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The possible ground states and the phase transitions of a spin-1 chain with bilinear-biquadratic
exchange are studied numerically. In order to see better the real asymptotic behavior of the infinite
system and to determine the necessary degeneracies, a twisted boundary condition is used that re-
duces the finite-size effects. This calculation confirms that a second-order Ising-type phase transition
occurs at the Takhtajan-Babujian point from the dimerized phase to the singlet Haldane phase. The
transition at the Lai-Sutherland point, to a massless phase with three soft modes, is found to be of

Kosterlitz-Thouless type.

I. INTRODUCTION

Finite-size scaling is one of the most efficient methods
to study the low-energy behavior of lattice models, either
in field theory or in statistical physics. It can almost
always be effective even for such ranges of parameters
where approaches like strong or weak coupling expansions
or other nonperturbative approximate methods are un-
satisfactory. Finite-size scaling was originally invented in
statistical physics by Fisher and Barber,! then applied to
lattice field theories by Hamer and Barber? and Roomany
and Wyld.? Based on the relationship between the ther-
modynamic quantities of classical systems in two dimen-
sions and their quantum analogs in 1+1 dimensions, and
using the scaling properties of the classical model near
the transition point, one can deduce how quantities, like
the ground-state energy or the mass gap should depend
on the system size at the critical point. These asymptotic
forms are valid for large enough systems. Thus, analyz-
ing the scaling properties of different finite-size approx-
imants, one can locate the transition points, obtain the
phase structure of the model, and determine the critical
behavior of the infinite system.

In order to carry out a finite-size scaling study the first
step is to diagonalize exactly the Hamiltonian of the fi-
nite system of linear size N for different sizes. Even with
modern-day computers the accessible sizes are rather lim-
ited, especially for two- or three-dimensional systems.
While in some cases relatively small system sizes are suf-
ficient to see the asymptotic behavior, there are models
where strong finite-size effects mask the expected scal-
ing behavior. They can make the reliable extrapolation
impossible, or lead to false conclusions.

There is, however, a freedom, which is our main con-
cern in this paper, in the choice of the boundary condition
(BC) of the finite system. Boundary conditions should
have no influence on the quantities of interest in the ther-
modynamic limit, nevertheless they do have an effect in
finite systems. Finding the most suitable BC can help
to “transform out” the most disturbing finite-size correc-
tions, and the system can show its “real” behavior for

47

much smaller sizes already.

To illustrate this let us cite the example of the anti-
ferromagnetic spin-S Heisenberg chain. It was clearly
demonstrated in the pioneering work by Bonner and
Fisher? for the S = 1 chain, that the finite-size estimates
of different thermodynamic quantities are very sensitive
to the chain length. They used periodic boundary condi-
tion (PBC) and found that the finite-size corrections are
definitely smaller for chains with even numbers of sites.
Similar oscillations appear for general S, too. Although
the ground state is disordered, the short-range correla-
tions are alternating in sign. Therefore PBC proves ad-
vantageous only if the chain consists of an even number
of sites. Chains of odd length should rather be studied
with an antiperiodic BC. As it will be shown in this pa-
per, in some cases the scaling properties can be further
improved by using a more subtle BC, a twisted one.

Our aim in this paper is to study the phase structure
of the antiferromagnetic spin-1 chain described by the
Hamiltonian

H=> [cosf (Si-Sit1)+sinb (S;-Siy1)?]. (1)

This model is expected to show a rather colorful phase
structure. In the range —37/4 < 6 < 7/2, where the
ground state of finite chains is a singlet, the infinite sys-
tem is believed to have at least three different phases.
Using an approximate field-theory mapping to the Wess-
Zumino-Witten model, Affleck® argued that there is a
conventional second-order phase transition of the Ising
type at g = —=/4. At this point the model is in-
tegrable, as was shown by Takhtajan® and Babujian.”
The excitation spectrum has two soft modes, at £k = 0
and kK = 7. For —37/4 < 6§ < —m/4 the model has
a doubly degenerate dimerized ground state, while for
—7/4 < 6 < /4 the ground state is unique. Accord-
ing to Affleck® a finite gap opens above the ground state
on both sides of Org, linearly in |0 — 6rg|. The latter
region, —m /4 < 6 < /4, includes the traditional Heisen-
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berg point § = 0, for which Haldane® predicted a massive
behavior with a nondegenerate ground state for any inte-
gral spin S. The gap vanishes again at g = w/4. This
is another integrable point in the parameter space, where
the model is equivalent to the permutation model of Lai
and Sutherland.® The Bethe ansatz can be used here, too,
and it gives a massless spectrum with three soft modes,
at k = 0 and k = +27/3. Affleck’s mapping® to the
Wess-Zumino-Witten model cannot be used for 8 > 65,
thus there is no prediction of the field-theory model for
the behavior of the magnetic system in this third region.

This picture of three phases is supported by some an-
alytic results. At § = —m/2 there is an exact correspon-
dence between the model in Eq. (1) and the 9-state Potts
model or the antiferromagnetic spin-% Heisenberg-Ising
chain with appropriately chosen easy-axis anisotropy.'°
This latter model is known to have a doubly degenerate
ground state. The value of the gap can be calculated
from the Bethe ansatz solution and it is nonzero. On the
other side of g, at fyp = arctan(%) the ground state
is an exact valence-bond state.l! It is unique, the two-
point correlation function decays exponentially and the
existence of a finite excitation gap can also be verified.

The phase diagram was intensively studied numeri-
cally, too, to see if the above scenario is true, or to find
the limitations of the approximate field-theoretic map-
pings. Despite the great number of works, some details
still remained unclear. For the transition at fTg some
authors!?13 found an extended critical region around the
integrable point, others'4 predicted non-Ising-like scaling
indices, i.e., nonlinear opening of the gap. The situa-
tion around g is even less understood. Nomura and
Takadal® argued that for § > fpg the ground state will
be threefold degenerate, but this trimerized phase should
be massive. Our earlier calculations!®16 indicate a mass-
less behavior with three soft modes, like at the integrable
OLs point itself. The type of the phase transition from
the Haldane phase to the tripled-periodic phase has not
yet been analyzed, either.

In this paper we present further finite-size scaling re-
sults on the bilinear-biquadratic model. Instead of the
usual PBC, however, we use a twisted boundary condi-
tion in the hope of improving the scaling behavior. So
far the twisted BC has been used for this model in the
case 6 = 0 only.!” Now we extend the calculations to the
whole range —37/4 < 8 < 7/2. The extrapolated prop-
erties of infinite chains can then be compared to previous
results.

Our results confirm the Ising-type character of the
transition at rg. We find further arguments to sup-
port the prediction of an extended critical phase for
6 > m/4. Based on our study of the behavior of the
Callan-Symanzik § function, the transition to this critical
phase at 01g is proposed to be of the Kosterlitz-Thouless
type.

The layout of the paper is as follows. In Sec. II the
twisted boundary condition is defined and its influence
on the energy spectrum is reviewed. Section III contains
our results for the transition at g = —7/4 and Sec. IV
those for 1, = 7 /4. Section V contains a brief summary.

II. TWISTED BOUNDARY CONDITION

In the numerical study of the energy spectrum of the
model in Eq. (1), the Hamiltonian of a finite chain is di-
agonalized, fixing somehow a BC. The most commonly
used BC is the periodic one. It preserves the transla-
tional invariance and the isotropy of the Hamiltonian,
thus allowing to classify the energy levels according to
the momentum k& and the total spin quantum number
S, and to block diagonalize the problem. The numeri-
cal diagonalization is done independently in the different
blocks. The Hamiltonian with PBC will be denoted by
H,. It can be written in the form

N
H,= Z[cos@ h;-f?ﬂ +siné (hg-f’-)ﬂ)z] , (2)
j=1
with
5‘?1')4—1 =3 (SFS7 1+ 87 8F1) + iS85 (3)
where the PBC requires
SN+1 = Sl . (4)

As mentioned before, in most of this paper we will treat
the model in Eq. (1) with a twisted BC. If the two ends
of the chain are attached with a twist of angle ® around
the z axis, the BC is

S% 41 =5 cos® — S7sin®,
S% 41 =57sin®+ SYcos®, (5)
Str41 =157 .
Using raising and lowering operators,
S =57e?,
Sy =57e7"?, (6)
Sky1=5%.
The Hamiltonian H:(®) of this twisted model has the
same form as H), defined in Eqgs. (2) and (3), except that

the BC in Eq. (4) is replaced by Eq. (6). Thus the
Hamiltonian takes the form

N-1
H(®) = Z [cos @ hg-f’j)_,_l +siné (hﬁf’j)ﬂ)z]
Jj=1

+cosf hy,1 +sind (hy,1)?, (7)

where hy 1 is obtained from hg\’;’)N 11 by using Eq. (6) for
SNn+1,

hn, = % (SESTe™™® + Sy ST e™®) + S%.S5 . (8)

Due to this boundary term, H;(®) is neither transla-
tional invariant nor isotropic. The translational invari-
ance can be restored, still maintaining the total twist ®,
by twisting all neighboring bonds in the chain by an an-
gle ®/N, i.e., analogously to Eq. (8), each bond h;f’j) 41 s
replaced by
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. L _ .
R4 =% (Sf e N 4 S; SfHCWN) + 878541 -

9
This yields a translationally invariant twisted Hamilto-
nian,
_ N
Hy (@) = leosd h{); +sinb (B,)2,  (10)
j=1
which is now subject to a PBC, Sy41 = S;.
It can be checked easily that the Hamiltonians H;(®)
and H(®) are connected by a unitary transformation,

Hy(®) = ULHy(®)Us , (11)
where
i® &
Us = e | A¢=lejs;. (12)
J=

In the bulk of the paper both H, and H,(®) will be used
simultaneously. Although our aim is to draw conclusions
on Hy, the study of H;(®) turns out to be useful to reach
these conclusions.

Being connected by a unitary transformation, the en-
ergy eigenvalues of H;(®) and H;(®P) are identical. More-
over, as it can be seen directly from the definition in Eqgs.
(7) and (8), the spectrum of H:;(®) and hence H.(®)
should be identical to that of H, at ® = &, = 2#l for
any integer . For such values of ®, H, and H,(®) are
connected by the transformation

H,(®:) = U} HpUs, . (13)

Let ¢p(kp) be an eigenstate of H, with energy FE and
momentum k,. According to Eq. (13) there should ex-
ist an eigenstate %3 (k) of Hy(®;) with the same energy
E. The momentum of this state is k;. First we show,
following Kolb,!7 that k, and k; satisfy the relation

kp = ki — 1S + %Sfp , (14)

where S is the length of the spin (for our spin-1 chain
S = 1) and S% is the z component of the total spin,
which is a good quantum number even in the twisted
case. :

We prove this relationship for nondegenerate eigen-
states. Generalization to dégenerate eigenstates is quite

straightforward. According to Eq. (13), 9p(kp) and
t(kt) can be related by
Yp(kp) = Us, (k) - (15)

The k; dependence of i, can be written explicitly as

N
Yelks) = D _an D €585 - S 1ml0), (16)
n m=1

where |0) is the fully aligned ferromagnetic state with
S% = NS, and n = (n1,...,n,) denotes the possible
configurations of misaligned spins in a given sector % =
NS —r. Since an S~ operator decreases the z component

by 1, for S > —12— the same lattice site can appear more than
once in the configuration n. Only such configurations
should be considered that cannot be obtained from each
other by translation. The indices n;+m of the translated
sites are understood modulo N, i.e., they are transformed
back to the interval 1,..., N. The coefficients a,, should
be determined from the Schrédinger equation, but their
explicit form will not be needed now.
It can be shown easily that

UpS; = e RIS Us , (17)
thus

N
Uss(kt) = Zan Z gthtme=ix[(ni+..4n)+rm—lmN]

n m=1

x 7:1+m"'S;r+qu’|0> ) (18)

where [,, is an integer that depends on m, and comes
from the index transformation mentioned above. For
®; = 2nl (I integer), e~ ®imN = 1 thus it cancels from
Eq. (18). Using the explicit form of Us in Eq. (12), we
find U|0) = e?5®/N37|0). Inserting this into Eq. (18),
gathering the m dependent factors, ¥, (k,) of Eq. (15)
takes the form

) . .
wp — e“SW" i ane—zj;}-(n1+...+nr)
>

N
. -]
x Y embemRrlg S L nl0)

m=1
(19)
from which the wave vector of the state is
D,
kp = kt - —N-T . (20)

Substituting the expression r = NS — 5% into Eq. (20),
the statement (14) follows.

Before exploiting the interesting consequences of Eq.
(14), we mention another theorem. Let us consider the
adiabatic variation of the energy levels of H;(®) as @ is
varied from zero to ®; (! fixed). In general the spectrum
of H,(®) differs from that of H,. It follows from Eq. (13),
however, that at & = ®; the spectrum of Hj, should be
recovered, i.e., the spectrum as a whole is periodic with
period 27. Nevertheless, if we restrict ourselves to a sub-
space H(S%, k) with fixed momentum k and z component
of the total spin S%, which are good quantum numbers
of the twisted chain, the same periodicity does not nec-
essarily hold. Looking at the state that has the lowest
energy in a given subspace at ® = 0, its energy Eo(®)
is in general not periodic with period 2w. The energy
E,(0) can be produced at ® = ®; by a state with a dif-
ferent wave number. It can be proven, however, that the
twist is a small perturbation in the sense that the energy
levels of Hy(®) remain close to that of H,. The energy
difference Eo(®;) — Eo(0) can be at most of O(1/N).

Let 1, denote the lowest state of H¢(0) = H, in
H(S%,k), i.e.,

H,(0)p = Eo(0)¢p (21)
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and use this as a variational state for H;(®;) to get an
upper bound for the variation of the energy,

SE = Eo(®1) — Eo(0) < (¢p|ﬂt(¢’l)|¢p> — (Yp| Hp|tpp)
= (Yp|Ug, HpUs, — Hp|ty) , (22)

where we used Eq. (13). Now following the explicit cal-
culations in Ref. 18 it is quite straightforward (but a bit
lengthy) to show that the right-hand side of Eq. (22) is
at most of order 1/N, thus

§E < O(1/N), (23)

and the statement follows. This result can be understood
very simply. The increase in the energy due to the twist
should be an even function of ®. Since every bond is
twisted by an angle ®/N, the energy increase is of order
(®/N)? from each bond. The total energy change is then
of order ®2/N.

Following the lowest state of a subspace as a function
of ®, level crossings may occur. Since we used varia-
tional arguments, the statement always refers to the low-
est state Eg(®), and does not give us any definite infor-
mation on the analytic continuation of Eo(®) after such
a crossing. (Note that we have a finite system in which
all levels should be analytic.)

As in Ref. 18, we can express these two theorems in
the language of Hamiltonian H, only. Using Eq. (15) the
statements say that in any subspace H(S%, k) the state
Us,¥p, which is obtained from the lowest energy state
¥, of that sector, has momentum k' = k — &S + 3 5%,
and its energy differs from the ground-state energy of
that sector by O(1/N). In Ref. 18 these theorems were
used to show that at least for a certain range of § around
the Heisenberg point § = 0, chains with integral and half-
integral S may have drastically different spectra. For any
S the ground state 1gs is in the H(S% = 0, k = 0) sector,
and thus the state Uz,%gs has momentum k' = 27 S. For
half-integral S these two states are orthogonal to each
other. Since their energy should be close to each other,
of order 1/N, in the thermodynamic limit the ground
state is either doubly degenerate with a finite gap or the
gap vanishes and soft modes appear at k = 0 and k =
7. By similar arguments it was also shown!? that in
the half-integer S case the dispersion relation should be

" symmetric not only with respect to k = mm (m integer)
but to k = mn + 7/2, too. For integral S, however,
k' = 0, so no necessary degeneracies can be proven and
the spectrum is symmetric with respect to £ = mm only.

It is possible to generalize slightly these statements to
show that the low-lying states of subspaces with Sr > 0
necessarily form a continuum, hence a massive spec-
trum is possible only if the degenerate or nondegenerate
ground state is in the singlet, S = 0 sector. The argu-
ment is quite simple. Any level with St > 0 is 257 + 1-
times degenerate. Let i, denote the lowest state with
momentum k for which S% = 1. Let us consider now the
state Uzr4p. According to Eq. (14) its momentum is

k' =k—2nS+2n/N

_ {k: -7+ %,’5 if S half-integral ,

k+ zﬁ" if S integral , (24)

i.e., it is shifted by 2w /N, which is the smallest possible
step in the k space for chain length N. The —= for half-
integral spin appears since the spectrum is periodic with
m. The energy of this state differs from the energy of 1,
of O(1/N), and thus it is seen that the existence of a
whole continuous branch of excitations can be verified in
this way.

III. PHASE TRANSITION AT Orpg = —7/4

Before applying these general theorems to our S = 1
model in Eq. (1), let us recall first the expected behavior
and some of the earlier finite-size scaling results obtained
by using PBC (@ = 0).

The ground state of finite chains is a k = 0, ST = 0
state in the whole —37/4 < 6 < /4 region, except for
a small N-dependent range close to /4. The lowest-
lying excited states differ in their quantum numbers in
the different regions. The field-theoretical mapping sug-
gests that an Ising-type phase transition from a dimer-
ized phase to the singlet Haldane phase takes place at
6rg = —m/4. For 6 < f1g, a singlet k = 7 state should
be asymptotically degenerate with the singlet ¥ = 0
ground state, their energy difference vanishing exponen-
tially for large enough systems. All other states are sepa-
rated from the ground state by a finite gap. In the dimer-
ized phase the translational invariance is broken sponta-
neously. This symmetry breaking leads to a doubling of
the unit cell in the infinite system, hence the dispersion
relation of the excitations is expected to become symmet-
ric with respect to k = mm/2 (m integer). The lowest
(massive) excitations are expected to appear symmetri-
cally near kK = 0 and k¥ = w. In the region 8 > frg
the ground state is expected to be unique, and there are
indications!® that the above symmetry of the spectrum
does not hold anymore. The spectrum remains symmet-
ric with respect to k = mm (m integer) only. The lowest
(massive) excitations seem to appear near k = .

We show in Fig. 1 the energy of the singlet £k = =

2.5 70
12
2.0
3
7.5 4
> \
1% kN
') ‘
g 7.0 A VA
A
)
0.5 <
0-0 - T T T
-0.75 -0.50 -0.25 0.00 0.25
6/
FIG. 1. The energies of the lowest-lying St =0, k =7

(solid line), St = 1, k = w (dashed line), and ST =2, k=0
(dotted line) states relative to the ground state vs 6 for chain
lengths N = 10 and 12.
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level, relative to the ground state, as a function of 6 for
two different chain lengths. Chang et al.?% analyzed this
singlet-singlet gap around érp and found definite support
for the predictions. Using the standard methods to lo-
cate the phase transition point from the scaled gap, they
concluded that it is certainly 8rp. For 6 < Orp the gap
converges to zero more rapidly than 1/N, while nonzero
values can be extrapolated for 6 > Or5.

In finite systems, close to Orp, a triplet £k = 7 level
may, however, have lower energy than the singlet k = =
state. These levels are also shown in Fig. 1. A level
crossing occurs between these low-lying £ = 7 states.
For 8 < 6, the singlet state lies lower, while for 8 > 6,
the order of the two levels is reversed. The position of
the crossing, 6.(IN) depends on N in such a way that
0c(N) < 6.(N +2) < 61g. We plot in Fig. 2 the position
of the crossing point 8.(IN) versus 1/N. Extrapolation to
N — oo indicates that 6, converges to g, in agreement
with the expectation that in the infinite system, for 6 <
6TB, the triplet state should have higher energy than the
two singlet states. In fact, it should be separated by a
finite gap from the doubly degenerate ground state.

The singlet-triplet gaps, obtained with periodic BC,
are smooth functions of # near frp, as seen in Fig.
1. They decrease monotonically until about 6§ ~ 0
where they star* tc increase and reach an almost size-
independent value at #yg. The analysis!?!2 of the scaled
gap of chains with N < 12, indicated an extended criti-
cal region above f1g. Although the gap of finite systems
continues to decrease for 8 > 6rg, from these same curves
Blste and Capel'4 inferred that above g the gap opens
approximately as (§—61g)*®. The curves, however, show
very strong finite-size effects close to f1p, which make it
almost impossible to draw any reliable quantitative con-
clusion. This may also be the reason, why the obtained
behavior is different from the expected Ising-like expres-
sion.

Furthermore the next level in the k£ = 0 subspace (also
shown in Fig. 1) will be of interest, too. It is a quintuplet
St = 2 state, which, on both sides of frg, is expected
to be separated by a finite energy gap from the ground
state as N — 00, except at the transition point itself.

The numerical results allow to draw even less clear
conclusions on the behavior of this singlet-quintuplet gap.

—-0.25 o
GC(N) 1 N N
[}
- ~N
—0.45 .
- h -
[ ]
-0.65 T T
0.0 0.1 0.2 0.3
1/N
FIG. 2. The crossing points 6.(NN) between the lowest sin-

glet and triplet states in the k = 7 sector plotted against 1/N.
The dashed line shows the extrapolation to N — oo.

As seen in Fig. 1, at least for the available chain lengths,
this gap has a maximum around frg. Since it is known
that this gap vanishes exactly at the integrable point g
in infinitely long chains, one was tempted to conclude!®
that this gap vanishes in an extended range —37/4 < § <
0. The results of the field-theoretical predictions could
be reconciled with the numerical data only if a cross-over
to the massive behavior occurs in much longer chains.

In this paper these four levels are going to be studied
to understand the transition around 6. Since the nu-
merical results with PBC show rather strong finite-size
effects, in this paper we study these low-lying levels with
a twisted BC in the hope that the finite-size effects will
be reduced and the asymptotic behavior can be better
observed. Using the Lanczos method we computed the
energies of a few lowest levels in each possible sector of
given S% and k in the whole range —37/4 < 6 < w/2.
Chain lengths up to N = 15 were considered. Around
the Takhtajan-Babujian point, 6t = —n/4 we studied
chains with N even, while for the transition at the Lai-
Sutherland point, s = w/4 chains with N = 0 (mod 3)
were taken. The Lanczos algorithm was continued until
a precision better than 10~% was reached in all the lowest
levels we were interested in, generally the lowest two. It
was found that approximately 50-60 Lénczos steps were
sufficient even for N = 15.

In all what follows, the level that is obtained from the
k =0, St = 0 state as ® is varied adiabatically, will be
denoted by a. It will be referred to as the ground-state
level even though it may not be the lowest one of the

- finite system for general ®. Similarly, the k = 7 singlet

level will be denoted by b. The energy of the k = m,
St =1 state will be split due to the twist. The spin-fiip
symmetry assures that the energy depends on |S%|. The
levels with S% = 0 and %1 will be denoted by ¢y and
c1, respectively, while the three levels with S% = 0, *1
and +2 which split off the £ = 0 quintuplet state will be
denoted by do, di and da. Figures 3(a)-3(d) show these
levels as a function of ® for four different 6 values.

One interesting feature of these figures is that level a,
that is the ground state of the model with PBC, does not
remain necessarily the lowest-lying state. Near ® = 7
either b or ¢y has lower energy than state a at least in
a certain range of 6. If this behavior survives in the
thermodynamic limit, then according to the argument in
Sec. II, for such values of 6 the energies of the ground
state and the lowest k = 7 state may differ at most by
1/N, i.e., they should become degenerate in the N — oo
limit.

The other important observation from Fig. 3(c) is the
exact degeneracy of levels a and dg at ® = 7w and 6 = O1g
for any chain length N.

‘While both below and above 61 curves a and dgy are
quadratic in ® near ® = 7, a cusp develops as § — Org.
At the integrable point levels a and dyp change place at
any ® = 7w + 2wl (I integer). As a consequence, the
ground-state level a as a function of ® has a periodicity
27 everywhere for 6 # Orp, and the periodicity changes
to 4n at Orp, similarly to what happens in the spin—%
twisted Heisenberg chain.?!

One important difference is that while in the spin-%
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chain the two levels that cross at ® = 7 are a k = 0 and
a k = 7 level, in our case both levels have momentum
k = 0. This difference can be understood by consider-
ing the Bethe ansatz solutions for the models. In the
ground state of the integrable spin-S model the rapidi-
ties form 2S-strings with S-independent distribution for
the real parts. A twist ® in the BC is equivalent to shift-
ing all pseudomomenta by ®/N. The total momentum
is changed by M®/N, where M is the number of pseu-
domomenta, or the number of spin flips. For the spin——%
chain in the ground state M = N/2, so a twist ® = 27
leads to a state with k& = w. A twist of 47 is needed to
recover the k = 0 ground state.

For integer spin S = 1, however, M = N in the ground
state, so a twist with ® = 27 generates a state with
k = 0. Unlike the spin—% chain, there is no general ar-
gument why the ground state should be periodic with
period 4m. Nevertheless, the sharp cusp at § = g can

-19.0 =

-24.0 - T T ™

energy

-10.0 + do -

-12.0 T T T T T T T T
o

FIG. 3. Adiabatic variation of the relevant energy levels
of a chain with N = 8 as a function of the twist angle @,
for (a) = —0.6m, (b) 6. =~ 0.47x, (c) 68 = —m/4, and (d)
0 = 0. Solid curves refer to momentum k; = 0, dashed curves
to momentum k; = w. The labeling of the curves is explained
in the text.

be interpreted as the crossing of two levels. However,
since both have k¥ = 0 and % = 0, any perturbation
that takes the system away from the integrable point,
will lift the degeneracy and introduce a periodicity with
period 27.

Since curve a lies lower than curve dy on both sides
of Orp [Figs. 3(b) and 3(d)], one might think that the
difference E4,(® = 7) — E,(® = ) should be quadratic
around 6. We plot schematically in Fig. 4 the behavior
of these levels as a function of 6. A behavior that resem-
bles a level crossing is found. The energies E,(® = )
on the left-hand side of fTp are analytically continued in
the energies Ey,(® = 7) on the right of 6rg, and vice
versa.

The fact of finding a break in the 8 dependence of the
ground-state energy at g for finite systems does not
necessarily mean that the same type of nonanalyticity
survives in the limit of infinite system, too. It is worth
emphasizing that this extraordinary, i.e., not smooth be-
havior of the ground-state energy at g in finite systems
is the consequence of our modified BC (® = x). If we
study finite chains with PBC (® = 0), as it has been done
in most of the earlier works, all quantities are found to
be smooth in 8. To see the type of the phase transition
at Orpg in the thermodynamic limit, we plot in the inset
of Fig. 4 the left and right derivatives of the ground-
state energy for different values of N. Extrapolation to
N — oo seems to indicate a common slope on both sides
of Otg, and thus it strengthens the prediction that the
transition is of second order.

As for the levels in the £ = 7 sector, another unex-
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FIG. 4. Schematic illustration of the most important lev-

els for a twist ® = w in the vicinity of érs. The special
behaviors at s and . are detailed in the text. The inset
shows the left and right derivatives of the ground-state en-
ergy at @t vs 1/N. The dashed curve is an extrapolation to
N — o0.
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pected behavior is found around 6.(N). As mentioned
before, at this point there is a level crossing in the un-
twisted chain (® = 0) between the lowest-lying k = =
levels of the S = 0 and St = 1 sectors. This level cross-
ing has interesting consequences for the behavior of these
levels when the chain is twisted. For any 6 # 6., curves
b and ¢q are quadratic in ® near ® = 0, but they become
linear at & = .. It is only c¢; that remains quadratic.
While for 8 < 6, curve ¢y (i.e., the S% = 0 state evolving
from the St = 1 state at ® = 0) lies higher than curve
b, the order of the levels is reversed for 8 > 6.. However,
there is no level crossing between these levels at any fi-
nite ® # 0. The level that is denoted by b above 8., is a
continuation of level cg below 6. and vice versa, in much
the same way as was found for levels a and dp around
Org. This situation is also illustrated in Fig. 4.

Now we turn to analyzing the scaling properties of the
different gaps using our twisted BC with ® = 7. Figure 5
shows our results for the energy difference Ao(6) between
the lowest state in the k = 7, S% = 0 sector (level ¢ for
0 > 6. and level b for 6§ < 6.) and the “ground-state”
level a calculated with ® = 7 as a function of . Taking
into account that 6.(N) — Ot as N — oo, it should
scale to zero for 8 < O, and to the real excitation gap
for 8 > O1g. Using the twisted BC there is a sharp break
in the curves at frg. This break is the consequence of
the unusual behavior of the ground-state energy at O7g.
For 8 < 61 the gaps are negative, and the scaling to
zero is faster than 1/N. As 6 — 6rp this tendency seems
to slow down to a quasi-1/N rate. This is in agreement
with the asymptotic degeneracy of the two singlet levels,
and with the criticality at rg.

On the other side of ftg, extrapolations give positive

2.5

energy gap

1.5
-0.75

-0.25  0.00

8/

-0.50

FIG. 5. The energy differences Ao = min{Es, Ec,} — E,
(solid lines) and A; = E., — Eo (dashed lines) at & = =«
plotted vs 6 for different N. The exact limiting value for A;
at 0 = —7/2 is denoted by 0.

limiting values for the gap. For any N the curves starts
linearly with a very slight upward curvature (almost un-
observable in the figure). In the range 0 < 6 < 0.2,
i.e., in the neighborhood of the valence-bond state the
convergence is extremely good. If the gap in this region
goes continuously to zero at frp, it seems that the gap
function should have an upward curvature. The question
is whether at Ot the gap opens linearly or with zero
slope. Figure 6 shows this derivative of Ay as a function
of 1/N. The points lie on a curve with downward curva-
ture. Although the possibility cannot be excluded that
for N — oo the slope goes to zero, any standard extrapo-
lation method gives a finite intercept with approximately
Af ~ 1.5 as N — oo. Using again the argument that the
energies at ® = w may differ from the energies at & =0
by order 1/N, we conclude that even with PBC (® = 0)
the gap opens linearly with 8 — 61g.

The gap A1(6), using now the S% = 1 component ¢;
of the “triplet” state is also shown in Fig. 5. Since the
curve c; evolves from the St = 1 state at & = 0, this
gap is expected to converge to the real excitation gap on
both sides of 8. There is again a break in the curves
at Org. For 6 < Ot the gaps have definite downward
curvature. The situation is different for 8 > 61 because
of the appearance of an inflection point. Computing the
slope at 6t has any relevance only if the region where
the curvature is downward does not shrink to zero as
N — oo. With this proviso, the left and right derivatives
are plotted in Fig. 6 versus 1/N. Extrapolation from
the left derivatives A{_ is again uncertain because the
points lie on a curve with downward curvature. For the
right derivatives A7, however, this curvature is slightly
upward, and thus a more reliable extrapolation is possi-
ble. The intercept A}, (N — o) ~ 0.6 is clearly finite,
indicating the linear opening of the gap in the thermo-
dynamic limit.

As a generalization of the singlet-quintuplet gap of the
model with PBC, the gap A2(8) between levels a and
do is plotted in Fig. 7 as a function of 6 for different
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FIG. 6. Slopes of the energy gaps to various excited states

at Orp as a function of 1/N. Dashed lines denote the sug-
gested scaling behavior with finite intercept for large N.
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FIG.7. Gap inside the sector k = 0. The energy difference

Az = E4y(® = 7) — Eo(® = ) is plotted for different chain
lengths N. The exact limiting value at § = —m/2 is denoted
by O.

chain lengths. Although there is a very slight upward
curvature on the right-hand side close to frg, it is almost
unobservable in the figure, and up to N = 14 the opening
of the gap is linear in |@ — frg|. In order to see that
the gap is in fact finite on both sides, we show in Fig.
6 the slope of the gap Aj at 6rg. The left and right
derivatives are equal for any finite N because of the level
crossing. Similarly as for some of the other curves of
the figure, extrapolation to N — oo is not easy because
of the downward curvature, but again any reasonable fit
gives a finite intercept and hence a finite slope for the
opening of the gap.

IV. PHASE TRANSITION AT Ops = 7 /4

In Ref. 16 we gave a detailed analysis of the model
in the vicinity of the Lai-Sutherland point, 615 = 7 /4
and in the region 7/4 < 8 < /2, using PBC. We have
found that the exact solution® at fps, with three soft
modes, remains stable in the whole antiferromagnetic re-
gion above 61, i.e., there is an extended critical phase
with central charge ¢ = 2 , which replaces the massive
Haldane phase if the biquadratic exchange dominates.
Using chain lengths NV = 0 (mod 3) the ground state is
always found to be in the St = 0, k = 0 sector, while
the first excited state has momentum k& = +27/3. It is
an St = 1 or St = 2 state for § < frs and 6 > 05,
respectively.

The tripled-periodic state was also reported indepen-
dently by Nomura and Takada,'® although they argued
that it is a trimerized massive phase. This does not
seem to agree with our finding. Even for relatively short
chains, N < 15, the gap to the quintuplet £k = +27/3
state scales to zero as 1/N in the whole O,s < 0 < 7/2
regime. Provided we see the real asymptotic behavior,
i.e., the quintuplet states are really degenerate with the
ground state in that range, our arguments in Sec. II ex-
clude the possibility of a massive spectrum. There must

exist a low-lying continuous branch of St > 1 excitations
which involves the quintuplet k = +27/3 states, as well.

Some of the main questions that remained open in Ref.
16 concern the location and the type of the phase tran-
sition. Using PBC we found a local minimum in the gap
below 61s, which seemed to indicate a transition point
6. < OLs. Reliable extrapolation was, however, not pos-
sible due to strong finite-size effects. The same effect
made impossible to determine the type of transition at
Ors. On the other hand, as we have found a whole line
of critical points, our first guess could be an unconven-
tional Kosterlitz-Thouless-type phase transition.?? In the
rest of this section we try to study these problems using
our modified BC.

Since the model is integrable at rs, it could be ex-
pected that the adiabatic variation of the energy levels
shows special behavior at this point, too. We show in
Fig. 8 the energies of the two lowest levels as a function
of the twist angle for a chain with N = 9 sites. One
evolves from the singlet k = 0 state, while the other from
the S§% = 0 component of the triplet (for & < 6ig) or from
the quintuplet (for 8 > 6p5) k = 27 /3 state. It is found
for § = 015 [see Fig. 8(b)] that the two levels become
exactly degenerate for any finite N at ® = +27/3 +27mm
(m integer). Thus, using a twisted BC with ® = 27/3,
there are no finite-size corrections to the gap, it vanishes
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FIG. 8. Adiabatic variation of the S% = 0 components of

the lowest energy levels with momentum k = 0 (solid line) and
k = 2w /3 (dashed line) of a chain with N = 9 as a function
of the twist ® for (a) § = 0.2m, (b) 6Ls = 7/4, (c) § = 0.37.
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identically for all N. Looking first at the range 6 > 6y,
it is seen in Fig. 8(c) that the crossing points move to-
ward ® = 0 and 27 as 6 increases. In the whole interval
[2m/3, 4w /3] the order of the levels is reversed, compared
to the situation at ® = 0. Using again that the variation
of the energy is of order 1/N, we conclude that at ® =0
the energies of the k = 0 singlet and the k = +27/3 quin-
tuplet states should be close of order 1/N, and therefore
the phase must be gapless. Further confirmation is ob-
tained if we plot in Fig. 9 the energy difference of the
k =0 and k = +27/3 levels at ® = 27/3. In the re-
gion frs < 6 < 7/2 the gap seems to scale somewhat
faster than 1/N. Nevertheless extrapolations show that
the scaled gap tends to finite values here, i.e., the scaling
rate is still 1/N for long enough chains. This is in full
accordance with our previous results in Ref. 16.

For 6@ < 0.5 the behavior is different. As seen in Fig.
8(a), the 0 values where the levels cross, approach each
other, and eventually the level crossing will disappear,
indicating that a finite gap might open here. Figure 9
shows that for 6 < 61,5 the gap converges rapidly to a fi-
nite value. The scaled gap NA increases rapidly with N,
except for the immediate vicinity of 0g. This allows to
define a renormalization transformation and to study the
critical behavior of the model. In the spirit of finite-size
scaling it is required that the model of N sites with cou-
pling 8 should have the same behavior as another system
of N’ sites with coupling #’. Since the scaled gap should
be independent of the system size, a renormalization-
group transformation from (N, 6) to (N’, 8') can be
generated by requiring, that

NA(G,N)= N'A(¢',N") . (25)
The Callan-Symanzik 8 function, defined by
o6
B0) = —N == ; (26)
ON N A=const

energy gop

0.35

0.15 0.25 0.45
6/r
FIG.9. Excitation gap Eo(k = 27/3)— Eo(k = 0) between

the lowest state with momentum k = +27/3 and the k = 0
ground state vs 0 at a twist angle & = 2x/3 for different chain
lengths N.

contains all the relevant information on the transition.
From the scale invariance of the scaled gap we get

ANA) ) ANA)
BT do + ON dN =0, (27)
and thus
B(6) = NO(NA)/ON _ OIn(NA)/8In N (28)

8(NA) /56 8In(NA)/58

In a second-order phase transition the gap opens with a
power law. Near the transition point 6,

A(6) x (6. — 6)”, (29)
and in that region of 6 the 8 function is linear,
BO) = (6. —6)/v . (30)

In the case of a Kosterlitz-Thouless-type phase transi-
tion, however, the gap opens as

__ J const - exp[—c(6, — 6)77] for6 <6, ,
A(G)‘{o for 6> 6, ,
(31)
and
1 140
8(6) = pom (6. —9) for6 <6, , (32)
0 for6 > 6, .

Roomany and Wyld® have shown that for discrete lat-
tices, where the chain length can be varied by multiples
of the lattice constant only, the expression for the 3 func-
tion in Eq. (28) should be approximated by

_ In[N'A(8, N')/NA(6, N)]
In(N’/N)1 % In[A(6, N)A(8,N")]

These § functions computed for (N =6, N' =9), (N =

9, N’ =12), and (N = 12, N’ = 15) are plotted in Fig.

10. They show only minute-size dependence for 8 < fys.
As they behave definitely nonlinearly below 61,5 we fitted

B(6)

(33)
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FIG. 10. The Callan-Symanzik 3 function calculated for
different pairs of chain length (N, N').
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them by the form in Eq. (32) assuming 6, = frs. The
best fit for the parameters ¢ and o gives

¢c=114£03, 0=08+0.2. (34)

From this we conclude that the transition is of the
Kosterlitz-Thouless type. For 8 > f1g the finite-size ef-
fects are quite strong in the § functions. Since the gap
vanishes identically at § = fs and 6 = 7 /2, there is al-
ways a value between them where its derivative is zero.
As this derivative appears in the denominator of Eq. (28),
this leads to a necessary divergence in the 8 function.
Otherwise, as the chain lengths are increased, the curves
seem to converge to the expected 8 = 0 value on both
sides of the discontinuity.

V. CONCLUSIONS

In this paper we studied numerically the phase tran-
sitions in the bilinear-biquadratic isotropic spin-1 chain.
The strong finite-size corrections that generally hinder
the observation of the true asymptotic behavior for small
system sizes were reduced by appropriately modifying the
boundary condition. It was found that at both integrable
points, g and f1g, a suitably chosen twisted BC gives
identically vanishing gap for arbitrary chain lengths. Al-
though, it was not possible to totally get rid of the size
dependence inside the various phases, the finite-size ef-
fects proved to be much easier to handle.

The transition at g = —n/4 was studied using a
twist & = 7m. We analyzed the behavior of several en-
ergy levels and gaps, and concluded that for 8 < 61y the
energies of the singlet £k = 0 and k£ = 7 levels become
degenerate and these two levels form the ground state.
For 8 > 6rp the ground state is a nondegenerate sin-
glet k = 0 state. The gap was found to open linearly on
both sides of rg . These results are in agreement with
the predictions by Affleck® who argued, using an approx-
imate field-theory mapping, that this transition belongs
to the same universality class as the (1 + 1)-dimensional
Ising model.

In the next part of the paper the vicinity of the other
integrable point, O s = w/4 was studied. Both numeri-
cal and analytical arguments were given to support our
previous finding that in the region w/4 < 6 < 7/2 the
model is massless. The analysis of the Callan-Symanzik
[ function indicates that the transition from the Haldane
phase to this critical phase with three soft modes is of the
Kosterlitz-Thouless type. The characteristic parameters
of this transition were also estimated.
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