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Local moment disorder, defined as a random arrangment of two distinct magnetic states of the same
atomic species in a metallic system, is discussed in the framework of the Korringa-Kohn-Rostoker
coherent-potential approximation combined with the local-density-functional method and applied to
Fe-Cr, Ni-Fe, and Ni-Mn alloys. For Fe-Cr alloys it is found that the disordered-moment state has a
higher energy than the ferromagnetic state in the entire region of Fe concentrations. Thus the theory
fails to explain the spin-glass state observed around Fe; 14Crg 6. The theory, on the other hand, can ex-
plain the transition of Ni-Fe alloys from ferromagnetism to paramagnetism around the Invar region; the
transition, however, is of first order, in contrast to experimental indications. The volume contraction
due to the reversal of the magnetic-moment alignment from parallel to antiparallel with respect to the
bulk magnetization is also discussed in connection with the Invar anomalies. For Ni-Mn alloys the cal-
culation shows that, when the Mn concentration is larger than 15 at. %, magnetic states with local mo-
ments parallel and antiparallel to the average magnetization coexist even in the ferromagnetic region.
The results are quite consistent with NMR experiments, which clearly show the existence of the antipar-
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allel Mn local moments in addition to the parallel ones.

I. INTRODUCTION

It is well known that local magnetic properties of mag-
netic transition-metal alloys often strongly depend on the
local environment. For example, experiments tell us that
the local magnetic moment of Fe atoms in Fe-Co alloys
varies from 2.2 to 3up depending on the number of their
nearest neighboring Co atoms.! Such a variation in the
local magnetic properties, however, usually plays only a
minor role in determining the bulk properties observed
experimentally.? This means that the single-site effective
medium theory such as the coherent-potential approxi-
mation (CPA) works satisfactorily in most cases. Excep-
tional cases are systems with large local magnetic mo-
ments which can have some different but energetically al-
most degenerate orientations. In a single-site treatment,
we may classify these orientations as either parallel or an-
tiparallel to the average magnetization since a canted lo-
cal moment is quite unlikely in this case.> A Mn atom in
Ni-Mn alloys is a typical case. A Mn atom isolated from
other Mn atoms will align its local magnetic moment to-
wards the bulk magnetization. On the other hand, when
two Mn atoms come closer, there is a tendency for anti-
parallel coupling between the local magnetic moments.
As a result, the local magnetic moments shows a broad
orientational distribution with more or less the same ab-
solute value of the moment. In this case a naive averag-
ing over the constituent atoms in the effective medium as
in the CPA will fail to give a good description of the
average properties. The situation is easily understood by
considering the case where the bulk magnetization be-
comes zero: CPA will give a vanishing local magnetic
moment for the Mn atoms, but in reality have different
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orientations, so that only the average moment vanishes.
Since the magnetic energy is quadratic with respect to the
local moment, this effect does not average out in the ener-
gy and is important for many physical properties, e.g.,
the proper lattice constant of the alloys.

In this paper we develop a first-principles method that
is compatible with such static magnetic fluctuation (mag-
netic disorder) mentioned above. The basic idea is that
we may treat such systems by introducing a fictitious
many-component system. The approach is first proposed
by Jo for Ni-Mn systems;*> he introduced a pseudoter-
nary alloy, Ni,Mn;,Mn,, instead of Ni,Mn,_,, and
minimized the total energy with respect to y, or
equivalently z, for given concentration x of Ni atoms. In
that time he used tight-binding CPA combined with the
Hartree-Fock appproximation (HF-TB-CPA).® The main
purpose of the present paper is to apply such an attempt
to Korringa-Kohn-Rostoker coherent-potential approxi-
mation (KKR-CPA) combined with the local spin-density
formalism (LSD),”® and thus to enforce this powerful
method for disordered systems.

Let us first look into the method briefly. Suppose a Mn
atom, for instance, is embedded in an effective CPA
medium. For Ni-Mn systems, two LSD solutions are
possible for the Mn impurity in the medium, Mn; and
Mn,. This can happen when the valence of the solute
atom is not very far from half filling, like Mn. This, how-
ever, does not mean that the two kinds of Mn atom coex-
ist in the system. One of the two atomic states in general
has a lower formation energy than the other, which
prevents the appearance of the second Mn configuration
with the higher formation energy; the coexistence occurs
only when the formation energies of both configurations
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become equal. This last condition is delicately affected by
the filling of the effective medium or, in other words, the
concentration of constituent atoms.

For Ni-Mn systems, the coexistence of two magnetic
states does not occur in the low Mn concentration region
(xpmn <0.1); the formation energy of Mn, is larger than
that of Mn; so that all the Mn atoms should be Mn;.

With increasing Mn concentration, however, the average -

electron number decreases and at a certain Mn concen-
tration, the formation energies of the two states become
equal. By further increasing the Mn concentration, the
coexistence of Mn; and Mn, is possible. The concentra-
tion of both types of Mn is determined in such a way that
the formation energies of these states are exactly equal;
this is nothing but the energy minimum requirement.

In the following sections we will demonstrate that the
above treatment gives qualitatively very different results
from the ones obtained by the usual KKR-CPA for Ni-
Mn and Ni-Fe systems near the magnetic transition. For
the former, we show that the coexistence of two magnetic
states is realized even in its ferromagnetic region. The
situation is consistent with the experimental observation
reported by Kitaoka and Asayama® and Kitaoka, Ueno,
and Asayama.!® They found **Mn NMR signals distri-
buted in the low-frequency region for Ni-Mn alloys in ad-
dition to those already known in a higher-frequency re-
gion, confirming that they originated from antiparallel
alignments of Mn local magnetic moments to the magne-
tization.

As for the Ni-Fe system, Kanamori, Teraoka, and Jo
pointed out'! that within a reasonable choice of the pa-
rameters the tight-binding model reproduced the magnet-
ic behavior near the transition from ferromagnetism to
paramagnetism. They suggested that the deviation of the
magnetization from the linear dependence on Fe concen-
tration (Slater-Pauling curve) near the Invar region might
be due to quantum-mechanical (dynamical) fluctuation of
Fe spin and that the situation could be partly describable
by the appearance of Fe| in the Ni-Fe matrix. Our re-
sult, however, is slightly different; the transition from fer-
romagnetism to paramagnetism is rather sudden and no
intermediate states where the ferromagnetism is weak-
ened by the existence of Fe| are realized.

We briefly summarize the theoretical framework in
Sec. II. The results are presented and discussed in Sec.
ITII. Section IV is devoted to the summary and supple-
mentary discussions. Some details about the calculation
are described in the Appendix.

II. KKR-CPA-LSD
WITH MULTIPLE LOCAL MAGNETIC STATES

For a given chemical composition 4,_,B, of AB al-
loy, we can introduce additional degrees of freedom cor-
responding to the magnetic components for each chemi-
cal component such as A4;,4,B;,B,,, where
s+t=1—x and u +v=x. We can deal with such sys-
tems as a four-component alloy in the framework of usual
KKR-CPA-LSD. Though systems so far treated by
KKR-CPA-LSD have been mostly binary, the applica-
tion of the method to many-component systems is trivial.
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A brief summary of KKR-CPA-LSD, together with the
expression of the total energy used below, is given in the
Appendix. Here we suppose that we obtained the self-
consistent solution (in the sense of both CPA and LSD) of
this four-component system with given concentration s, 7,
u, and v. In many cases, the two magnetic states, 4, and
A |, or those for a B atom, actually are not stabilized, i.e.,
only a single magnetic state can be a local solution of the
Kohn-Sham equation of LSD for the atoms under con-
sideration. However, when two distinct magnetic states
appear for one (or both) of the chemical components, fur-
ther minimization of the total energy with respect to s
and u is a reasonable way to determine the concentration
of the magnetic components:*

dE /ds=0, and dE/du=0, 2.1
where E(s,t,u,v), whose expression is given in the Ap-
pendix, is the total energy compatible with LSD. The
above equations may be simplified by taking account of
the variational properties of LSD and CPA, i.e.,

8E /8p=0, and SE /8T=0, (2.2)

where p is the charge (spin) density and 7 is the coherent
t-matrix describing the effective CPA medium (see the
Appendix). The first equation is a direct consequence of
LSD and the second one is due to the CPA self-
consistency,'> which can be shown rigorously for the
band energy given in the Appendix (note that the argu-
ment, however, is somewhat artificial since the second
condition is satisfied only for the band energy of function-
al form implied by (A2.2) and (A2.4), which of course is
not unique.) Combining (2.2) and (2.1), we finally obtain

O0E /3s =0E /3t , and OE /du=0E /ov . (2.3)

The above condition requires that the formation energy
for parallel and antiparallel moment alignments are
equal, thus determining the correct concentration s or u,
respectively.

Now let us look into the possibility of finding out the
solution of (2.1) following the discussion by Jo and
Miwa.*> In general the situation has nothing to do with
the chemical disorder and we tentatively suppose that the
system is pure and specified with effective d electron
filling Z. Also we assume that the system has more-
than-half-filled d bands as is the case of typical ferromag-
netic Fe- or Ni- based alloys. The behavior of magnetic
impurities located in this system is the following: If the
host system is paramagnetic (or nonmagnetic), three
different LSD solution are possible, one unstable with a
vanishing moment, two stable solutions with local mo-
ment =M. The situation is illustrated in Fig. 1. If the
host system becomes ferromagnetic, the curves corre-
sponding to the solution are deformed and connected into
a single S-shaped curve (see Fig. 1). The energy varia-
tions along the path of varying (z component of) local
magnetic moment m are also illustrated in Fig. 1. In the
ferromagnetic host, impurities with more-than-half-filled
d electrons prefer parallel coupling to the host magneti-
zation, and those with less-than-half filled prefer antipar-
allel coupling (the situation would be reversed for less-
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(b)

FIG. 1. Local magnetic moments obtained by LSD as a func-
tion of impurity valence Z; (a) in a paramagnetic host, (b) in a
weakly ferromagnetic host. Also shown (right-hand side) are
the changes in the total energy with varying magnetic moment
along the path indicated by the dashed lines of the correspond-
ing m vs Z curves in the left. The crossover, which occurs with
increasing impurity valence, from antiparallel to parallel cou-
pling of the local impurity moment to the host magnetization is
sketched.

than-half-filled host bands). For a certain filling of the
impurity d electrons the crossover from the parallel to
the antiparallel coupling takes place. At the crossover,
the two local states have the same formation energy, giv-
ing rise to the possibility of coexistence of two different
magnetic states.

The same may happen even if the host and the impuri-
ty atoms are chemically equivalent. In this case the
above procedure has to be used to construct an effective
medium as host system in the sense of the mean-field
theory; first take a weighted average of the parallel and
the antiparallel solution at the impurity site and then in-
troduce this as effective scattering centers at the host
sites. The weight is determined such that the system be-
comes totally self-consistent, i.e., the formation energy of
the two magnetic states becomes equal.

The situation admittedly is not very realistic for pure
or ordered systems since in these systems magnetic order-
ing such as antiferromagnetism or ferrimagnetism will
occur. For disordered systems, however, the local mag-
netic moments more or less fluctuate from site to site de-
pending on the local environment, and a statistical treat-
ment of such local properties is rather realistic. More-

over, since the average filling of d band can be now con-
tinuously changed as a function of the concentration of
component atoms, multiple local magnetic configurations
are easily attainable. In the following section we will ex-
amine such a possibility by taking both chemical and
magnetic disorder into account.

III. RESULTS

Actual minimization of the total energy with respect to
the concentration of the magnetic component is per-
formed by direct comparison of the calculated total ener-
gies for various concentrations. Alternatively we may
calculate the formation energy of each component and
see if they satisfy the condition implied by (2.1); in princi-
ple this will be less expensive from a computational point
of view. In reality, however, the first method yields more
reliable results. Namely, the latter requires much higher
accuracy due to linear dependence of the formation ener-
gy on the charge and spin densities, whereas it is quadra-
tic for the former in the vicinity of the self-consistent
solution. The minimization with respect to the lattice
constant is indispensable since the magnetovolume cou-
pling sometimes plays a critical role in the determination
of the ground-state magnetic structure. KKR-CPA-LSD
was performed in the way described in Ref. 13, the scalar
relativistic treatment!*!> was employed, and either the
von Barth-Hedin LSD expression'® with the Moruzzi-
Janak-Williams parametrization!” or the expression by
Vosko-Wilk-Nusair'® was used; the results were not
much dependent on the choice of the LSD scheme.

A. Fe-Cr

Pure Cr is an antiferromagnet with an incommensurate
spin-density wave. In the phase diagram of Fe-Cr, the
antiferromagnetic phase is stable up to ~14 at. % Fe,
where the antiferromagnetic-to-ferromagnetic transition
takes place. Experiments reveals that in a narrow region
in between these two magnetic phases a spin-glass phase
exists.! 2> Our central interest is whether the spin-glass
phase observed in this system corresponds to the local-
moment disordered states discussed in this paper. Our
calculation shows that in addition to the ferromagnetic
state the local-moment disordered state with no net mag-
netization exist as a stable solution in the entire range of
Fe concentration for this system. Figure 2 plots the ener-
gy difference between two magnetic states; the local-
moment disordered state always has a higher energy than
the ferromagnetic state. The energy difference is around
10 mRy for pure iron (corresponding to the Curie tem-
perature of Fe, roughly speaking) and becomes zero at
pure Cr, which is nonmagnetic in the present treatment
(antiferromagnetic ordering is not considered here). In
the magnetic disordered state, the local magnetic mo-
ment at the Cr site vanishes, only the Fe sites being mag-
netic with a magnetic moment of around +1.7u,. Calcu-
lated values of the total-energy, local magnetic moment
at each site, and the magnetization, all for Fe; ,Cr, g, are
given in Table I. Our initial expectation was that at low
Fe concentration the local-moment disordered state
would lie energetically below the ferromagnetic state en-
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FIG. 2. Total energy of the local-moment disordered state of
Fe-Cr relative to that of the ferromagnetic state vs Fe concen-
tration.

ergetically. Instead, the opposite is true: Due to the
complete disorder, Cr sites lose the local magnetic mo-
ment entirely, gaining no exchange energy, and push up
to the total energy of the magnetic disordered state rela-
tive to that of the ferromagnetic state. We conclude
thereby that the observed spin-glass state might be ex-
plained only by taking account of the short-range antifer-
romagnetic correlation between Cr atoms as well as the
effects beyond the single-site treatment of CPA.

The present results are different from those implied by
Jo,** who concluded that, in the framework of HF-TB-
CPA, the local-moment disordered state could be realized
in this system. He pointed out, however, that the result
was rather sensitive to the choice of the parameter con-
trolling the intra-atomic Coulomb energy of an Fe atom.
The corresponding LSD quantity seems somewhat bigger
than assumed by Jo, which stabilizes the ferromagnetic
state in the entire region of Fe concentration.

It might be worthwhile, however, to present some local
quantities which depend on the local magnetic states.
This may be meaningful since the spin-glass state obvi-
ously resembles the present disordered state locally, ir-
respective of the energetics obtained by the calculation.
Figures 3 and 4 show the hyperfine fields and the isomer
shifts at the Fe site, respectively. For the isomer shift the
calibration constant of —0.24 (a.u. volume mm/sec) con-
sistent with our previous impurity calculation®’ is used.
Two curves in each figure correspond to the two different

TABLE I. Calculated total energy E, lattice constant a, and
the local magnetic moments at Fe and Cr sites, mg, and m¢,, re-
spectively, in the ferromagnetic (F) and the local-moment disor-
dered (LMD) states of Fe, ,Crg 5.

E (Ry) a (a.u.) mg. (up) me, (pg)
F —2186.32995 5.2944 1.867 ~0
LMD —2186.32990 5.2945 +1.432 0
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FIG. 3. Calculated hyperfine fields of Fe vs Fe concentration
in the ferromagnetic state (circles) and the local-moment disor-
dered state (triangles).

magnetic states; a branching from ferromagnetic to disor-
dered values should occur when the concentration of Fe
decreases down to around 20%.

B. Ni-Fe

For this system, we shall concentrate on the
ferromagnetic-to-paramagnetic transition, which takes
place near the Invar region (~60 at. % Fe). Our previ-
ous calculation showed that, in the single-site treatment,
a first-order-like transition from ferromagnetism to non-
magnetism occurred when we increased the Fe concentra-
tion.26%7

Figure 5 shows the total energy of the systems for vari-
ous Fe concentrations as functions of the ratio
Cre) /Cget> where Cg, and Cg,; are the concentrations
of Fe, and Fe| atoms, respectively. The results indicate
that for the Fe concentration less than ~60% the energy
minimum corresponds to the pure ferromagnetic states,
i.e., no Fe atoms with down magnetic moments appear.

0.05 T . T T T T . T T

AS (mm/sec) at Fe

-0.05
0 0.5 1

Fe Concentration

FIG. 4. Calculated isomer shifts of Fe vs Fe concentration in
the ferromagnetic state (circles) and the local-moment disor-
dered state (triangles).
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FIG. 5. Total energy of the local-moment disordered state
relative to that of the ferromagnetic state as a function of
Crey /Cget of Nij_,Fe, for x=0.6 (circles), 0.65 (triangles),
0.67 (squares), and 0.7 (diamonds). The lattice constant is deter-
mined by energy minimization.

On the other hand, the energy minimum for the system
with Fe concentration more than ~65% corresponds to
the paramagnetic states with Cg,| = Cg.;. The transition
from ferromagnetism to paramagnetism is of first order
as a function of the concentration. This last point is
somewhat delicate. Figure 6 shows a similar plot but cal-
culated for a fixed lattice constant. The results wrongly
suggest a second-order-like transition.

Experimentally the transition seems to be rather gradu-
al. At present we do not want to discuss the possible ori-
gin of this discrepancy between the theory and the exper-
iments simply because the experimental situation is not
so clear due to possible inhomogenieties and due to the
phase separation associated with the fcc-bcc martensitic
transformation.

Table II compares some local quantities together with
the total energy and the equilibrium lattice constant of
ferromagnetic, nonmagnetic, and the local-moment disor-

T | T T T T
Ni-Fe 4
65% Fe N
/A—,_—_A E
- _
&~ i
E | 67% Fe h
(8} (=) O (u}
S| [ x i
< I \\ i
-0.5 > —
- 70% Fe e

_1 1 1

0 0.5 1

Cre|/Cret

FIG. 6. Same plot as Fig. 4 but the lattice constant is fixed to
that of Nig 4Feg ¢ in this case. The transition from the ferromag-
netic to paramagnetic states is now gradual.
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TABLE II. Calculated total energy E, lattice constant a, bulk
magnetization M, and the local magnetic moments of Fe and
Ni, mg, and my;, respectively, in the ferromagnetic (F), non-
magnetic (NM) and the local-moment disordered (LMD) states

.of Nig 35Feg ¢5-

E (Ry) a (a.u) M (ug) mg (ug) my; (up)
F —2714.46949 6.6653 1.809 2.365 0.736
NM —2714.46938 6.4807 O 0 0
LMD —2714.46984 6.5295 0 +1.668 0

dered states, all for Ni, ;5Fe ¢5 as a typical case. For this
system, the nonmagnetic state has the highest total ener-
gy, the local-moment disordered state the lowest one.
The usual KKR-CPA-LSD treatment would predict the
ferromagnetic state as the ground state in this case. In
the present calculation the magnetic transition takes
place in between x =0.6 and 0.65, where x is the Fe con-
centration. At the transition point, the average magneti-
zation will jump from ~1.8up to zero, and the magni-
tude of the local magnetic moment at the Fe site, from
~2.4up to ~1.7up. Correspondingly the hyperfine field
at Fe nuclei changes from around —290 kG to 87 kG
(in comparing these values with experiments, it should be
noticed that the hyperfine field of Fe is always underes-
timated in LSD by 20 to 30 % Ref. 28. To the authors’
knowledge, no experimental hyperfine fields correspond-
ing to this situation have been reported.

The difference in the lattice constant among three mag-
netic states is obtained from the lattice constants given in
the table. The striking feature is that the difference be-
tween the ferromagnetic and the local-moment disor-
dered state is much bigger than that between paramag-
netic and the local-moment disordered states. Since the
local magnetic energy between the ferromagnetic and the
local-moment disordered state can not be much different
(Fe local magnetic moments of the two systems are rather
similar), this difference must originate from the gain in
the band energy for the latter. In other words, the
single-site magnetovolume effect cannot explain the lat-
tice expansion of the system. This observation is quite
consistent with the results obtained many years ago by
Kanamori, Teraoka, and Jo!'! and Kanamori and Terao-
ka,?® who studied the mechanism underlying the Invar
effects by use of the interacting virtual-state ap-
proach.!?

Now, let us briefly discuss the finite temperature prop-
erties of this system in connection with the Invar
anomalies. Though the present approach intends to de-
scribe the local-moment disordered state introduced by
local environments, its application to thermal disorder
might also be conceivable;** 3% such approach corre-
sponds to the saddle-point and the static approximation
of the functional integral approach for the finite tempera-
ture magnetism. In the ferromagnetic region, the finite
temperature properties are governed by the magnetic ex-
citation which reverses the local magnetic moment. The
situation somehow resembles the magnetic disorder dis-
cussed above. This allows us to pursue the following ar-
gument: Though the single-ion contribution to the
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volume does not change much with elevating tempera-
ture, change in the ion-ion coupling due to the magnetic
disorder greatly reduces the volume of the system as ob-
served above. The relation of the present picture to
Weiss’s two-y-state model® is not quite clear. However,
we may say that the physical situation assumed in Weiss’s
model is seemingly not very different from the present
one.

We expect that a quantitative discussion of the Invar
anomalies based on first-principles electronic structure
calculations may be possible along the line implied by the
present approach.

C. Ni-Mn

Among others, Ni-Mn is a typical example for which
the existence of parallel and antiparallel magnetic states
was evidenced by NMR experiments.’ Stimulated by Jo’s
prediction,4 Kitaoka and Asayama,’ and Kitaoka, Ueno,
and Asayama'® performed intensive NMR study on Ni-
Mn and found **Mn NMR signals ranging 140—180 MHz
in addition to 260-360 and 330-400 MHz that had been
already known. From the shift of the signals caused by
the applied external field they concluded that the new sig-
nals correspond to those Mn moments which couple anti-
parallel to the bulk magnetization.

The main purpose of our calculation is to confirm the
existence of such a magnetic state in the framework of
LSD and also to give some quantitative results, especially
for the hyperfine field distribution.

Figure 7 shows the total-energy change of Nij ¢sMn |5
and Nij goMny 54 as functions of Cyy,| /Cpp,r- The ener-
gy minimum occurs around Cy,  /Cyy,p=0.25 for
Nij gsMng ;5 and around 0.5 for Ni, goMng ,;, meaning
that the systems are still ferromagnetic, but that not all
the local magnetic moments align parallel to the magneti-

0.5 . para —s -
| Ni-Mn

AE (mRy)
/:’

-0.5

0 0.5 1
Cmn | /Cyvint

FIG. 7. Total energy of the local-moment disordered state
relative to that of the ferromagnetic state as a function of
Cmny /Cpmat of Nij_,Mn, for x=0.15 (triangles) and 0.2 (cir-
cles). Dotted lines correspond to the solution with a negative
magnetization (in other words, Cyy, /Cyat > 1 with a positive
magnetization), the arrows indicate the paramagnetic solution,
i.e., local-moment disorder with vanishing net magnetization
(Cmn) /Cwmnt =1 does not necessarily mean the paramagnetism).
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FIG. 8. Magnetization of the Ni-Mn system vs Ni concentra-
tion (solid line) is compared with experiments (triangles). Ex-
perimental values from Ref. 35.

zation. Thus, the transition from ferromagnetism to
paramagnetism is gradual in this system. The calculated
magnetization as a function of the Mn concentration is
compared with experiments in Fig. 8. One might argue
that the calculation based on the usual KKR-CPA-LSD
with a single magnetic state can as well reproduce the ob-
served magnetization, at least qualitatively.?®?’ It is
clear, however, that the physical situations considered by
the two methods are very different. It also shows that the
usual CPA describes average quantities like the average
magnetization quite well, even when the microscopic
model is not very realistic.

Table III lists detailed values of the magnetizations, lo-
cal magnetic moments, and the hyperfine fields of these
systems at their energy minima together with those ob-
tained by usual KKR-CPA-LSD. Though the magneti-
zation calculated by usual CPA already shows deviation
from the linear increase with increasing Mn concentra-

TABLE III. Calculated magnetizations M, local magnetic
moments, my; and the my,, and the hyperfine fields H,; at Mn
site of Ni,_,Mn,. The values obtained by usual KKR-CPA
with a single magnetic state (ferromagnetic state) for x =0.15
are also given. As a result of the scalar relativistic treatment,
the magnetization seems somewhat bigger than that obtained by
nonrelativistic calculations, e.g., 0.618u; of pure Ni is com-
pared with the nonrelativistic value of 0.59up (Ref. 17). F,
LMD, and P denote ferromagnetic, local-moment disordered,
and paramagnetic (that is local-moment disorder with no net
magnetization) states, respectively.

X M (pp) myi (up) My (2p) H)" (kG)
0 (F) 0.618 0.638 2.78 — 184
0.1 (F) 0.808 0.623 2.59 —189
0.15 (F) 0.840 0.596 2.34 —179
0.15 (LMD) 0.65 0.530 243, —2.34 —172, 50
0.2 (LMD) 0.41 0.341 2.25, —2.24 —140, 70
0.25 (P) 0 0 +2.15 +100
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FIG. 9. Calculated hyperfine fields of Ni (circles), Mn; (open
triangles), and Mn | (solid triangles) of Ni-Mn.

tion, at the low Mn concentration region (see Table III),
the deviation is much less pronounced than the experi-
mental observation (see Fig. 6). The present multiple-
magnetic-state treatment, on the other hand, reproduces
the experimental tendency quite well. This fact seems to
indicate the importance of the static fluctuation of the lo-
cal magnetic moments.

Figure 9 shows the expected hyperfine fields at the Mn
nuclei. Corresponding to the appearance of the second
magnetic solution, a hyperfine field of about +60 kG
shows up in addition to the field of —160 kG at ~15
at. % Mn. The centers of the observed NMR frequencies
on Mn nuclei in this system correspond to fields of ~
+160 kG for the antiparallel Mn and ~ —290 and
~ —345 kG for the parallel Mn. The fact that the
present theory underestimates the Mn hyperfine fields by
nearly half does not mean the theory fails in describing
the valance electronic structure of the systems. Actually
it is well known that LSD largely underestimates the core
polarization contribution to the hyperfine fields when the
d shell is strongly polarized.?® From the comparison with
the experiments for impurity systems, the deviation by
about a factor of 2 for Mn atoms looks fairly reasonable.

In conclusion, for the Ni-Mn system, and presumably
also for similar systems such as Fe-Mn and Fe-V,* as
well as Ni-Co-Mn and Ni-Fe-Mn,° the present treatment
of the multiple magnetic states well simulates local envi-
ronment effects, which otherwise would be very difficult
to treat from the first principles.

IV. SUMMARY

We present the results of generalized KKR-CPA-LSD
calculation in which the possibility of local-moment dis-
order is considered. As typical cases, we have treated the
Fe-Cr, Ni-Fe, and Ni-Mn systems. For Fe-Cr we con-
cluded that the spin-glass phase observed experimentally
could not be stabilized energetically as a disordered mag-
netic system. We nevertheless put emphasis on the use-
fulness of the present approach even for such cases since
it enables us to deal with microscopic local quantities
such as hyperfine fields and the isomer shifts of the spin-
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glass phase based on the first principles.

For the Ni-Fe system the magnetic transition around
65 at. % Fe was described in the present treatment as a
transition from ferromagnetism to the local-moment
disordered state. As for the invar anomalies, we pointed
out that the existence of reversed local magnetic mo-
ments could be important in discussing the anomalies at
finite temperatures. Such an aspect actually has been dis-
cussed many times from various different points of view.
The essential point, however, can most likely be de-
scribed by a static treatment like the present one. The
advantage of the KKR-CPA-LSD is that the magnetovo-
lume effects are automatically included, thus providing a
straightforward method for a quantitative analysis of the
Invar anomalies on a first-principles basis.

The most successful example may be the Ni-Mn sys-
tem, for which the existence of two magnetic states with
opposite direction of local magnetic moments even in the
ferromagnetic phase is demonstrated. The calculated
magnetization and the hyperfine field distribution are in
reasonable agreement with experiments. The application
of the present method to other systems with stable local
moments, which nevertheless show magnetic instabilities,
such as Fe-Mn or Ni-Co-Mn, for instance, and presum-
ably Fe-Al,*>” would be interesting.
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APPENDIX: TOTAL ENERGY IN KKR-CPA-LSD
1. Summary of KKR-CPA

First we briefly summarize KKR-CPA. Consider a n-
component system A4,A4,....A4,, where 4,, A4,, etc.
denote the component atoms, with x,, x,,...,x, being
their concentrations. The backscattering part of the
site-diagonal Green’s function on each site of atom i in
the CPA medium is then given by

Gip=3 G- [1—(,—=DG®1 ., (A1)
I

where t; and 7 are the single-site ¢ matrix of atom i and of

the effective CPA medium, respectively, and

~ dk ~
Gg";,:fTTGLL.(k)
dk ~ -
=[5 S 01—, (A2)
T Lu
with g being the free space structure Green’s function.
The integration with respect to k in the last expression is

performed within the first Brillouin zone of volume 7.
Now the CPA prescription determining 7 is

z_xiGL'L.=é,‘jg, . (A3)
1
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2. Total-energy expression

The total energy of the system is calculated in the fol-
lowing way: First we decompose it into several parts

Etotal =Eband —E +Estat +Exc . (A4)

pot

To calculate the band energy, we introduce a function
Z (E), imaginary part of which gives the total number of
states (per atom) below a real energy E:

Z(E)= f ﬂgln det| —E +(k+g)*| +Indet|1—7g(k)|}

T T

+ 3 x;{Indet|1—(¢;, —7)G |

+Indet|C,(E)—iS;(E)|} , (AS)

where the first determinant is taken for reciprocal lattice
vectors g’s, the rest are for angular momentum represen-
tations. Here C,(E) and S,;(E) are the functions which
are proportional to siny, and cos7n,, respectively, but
normalized such as to satisfy

J,(r,E)Y=C,(E)j,(VEr)—S,(E)n,(VEr), (A6)

outside the muffin-tin sphere, where J, is the radial wave
function normalized within an arbitrary (but fixed)
sphere, e.g., the muffin-tin sphere. Such a normalization
of S(E) and C(E) makes the analytic continuation of
Z (E) to the upper complex half plane of the physical-
energy sheet possible; the procedure removes all the
singularities which exp(—in,)=cosn,(E)—isiny,(E)
may have on the upper half plain at resonances of the
single-site scattering (a similar method to eliminate the
singularities was introduced by Drittler et al.® in total-
energy calculations of impurity systems).

The band energy is now calculated by integrating Z (E)
with respect to E up to the Fermi level:

E
Epua=—F \Z(Ep)Ep— [ " Z(EVE | . (A7)
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We subtract from the band energy the potential energy

rm! 2
Epy= fo ridr 3 x;p,(rivy(r) (A8)
1

which is the configuration average of the expectation
value of the single-site potential v; at atom i, in order to
obtain the kinetic energy of the noninteracting system in
the sense of LSD. Here p; is the electron density inside
the muffin-tin sphere of atom i. The electrostatic energy
E,, (per atom, in atomic units) is obtained after Janak®
as

Egu=3x 32772f0 "dr rpi(r)fordr’r'zp,«(r')

_lCqut ’
a

> (A9)

,

—87Q; fo mtrp,-(r)dr
where a is the lattice constant, r, the muffin-tin radius;
the constant C depending on the crystal structure is given
in the table by Janak® as C =4.8320664, 4.085 521, and
3.116 685 7 for fcc, bece, and sc lattice, respectively. Q; in
this expression is the nuclear charge of atom i and @ is
the number of electrons per atom accumulated at the in-
terstitial region, i.e.,

Qout = 2 X; Qi“formlrzdrpi(r) . (A10)

The exchange-correlation energy (per atom) is given by
the LSD approximation as

"mt
Exc: zxi fO rzdrpi(r)exc(pi)+Qout€xc(pout) ’
i

(A11)

where €, is the exchange-correlation energy suitable for
the homogeneous electron gas. All the core contributions
should be included in the above expression.
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