteron glasses such as D-RADP through EPR, NMR,
and NQR techniques, which in general terms remain valid
in the present case as well. Specifically, one should focus
on the undeuterated proton glass RADP and search for
the appearance of a sharp central line as the temperature
is lowered. If the line shape could be fitted to an expres-
sion like our Eq. (39), this would amount to a verification
of the coherent tunneling process. As a suitable experi-
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APPENDIX

Matrix elements of [U(iw)]~:

Uii = ——(1 +p) (~ —h ) —2A~(u) + A~/2)
2

+i [((u + Au)/2) (h —~ )
+A ~(l + p) + (uA /2], (Al)

Uiz = —(1 —p) (h —w ) + in[A (1 —p) + 0 /2], (A2)
2

0 .0
Uis = ——Ap(~ —h) —i—(~ + A~/2) (~ —h), (A3)

2 2

0 .0
Ui4 = —Ap(~ + h) + i—(cu + A~),

2 2
(A4)

Uzi ————(1 + p) (cu —h ) + i(u [A (1 + p) + 0 /2],
2

(A5)

U22 = ——(1 —p)(h —cu ) —2~(~ —A~/2)
A 2 2
2

+ i[(~ —6(u/2)(h —~ )
+%2(u(l —p) + cuA2/2], (A6)

0 .0
U23 = ——Ap(~ —h) + i—(~ —Ecu/2) (u —h), (A7)

2 2

mental technique one could use high-resolution NMR of
protons via chemical shift tensor effects or ENDOR (i.e. ,
electron nuclear double resonance) spectroscopy.

In addition to the ferroelectric proton glasses, the re-
cently studied ferromagnetic system LiHo2, ,Yi F4 (Ref.
25) ofFers another possible realization of the transverse
Ising spin glass, where the external magnetic field in the
transverse direction causes mixing between the ground
and excited states, thus inducing quantum effects simi-
lar to tunneling. It should be noted, however, that the
model studied here is explicitly applicable to ferroelec-
tric glasses only, since the random local field is allowed
in ferroelectrics but not in ferromagnets. The appropri-
ate modifications of the model in order to deal with the
latter case could easily be made by including a static
parallel magnetic field.
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0 .0
Ug4 = —Ap(~+ h) —i ((u —Au)/2)(su+ h),

2 2
(A8)

.0
U4g ——+i—((u+ A~/2)((u+ h), (A13)

.0
Us g

—i—(~ + Ace/2) (h —(u),
2

(A9)
0

U42 = ——(u —Au/2)(co+ h),
2

(A14)

(A10)

(A11)

Us4 = —A u) —(Ace) /4

i A—'pa~/2 —~(A' + n'/2), (A12)

Uss = —A w2 —(A~) /4 + A(pd~/2 —~)(~ —h)

+ i(A2~ —~ —(A~) /4 (~ —&)

—A @6~/2+cuA /2$,

U4s = —A ~ —(A~) /4
—i A2pd~/2 —u)(A +0 /2) (A15)

U4q = —A ~2 —(d~)s/4 —A(~ —@4~/2)(~+ h)

+ i(A (~ —@Ace/2)
—(A(u)~/4 (~+ h) +(uA /2).

(A16)
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