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An attempt is made to show the close connection between martensitic transformations, the Invar
effect, magnetovolume instabilities, and associated low-moment-high-moment (LM-HM) transitions.
For that purpose we study the volume dependence of electron occupation and magnetization of e, and
t,g states in ordered Fe;Ni. We show that in this compound the instability against small tetragonal dis-
tortions, the Invar behavior, and the LM — HM transitions are a consequence of the delicate balance of
charge distribution and magnetic order from d orbitals having different bonding character. Our calcula-
tion is a generalization of the cluster calculation of Kaspar and Salahub who have speculated that the In-
var effect is a consequence of thermal excitations of electrons from the antibonding majority-spin level to
close-lying nonbonding minority-spin orbitals at the Fermi energy Er. Our fixed-spin-moment (FSM)
calculation confirms the presence of these orbitals close to Er in Fe;Ni. In addition we have extended
the FSM calculations to finite temperatures with the help of a semimicroscopic spin-fluctuation theory,
which allows the study of the temperature evolution of the HM and LM states of Fe;Ni. We find that
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the states merge with increasing temperature.

L. INTRODUCTION

Certain transition-metal alloys like Invar, Fey ¢,Ni, 34, !
exhibit unusual thermal properties typified by an anoma-
lously low thermal expansion near room temperature.
Currently these properties are assumed to be a conse-
quence of the existence of a magnetovolume instability
within the range of thermal excitations (for a recent sur-
vey see Ref. 2). Although the general features of the In-
var effect can be qualitatively understood in terms of this
instability, a detailed microscopic theory of Invar is still
missing.

An attempt to introduce a detailed picture of the Invar
effect was undertaken by Weiss.® He introduced two
states labeled ', and y,, where the first one is associated
with large volumes and high magnetic moments (HM)
and the latter one with small volumes and low magnetic
moments (LM).*® The Invar effect is then driven by a
thermal depopulation of y; and subsequent population of
v,- This so-called two-states model was successfully ap-
plied to explain experimental findings. In spite of its suc-
cess, this model is a purely phenomenological statistical
model and the actual existence (i.e., the simultaneous
presence) of the two states has never been verified experi-
mentally.

This fact led other authors to introduce Invar models
where the existence of separated LM and HM states is no
longer a necessary prerequisite. Kakehashi (for recent re-
views and further references therein see Refs. 4 and 5) as-
sumes that the Invar effect is a consequence of a gradual
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transition from strong to weak magnetism due to thermal
excitations. In the actual calculation, Kakehashi used
the single-site spin-fluctuation theory. In order to do the
functional integration he had to assume a very simple
model density of states to account for the actual electron-
ic structure of Fe;Ni (Ref. 6). Investigations along simi-
lar lines were undertaken by Hasegawa”® who found that
with increasing iron content, the ratio of the root-mean-
square value of local magnetic moments at 7, to the
ground-state moment, becomes small in the Invar region.
This, in turn, leads to a large spontaneous volume magne-
tostriction w; in the Invar alloy.

By going beyond the single-site theory Kakehashi
showed that local environment effects on the local mo-
ments are very important for the magnetization versus
concentration curve in Fe-Ni alloys. Although the re-
sults describe the experimental trends quite well, drastic
approximations were made to overcome the mathemati-
cal difficulties in solving the finite temperature band
theory including the effect of spin fluctuations.

Williams et al.® used band-structure calculations to
give the phenomenological Weiss model a quantum-
mechanical basis and to provide an itinerant electron in-
terpretation. They used an ordered Fe;Ni structure to
simulate the Invar alloy and found that the ferromagnetic
ground state has its equilibrium at a larger volume than
the nonmagnetic state which lies slightly higher in ener-
gy. Recent high-precision calculations!® verified the ex-
istence of an additional low-moment state leading to a
magnetovolume instability. On the basis of these results
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the Invar effect is explained by the specific temperature
evolution of the LM and HM states which are assumed to
merge at high temperatures. However, the nature of the
mixing of these states remains unclear.

In spite of its simplicity, the model has proven to be
very successful. Moruzzi'! has shown that the gradual
transition from the high-volume (HM) to the low-volume
(LM) state with increasing temperature can be accounted
for by combining total-energy-band calculations with the
Debye-Griineisen theory. In his formulation the temper-
ature evolution of the free energy is governed by volume-
dependent quantities, the rigid-lattice total energy E (V)
and the volume dependence of the Debye temperature
O=0y(Vy/V), where V is the volume and ¥V, is the
rigid-lattice equilibrium volume. By choosing a different
set of thermal parameters (V,,®,, and y) for the HM and
LM branches of ordered Fe;Ni, Moruzzi observed that
Invar behavior requires that the HM solution defines the
ground state at low temperatures, while the LM solution
leads to the ground state at high temperatures. This
theory qualitatively explains the anomalous temperature
dependence of the thermal expansion, bulk modulus,
magnetization, high-field susceptibility, and the different
pressure dependencies of the lattice constant at different
temperatures of Invar.

A different microscopic investigation was undertaken
by Johnson et al.'>”'* They used a self-consistent
KKR-CPA study of the Fe-Ni system for different
volumes and investigated the competition between bond-
ing and magnetism. More recently they used a mean-field
statistical mechanics approach at finite temperatures
which uses the accurate KKR-CPA energy for the
configurationally averaged energy as input. With increas-
ing Fe content, the theory predicts a crossover in the In-
var region from the HM state to a state of magnetic dis-
order and then to a nonmagnetic state. This should be
the underlying mechanism that produces the Invar phe-
nomena. In contrast to Moruzzi’s picture, here, one has
more than two competing states.

The possibility of stabilizing competing states with
different magnetic moments and different volumes but
equal total energy is very intriguing. In this context, re-
cent computer simulations in which itinerant magnetism
of fictitious amorphous Fe and realistic Fe, _,Zr, alloys
were studied by Krey et al.’> In these simulations, 54
atoms with periodic boundary conditions were used. The
position of the atoms was relaxed to metastable equilibri-
um in Lennard-Jones potentials, while the electronic con-
tribution was described by a Hartree-Fock decomposed
multiband-Hubbard model together with a Koster-Slater
parametrization. !¢!7 These authors observed that stable
or metastable solutions with different average magnetic
moments have nearly equal total energy and density of
states, but can be stabilized by changing the magnetic
history of the sample, which could be effected in the
simulation by changing the value of the external magnet-
ic field. The authors also observed HM—LM transitions
at specific volumes.

In a subsequent paper this method was applied to
disordered iron-nickel Invar alloys with particular em-
phasis on the Invar region around 65% Fe.!'® It is re-
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markable that these model calculations reproduce the ex-
perimental magnetization curve in the whole concentra-
tion range. In addition they found that the drastic
change in the Invar region comes from the dependence of
the Fe moments on the concentration and environment.
Since this calculation was carried out for 7=0 only, in-
formation about the Invar effect was derived from the
volume dependence of the magnetization per atom. Mag-
netovolume effects were solely driven by the Fe moments,
since the Ni moments remain constant around the Invar
composition (65% Fe). The relatively smooth increase of
the magnetization with volume suggests that in the actual
disordered Invar alloy there are not only two Fe states
with different moments and different lattice constants as
proposed by the Weiss model or by the binding surface of
Fe;Ni, but a continuum of states. These observations
agree with the findings of Kakehashi and Johnson et al.
that more than two dominating states are important.
Moreover, the older hypothesis which attributes the In-
var effect to an antiferromagnetic interaction between lo-
calized Fe spins!®"?! seems to be incorrect and thus a
theory (at least at low temperatures) should be based on
band-theoretical calculations rather than on Heisenberg-
like models.

Moreover, we would like to point out that despite ela-
borate band calculations it has never become clear why
the stabilization of competing magnetic states should
happen at the magic occupation numbers of 8.6 electrons
per atom in ferromagnetic and at 7.7 electrons/atom in
antiferromagnetic Invar alloys.??~2* It remained unclear
to which extent the magnetovolume instabilities, the In-
var behavior, and martensitic transformations are interre-
lated. This connection between different physical proper-
ties in a series of fcc 3d alloys and the electron concentra-
tion per atom was qualitatively explained by Wasser-
mann®>?® on the basis of recent band-structure calcula-
tions.?*"%7 He showed that the calculated energy
difference?#?>2”  between LM and HM states,
AE=Ey—Eqgm, as a function of the electron concen-
tration, e/atom, becomes very small at the threshold
values 7.7 and 8.6. Small changes in the electron concen-
tration around these thresholds lead to anomalous behav-
ior of physical quantities such as the spontaneous volume
magnetostriction at zero temperature o,, the thermal ex-
pansion coefficient at room temperature agr, the Debye
temperature ®,, and the electronic specific-heat
coefficient ¥. Note that these anomalously large varia-
tions of physical quantities in the Invar region with small
changes of e/atom or of AE bring us back to the phenom-
enological Weiss model. Wassermann discussed the simi-
larity between calculated AE as a function of e/atom and
the curve representing the Weiss model. However, we re-
peat that the occurrence of two competing magnetic
states (with different volumes) at finite temperatures has
not yet been found. What has been observed by
Mossbauer measurements on Fegg sNij; 5 and Fe;,Niyg is
a gradual transition from the HM to the LM state at low
temperatures under high enough pressure. %

A completely different explanation of the origin of the
Invar effect was given by Kaspar and Salahub, 2% who per-
formed calculations on small clusters (Fe,;, Fe,Ni, and
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Ni;). They used the energy levels together with the
rigid-band model to explain the Invar effect and argued
that the anomaly is due to a special position of the Fermi
level in the ferromagnetic electronic structure of the
Fe-Ni alloy, which shows a rather peculiar situation at
the Invar Fermi level. They found that for a narrow
range of Ni concentration, strongly antibonding
majority-spin orbitals and nonbonding minority-spin or-
bitals lie close in energy. They attribute the Invar effect
to thermal excitations of electrons from the antibonding
majority spin just below Ep to nonbonding minority-spin
states just above Ep resulting in a contraction of the
bonds which can counteract the vibrational lattice expan-
sion.

Recently, these conclusions of Kaspar et al. were criti-
cized by Podgorny,*® who argues that their energy-level
diagrams do not resemble the actual energy bands of ei-
ther Fe or Ni. Podgorny investigated the electronic struc-
ture of the ordered structures Fe;Ni, FesNi;, and Fe,Ni,,
where the second is close to the FeysNijs composition.
He finds a crossover from strong to weak ferromagnetism
between Fe,Ni, and Fe;Ni at the Invar composition
FesNi;, which is just at the borderline. He ascribes the
Invar effect in accordance with Moruzzi to nearly degen-
erate HM and LM states.

Apart from first-principle band structure or cluster cal-
culations, there exists a different approach based on a
Ginzburg-Landau (GL) formulation of magnetovolume
effects which has proven to be quite successful.’! ™35 A
magnetovolume term is included in the GL expression of
the free energy of a ferromagnet [#=l1Bw’
+a(w,—o)m*+bm*+ - -+ ], giving rise to a spontane-
ous volume magnetostriction at zero temperature,
w,, =(V—Vy)/Vy=kam}, where k=1/B is the compres-
sibility, @ a coupling constant, and m the uniform mag-
netization. Moriya and Usami improved this result by al-
lowing for longitudinal and transverse spin fluctuations
which were integrated out following the mode-mode cou-
pling theory of Murata and Doniach.?® With spin fluc-
tuations the change in volume between T'=0 and T=T,
is now 2kam} instead of kam§,

Recently Takahashi®’ confirmed the results of Moriya
et al. using a different approach in which the local spin-
fluctuation amplitude is assumed to be nearly constant, as
in weakly ferromagnetic metals. He found it essential to
retain a g-dependent magnetovolume coupling constant
in order to obtain a large magnetovolume effect. He finds
that, in general, the magnetostriction is not proportional
to m?2, but to the reciprocal susceptibility.

In spite of its simplicity this GL formulation contains
interesting features and becomes a first-principle scheme
when the GL coefficients are determined by means of
band-structure calculations using the fixed-spin-moment
(FSM) method,*®* which provide zero-temperature
binding surfaces as a function of magnetic moment and
volume.**~* This functional, with the help of spin-
fluctuation theory, allows a description of HM and LM
states and their thermal evolution, and show that the LM
and the HM states can merge together at the Curie tem-
perature, similar to what happens in the Griineisen for-
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mulation.

This short survey of a few selected Invar theories
shows that there are different and also contradictory
theories of the Invar effect.

The aim of this paper is to deepen our theoretical un-
derstanding of Invar and martensitic systems and to try
to resolve the contradictions. In order to do this we have
concentrated on one particular system, namely Fe;Ni,
and have performed detailed fixed-spin-moment band-
structure calculations.

One particular aim was to check whether the explana-
tion of the Invar effect as given by Salahub et al. on the
basis of cluster calculations holds also for the case of a
stoichiometric, itinerant magnetic system. This is done
in Secs. II and III. In Sec. II an e, t,, description of the
magnetovolume effects and the magnetovolume instabili-
ty in Fe;Ni is presented. In Sec. III a detailed discussion
of band structures and densities of states (DOS) is given.
We confirm the findings of Kaspar and Salahub, since we
find antibonding majority- and nonbonding minority-spin
states near the Fermi energy. However, in contrast to
Salahub et al., we associate the Invar effect with a pin-
ning of the Fermi energy in a pseudogap which opens at
the Fermi surface due to symmetry breaking at finite tem-
peratures by strong coupling of electrons to longitudinal
and shear modes. At zero temperature, we mimic this
dynamic symmetry breaking by a frozen phonon calcula-
tion (i.e., by allowing for tetragonal distortions). This
distortion actually leads to such a pseudogap. We con-
sider this pinning and the resulting stabilization of small
distortions as a possible explanation for the formation of
premartensite in Invar.

Furthermore, we show in Sec. III that ordered Fe;Ni is
unstable with respect to a martensitic transformation
from the high-temperature face-centered structure to the
low-temperature body-centered structure. We argue that
this instability is not only a consequence of large magne-
tovolume coupling, but it seems to be related to coherent
electron scattering connected with Fermi-surface nesting.
The implication of this transformation for the Invar
effect will be discussed in some detail. In order to
demonstrate how close in concentration Invar and mar-
tensite are, we show in Fig. 1 the phase diagram of the
Fe-Ni system.>*° Because of this closeness, we believe
that calculations for hypothetical fcc Fe;Ni can yield in-
formation about the underlying microscopic mechanism
which gives rise to the Invar effect.

The involvement of lattice degrees of freedom in Invar
leads to an unusual temperature behavior of the longitu-
dinal elastic constant C; and the elastic shear constants
C,, and C’ for the Invar alloy FegsNiss.’! All three elas-
tic constants show pronounced softening over the tem-
perature range for which the thermal-expansion
coefficient is practically zero. Therefore, Invar effects
and effects associated with the onset of a structural trans-
formation in the Fe-Ni system must be related since
FegsNiys is close to this transition. It is further remark-
able that the difference between the shear moduli of the
hypothetical paramagnetic state and the magnetic state,
AC,, and AC’, scale with m?, while the longitudinal
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FIG. 1. Magnetic and structural phase diagram of Fe,Ni, _,
(Ref. 2). Curie temperatures in the ¥ phase and the magnetic
moment in the a and y phase are given as function of the Fe
concentration. In addition, the martensitic transition tempera-
tures corresponding to 10 and 90% martensitic transformation
are shown. Note the closeness of the HM-Invar region and the
region of structural y —a transformation. Also shown is the
Wigner-Seitz radius at 7=290 K. It displays a maximum in the
Invar region where the magnetization is maximal also.

modulus (which is associated with the volume change)
does not obey a power law behavior, and that the soften-
ing starts far above the Curie temperature. As will be
discussed in Sec. III, we believe that the Invar effect and
the formation of martensite in Fe-Ni are just two
different aspects of the system being close to a magneto-
volume instability.

In Sec. IV we apply the FSM-GL theory to Fe;Ni. In
addition we discuss how this theory can be improved
with the help of a many-body Hamiltonian which con-
tains the essential ingredients of our FSM calculations.
This leads to an order-parameter concept for Invar which
is based on the mixing of antibonding majority- and non-
bonding minority-spin states close to Eg.

Section V contains a summary of the most important
results.

II. AN e,, t,, DESCRIPTION OF
THE MAGNETOVOLUME INSTABILITY IN Fe;Ni

It is well known from the band theory of transition
metals that the exchange splitting of the d bands which
leads to magnetism results in a transfer of charge from
minority-spin to majority-spin states. This charge
transfer usually occurs among antibonding orbitals near
the top of the d bands and leads to an expansion of the
volume and a reduction of the kinetic energy associated
with the occupied s and p states (which, in turn, leads to a
softening of the system as implied by the reduction of the
bulk modulus).’?> With increasing temperature, the mag-
netization as well as the magnetic contribution to the lat-
tice expansion decrease. This means that in ideal Invar
alloys the decrease of the magnetic contribution to the
lattice expansion would be exactly compensated by the

8709

usual thermal expansion of the lattice with increasing T.
The question is, how is such an exact cancellation possi-
ble?

In this and the following section we show that the
charge transfer among antibonding and nonbonding
bands of different spin symmetry close to the Fermi ener-
gy E is different in Invar systems as compared to other
itinerant magnets like bcc Fe and that this is of crucial
importance for an understanding of Invar properties.
First, FSM band calculations of ordered fcc Fe;Ni show
zero-field results which consist of LM solutions at small
volumes and HM solutions at large volumes. The two
types of solutions require the zero-field total energy E (V)
to be represented as two separate but crossing curves
which terminate near the crossing point. This result im-
plies a first-order magnetovolume transition from the LM
to the HM state. At zero temperature, the ground state
of Fe;Ni corresponds to the HM high volume branch.
However, the minimum of the LM low volume branch
occurs at about 1 mRy above the HM branch, well within
range of thermal excitations. These features are shown in
the zero-field energy versus volume curves in Fig. 2(a).
The volume dependence of the electronic charge, decom-
posed into e, and t,, contributions, is also shown in Fig.
2(a). As can be seen, the charge associated with e, states
decreases while the charge associated with 7,, states in-
creases with increasing volume. At the critical volume
marking the transition from the LM to the HM state, we
note a discontinuity in the charges. That is, there is an
abrupt transfer of charge from e, to 7,, states at the mag-
netovolume instability. Note that this e, —7,, charge
transfer, (i.e., charge transfer from dd bonds into ddo
bonds) is necessary to stabilize the high moment and the
large volume of the fcc lattice. Our investigations show
that there is much less charge transfer among orbitals in
bee Fe when the lattice is expanded. Thus, Invar systems
can be characterized by an anomalously large e, —7,,
charge transfer on the HM side.

In Fig. 2(b) we show the calculated magnetic moments
associated with iron and nickel e, and ?,, states as a
function of volume. The magnetovolume instability is
manifested by the discontinuity in the moments. At the
volume corresponding to the instability, the system can
exhibit either HM or LM behavior with no change in en-
ergy. We note that although Fig. 2(a) implies an abrupt
transfer of charge from e, to f,, states, Fig. 2(b) shows
that on the LM side, LM iron moments are mostly of trg
character while the HM iron moments are mostly of e,
character for the transition volume. On the other hand,
the relatively large magnetic moments of #,, charges on
the HM side means that the HM high-volume state is sta-
bilized by a substantial amount of covalent magnetic mo-
ments. For larger ryg values, the iron ¢,, moment again
dominates. Second, as a function of volume, the
majority-spin and minority-spin e, and t,, states associ-
ated with iron and nickel shift in energy. In Fig. 2(c) we
show the energy relative to Ep of e, and t,, eigenvalues
at the X point of the Brillouin zone and for energies close
to the Fermi energy. We note the splitting of the states
at the onset of the LM solutions. We also observe that
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for the ground state of Fe;Ni at ry¢=2.605 a.u. and in
the vicinity of Ep, states of different bonding character
and different spin symmetry cross. Slightly below Ep we
find an occupied majority-spin X; state of mainly ¢3, an-
tibonding (AB) character and right at E; the minority-
spin X state of mainly e, AB character. In addition we
have slightly above Eg, the unoccupied minority-spin X5
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state of mainly #,, nonbonding (NB) character. The aim
of this plot is to show that this specific level crossing,
which corresponds to the level crossing found by Kaspar
and Salahub in their cluster calculation, actually occurs
only in the HM state for volumes close to the ground-
state volume. It does not occur in the LM state or at the
magnetovolume instability. We have checked other sym-
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FIG. 2. (a) Volume dependence of the zero-field energy and e, /¢,, state occupation (electrons) for Fe;Ni; (b) volume dependence
of the zero-field e, and t,, contributions to the local moment for Fe;Ni; (c) volume dependence of e, and t,, eigenvalues (relative to
Ey) at X for Fe;Ni. Dotted curves correspond to e, and solid and dashed curves to ¢,, eigenvalues. Note the crossing of antibonding
majority-spin (X;), antibonding (X}) and nonbonding (Xs) majority-spin states close to Er (marked by a circle) in the ground state

(rws=2.60 a.u.).
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metry points and find that this kind of level crossing of
states of different bonding character and spin symmetry
is most pronounced for momentum vectors close to the X
point.

Since results of early molecular-orbital-clusters calcula-
tions for Fe;, Fe,Ni, and Ni;; qualitatively agree with
our considerations which are based on FSM calculations
for Fe;Ni, we briefly discuss the findings of Kaspar and
Salahub. The cluster calculations showed that the physi-
cal basis of the phenomenological two-states model of
Weiss is a rather peculiar situation at the Invar Fermi
level where strongly antibonding majority-spin and non-
bonding minority-spin orbitals lie close in energy, and
that this situation exists only over a narrow range of Ni
concentration. Kaspar and Salahub believe that empty-
ing the antibonding majority-spin orbital with increasing
temperature results in a contraction of the bonds which
counteracts the vibrational lattice expansion. Our FSM
calculations show that we indeed find this crossing of an-
tibonding majority-spin and nonbonding minority-spin
states at Ep on the HM site, while the same crossing
occurs on the LM site at energies far below Ep. This is,
in our opinion, one of the reasons why Invar can be
typified by the HM state.

On the basis of this discussion we can conclude that if
the Kaspar-Salahub explanation of the Invar effect is
true, then it works only in the HM state. However, Kas-
par and Salahub have not explained why, with increasing
temperature and with decreasing exchange splitting, the
same level crossing always occurs at E.

One possible mechanism which could stabilize and pin
the observed level crossing close to E; could be a strong
coupling of electrons in the majority-spin AB X; and the
minority-spin AB X and NB X, states to those lattice
modes which are responsible for the softening of the elas-
tic constants. This would lead to a dynamic coupling and
mixing of AB majority-spin and NB minority-spin states
at elevated temperatures and could lead to a small gap in
parts of momentum space which actually would pin the
Fermi energy in the gap. This is investigated in the next
section. Pinning of Ey would lead to small thermal ex-
pansion, since it hinders further charge transfer from e,
to t,, states, which would be necessary to expand the lat-
tice further.

Another possibility is that with decreasing exchange
splitting this specific level crossing gets pinned very close
to the magnetovolume instability. This then comes close
to Moruzzi’s picture, where the Invar effect is related to
the observation that at high temperatures, the HM and
LM states might merge. Hence the possibility of pinning
Ep would explain why LM and HM states could remain
lying close in energy over a large temperature range
offering the possibility of a gradual transition from the
HM ground state to a LM high-temperature state
without any substantial change in volume.

We would like to remark that the crossing of states of
different spin and bonding character at Ey occurs, of
course, in most magnetic metals. Yet there is a remark-
able difference with respect to level crossing and position
of Ep in Invar and in stable magnets. This will be dis-

cussed in more detail in the next section. We also present
results of a frozen phonon calculation which reveals the
possibility of pseudogap formation due to kinetic effects.

III. THE ELECTRONIC STRUCTURE OF Fe;Ni

All Invar-related features must have a microscopic ori-
gin. That means that a detailed study of the band struc-
ture and density of states is required. The spin-density-
functional theory has shown that the total energy of a
system is rigorously defined when the spin density is
known. Practical application of this theory in the form
of band-structure calculations using the local spin-density
approximation for exchange and correlation®>>* yields
the well-established Stoner theory of itinerant magnetism.
Our band-structure results are obtained from first-
principles calculations employing the augmented spheri-
cal wave (ASW) method®> which includes effects of ex-
change and correlation via the spin-density-functional
theory. This treatment was extended by introducing the
FSM method which allows the calculation of total energy
as a function of the magnetic moment M and volume V,
yielding an energy surface of the form E(M,V) as is
shown in Fig. 3 for the case of Fe;Ni.

It has been shown that the total-energy surface con-
tains the information needed to describe all macroscopic
properties which are related to the Invar effect, as there is
in particular, a very low critical pressure for the disap-
pearance of magnetism and a large, negative magnetic
contribution to the thermal expansion coefficient. Both
features are related to a total-energy surface which is
very flat in the M,V space. In this context, flat means
that the difference in total energy between two extremal
(dE /dM =dE /dV =0) points on the surface is small, be-
ing of the order of room temperature. It is evident that
the existence of two separated magnetic states causing a
magnetovolume instability is driven by the same mecha-
nism which also causes a flat energy surface. That ex-
plains why most Invar systems are close to a magnetovo-
lume instability although the existence of such an insta-
bility is no prerequisite for the existence of Invar-related
phenomena. 443

A. Density of states

Both iron and nickel are members of the 3d transition-
metal series. As their atomic number differs only by 2,
one expects that the electronic structure of alloys formed
by these two elements shows a common band behavior.
This means that the d bands of both constituents fully hy-
bridize, showing most features of an fcc-like density of
states. It must be noted that this common band behavior
does not imply the applicability of a rigid-band picture.
Such an oversimplification of an alloy system would im-
ply an unphysical charge transfer from nickel to iron.>¢
Because of the very similar electronegativity of both ele-
ments, such an ionic behavior does not occur. The
different potentials for atomic number Z =26 and Z =28
and the different magnitude for the spin splitting cause
different positions of the spin-up and spin-down d states
at the two constituents. The hybridization between these
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FIG. 3. Binding surface of Fe;Ni obtained from FSM total-energy calculations. Energy contour lines are at 0.25 mRy/atom.
Note that below the thick solid curve the Ni moment becomes unstable and orders antiparallel to the Fe moment. For larger values
of the average magnetic moment per atom the Ni moment is forced to be parallel to the Fe moment. The dashed curve shows the
temperature evoluiton of the system as obtained from the FSM-GL theory. The inset shows FSM-GL results for the LM state. Here,

energy contour lines are at 0.02 mRy/atom.

states leads to a redistribution of the spectral weight of
the density of states for Fe and Ni. This effect is known
as covalent magnetism. >’

This behavior is now investigated in detail. In the fcc
structure each atom has 12 next neighbors. Experimen-
tally, Fe;Ni does not form an ordered structure; the
atoms are randomly distributed on sites of an fcc lattice.
In our investigation we approximate Fe;Ni by the or-
dered CujAu structure. Under this assumption each Fe
atom is surrounded by 4 Ni and 8 Fe atoms, and each Ni

atom has 12 Fe neighbors. One would therefore expect
that the effect of covalent magnetism will be much
stronger on Ni than on Fe. Analyzing the chemical
bonds in terms of orbitals with [ and t,, symmetry, one
finds that the e, orbitals are always directed to atoms of
the same kind, which are one lattice constant apart (com-
pare Fig. 4). A bonding along such a large distance will
always be weaker than one to next-nearest neighbors. Be-
sides these Fe-Fe or Ni-Ni dd o bonds, there is the possi-

bility for the dxz_yz orbitals to form a Fe-Ni dd 7 bond

FIG. 4. (a) ddm bonds of ¢, orbitals and (b) ddo bonds of t,, orbitals.
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between two neighboring atoms. The t,, orbitals point
towards the 12 nn. This means that for a Ni atom all
three ¢,, orbitals form ddo bonds with Fe atoms. For an
Fe atom, two of the three t,, orbitals form Fe-Fe ddo
bonds whereas the remaining ¢,, orbital forms an Fe-Ni
ddo bond. We therefore note that the Fe-Fe bonds will
dominate the electronic structure of these types of alloys.

It is interesting to analyze the properties of the basic
building block of the Fe;Ni structure, which is given by
an Fe atom together with its 12 neighbors forming the
cluster Fe[FegNi,]. For such a cluster the d states split,
according to the ligand field model, into bonding and an-
tibonding #,, and ¢, states which, because of the strong
ddo bond are well separated in energy and bonding, and
antibonding e, and e;‘ states which, because of the weak-
er ddo and ddw bonds, lie between the ¢,, states. Filling
these states with the eight valence electrons of Fe leads to
a cluster with a triplet ground state with the
configuration *T';, which is known to be unstable against
a Jahn-Teller distortion.’® Possible distortions can be
tetragonal along the z axis, or a rotation of, e.g., the four
Ni atoms against the remaining structure. Such ligand
field considerations are not new and have specifically
been used in the description of low-spin—high-spin transi-
tions in Fe I complexes. >3

It is noteworthy that the analogous cluster centered
around a Ni atom (ten valence electrons) would be unsta-
ble, because all bonding and antibonding states are filled.
For our analysis this means that any effects of the above
kind should occur on the Fe sites. Although it is evident
that in the metallic solid, the strong ligand fields which
occur in an isolated cluster are reduced by the shielding
effects of the conduction electrons, this simple model
points in the right direction.

Highly precise band calculations for Fe;Ni show the
coexistence of the LM and the HM states in a limited
volume range around a Wigner-Seitz radius of
2.55up/atom [see Figs. 2(a) and 3]. In Fig. 5 we show the
Fe/Ni decomposed densities of states for the LM [5(a)]
and the HM [5(b)] solutions, respectively. In addition,
Figs. 6(a) and 6(b) display the I" to X bands and the local
densities of states for the majority and minority HM
states decomposed into e, and f,, contributions.

In the LM case the magnetic moment appears almost
exclusively on the iron atoms. The reason for this behav-
ior is that the Fermi energy lies in a region of very low
DOS for Ni and high DOS for Fe. The DOS of the d
electrons of Fe in the nonmagnetic state is high enough
to fulfill the Stoner criterion. Thus Fe becomes unstable
against a spontaneous band splitting. In the LM case, the
band splitting is small so that effects of covalent magne-
tism are also very small. We find the bands almost rigidly
shifted, causing the magnetic moment to be zero on Ni
and finite on Fe only. The vanishing moment on the Ni
site is not only a consequence of the low DOS; the small
moment of the d electrons is compensated by the antipar-
allel moments of the s and p electrons. . In the LM state,
the Fermi energy for both spin directions lies in a
minimum of the e, DOS of iron (not shown), a position
which leads to the local total-energy minimum for the
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LM state. For the HM solution [Figs. 6(a)-6(f)] the situa-
tion is changed. Although a rigid-band model is no
longer valid, Figs. 5(a) and 5(b) show how the Fermi ener-
gy moves while going from the LM to the HM state. In
the majority band the Fermi energy passes through a
high peak in the DOS. This peak causes an energy bar-
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FIG. 5. Iron and nickel densities of states of (a) the low-
moment and (b) the high-moment states.
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rier between the LM and HM states. The system Fe-Ni is
thus an example of a metamagnet.

Figure 2(b) shows how this metamagnetic behavior
evolves with increasing volume. For small volumes the
system is in a nonmagnetic state. At a Wigner-Seitz ra-
dius of 7y, =2.475 a.u., the LM state starts and is found
as a single minimum in the total energy vs magnetic mo-
ment (M) curve. The HM state appears at ryg=2.545
a.u., being at first metastable with respect to the LM
state. In the volume range from ry,¢ =2.545—2.555 a.u.,
we find a coexistence of both the LM and HM states.
The E (V) curve describing this two-phase region has two
minima at the respective magnetic moments. For
Fws >2.555 a.u., the LM state disappears and only the
HM solution remains.

B. The high-moment state

The equilibrium volume is found at about rjs=2.6
a.u. where only the HM state exists. The splitting of the
nickel bands is limited by the small number of holes in
the nickel d band, leading to a full majority band and a
magnetic moment of about 0.6pp per nickel atom [Fig.
2(b)] as in pure fcc Ni. The magnetic moment at the iron
site is found to be about 1.9uy per iron atom. This value
is not only smaller than that of bcc Fe (2.2u5), but also is
smaller than the value one would expect for a hypotheti-
cal fcc Fe (2.6ug). This effect is due to the different de-
gree of hybridization between the majority-spin bands
which are about equal in energy and the minority bands
of nickel and iron which lie at different energies. This en-
ergy difference is not only caused by the different band
splitting, but also by the fact that a charge transfer from
nickel to iron is avoided by the more repulsive potential
of the almost full Ni d band pushing the Fe states even
higher up on the common energy scale. This effect leads
to what is known as covalent magnetism. The combina-
tion of all these effects causes the Fermi energy to take on
a special position in the band structure. For majority
spin, E lies in a region of antibonding states of mainly
t,, character with a small admixture of states with e,
symmetry. For minority spin, Ey is found in the non-
bonding states which are composed of about equal
amounts of states of both symmetry directions. The high
DOS at the iron site compensates for the strongly mag-
netic behavior of Ni and leads to the high susceptibility
observed. This positioning of E between antibonding
and nonbonding states resembles the findings of Kaspar
and Salahub.

C. Band structure and tetragonal distortion

The band structure of the cubic Fe;Ni phase is shown
in Fig. 6. We have chosen bands along the A symmetry
line between the center of the Brillouin zone (BZ) labeled
I' and the point X on the surface of the first BZ. In the
LM case there is only a minor change in the band struc-
ture compared to the nonmagnetic state. The pro-
nounced ?,, peak for Ni, just above the Fermi energy is
shown in the band structure by the flat A} band starting
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from I', whereas the A band is of mainly Fe ¢,, charac-
ter.

The larger energy separation of this A} band leads to
the region of very low DOS at the top of the Ni d band.
Even for the small splitting in the LM state, a broadening
of the minority bands is found, which is due to the
different energies for the Fe and Ni states. The HM case
(Fig. 6) finds the Fermi energy in a very special position.
For majority spin, we find a flat band of A} character
which consists mainly of antibonding Ni #,, states. This
band is responsible for the sharp peak in the Ni majority
15 DOS next to the Fermi energy. The antibonding #,,
and e, states at the top of the Fe d band stem from the A
and A5 bands crossing the Fermi energy, respectively.
For minority spin, the Fermi energy is found at a cross-
ing of nonbonding bands of A, and As character. From
the DOS (Fig. 6) one notices that the Fermi energy is ex-
actly at a crossover region where the Fe DOS changes
from mainly #,, to mainly e, symmetry. In the total
DOS this leads to a valley which is sufficient to stabilize
the magnetic moment. This analysis now resembles the
findings of Kaspar and Salahub who, from a molecular-
orbital cluster calculation, stated that for the Invar alloys
there is a rather peculiar situation at the Invar Fermi level
where strongly antibonding majority-spin orbitals and
nonbonding minority-spin orbitals lie closely together.
This is exactly the situation we find from the present
band-structure calculation. A very similar analysis was
given by Johnson et al., 12 who calculated the self-
consistent electronic structure of disordered Fe-Ni using
the KKR-CPA formalism.

To study the stability against a tetragonal distortion
along the z axis we performed a set of band-structure cal-
culations where we changed the ¢ /a ratio from 1 (cubic
case) to values between 0.95 and 1.075. Figure 7 shows
the results for the majority-spin and minority-spin bands
and for the individual DOS for the isochore tetragonal
distortion with ¢ /a =1.075. From the ligand field model
one expects that the I'j, (e,) states split symmetrically
into '} and 'y and the [)s(2y,) splits asymmetrically
into a two-dimensional 'S and a one-dimensional T’} .
Comparing the majority-spin band structures for the
¢/a=1 (cubic) [Fig. 6(a)] and the ¢ /a=1.075 (tetrago-
nal) [Fig. 7(a)] cases, one notices that, apart from the lift-
ed degeneracies and a few avoided crossings, the flat A}
band is pushed down in energy away from Ep. This leads
to a pronounced dip in the majority-spin DOS at the
Fermi energy.

The change in the minority-spin bands is also interest-
ing. For the cubic case we find a crossing of a A; and a
A4 band close to the X point [Fig. 6(d)]. For the tetrago-
nal distortion, these bands no longer cross but open a gap
exactly at the Fermi energy [Fig. 7(b)]. The opening of a
gap is also seen in the minority-spin DOS curves where a
gap (valley) in the e, DOS of Fe atoms is found near Eg.
This gap has an additional pinning effect on the Fermi
energy, and explains why the magnetic moment remains
constant over the range of distortions investigated. It
must be noted that this noncrossing of the bands is not
due to symmetry but to the energetics of the system. A
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change of the ¢ /a ratio leads to a change of the overlap
of certain orbitals and subsequently to a change in the
dispersion of the respective bands. Although this effect is
not the same as the original Jahn-Teller effect, where the
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breaking of the symmetry is responsible for the instability
against a distortion, the consequences which can be
drawn from the lowering of the band energy are
equivalent. To some extent the effect described in this
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FIG. 6. (Continued).

paper is the solid-state analog to the Jahn-Teller instabili-
ty of the Fe[FegNi,] cluster discussed in Sec. IIT A.

The phase diagram of Fe,_ Ni_ (Fig. 1) shows a mar-
tensitic transition from the y phase (fcc) to the a phase
(bce) very close to the actual Invar region. According to
Bain® this transition can be mimicked by a tetragonal
distortion, where the ¢ /a ratio changes from V'2 to 1, for
the fcc lattice assumed as a tetragonal body-centered lat-

02

tice with dimension (a,a,aV'2) and the bcc lattice with
dimension (a’,a’,a’), respectively (if a, is the original fcc
lattice constant, then a =ayV'2/2).

Because of the band splitting due to such a distortion,
this mechanism is energetically favored, so that e.g., a
thermally induced tetragonal phonon mode can give rise
to the onset of the Bain transition. It is not purely coin-
cidential that the bands which are responsible for the In-

FIG. 7. (a) Majority-spin and (b) minority-spin band structure along the I'-X direction for the case of an isochore tetragonal dis-
tortion in Fe;Ni (¢ /a =1.075, rys=2.60). The thick solid curves indicate where a pseudogap opens close to Er which leads in the
DOS to a pronounced dip.
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var effect are also responsible for the instability against a
tetragonal distortion. This would explain why the Invar
effect usually occurs close to a martensitic phase transi-
tion.?3 Figure 8 shows results for the total energy and
the magnetic moment when we follow Bain’s path from
the fcc to the bee structure. These calculations are done
by using the constraint that the nn Fe-Fe distance does
not change during the transformation (in this case the bcc
lattice constant is given by a’'=a,V'2/3). Although
ASW total energies of tetragonal distorted lattices can be
in error because of the atomic shear approximation, our
results for the lattice constant and the magnetic moment
of the bcc structure compare well with experiment.

Both the Invar effect and the martensitic phase transi-
tion require the Fermi energy to lie at a very special posi-
tion in the band structure. It has been found experimen-
tally that, independently of the alloy system, the Invar
effect always occurs around an average valence electron
number of 8.6e/atom. This magic number might be un-
derstood from the fact that most of the Invar systems are
alloys of transition-metals atoms whose atomic number
does not differ very much. These alloys usually show the
common band behavior described in Sec. III A, which
makes it clear that the critical feature in the band struc-
ture always appears at the same position. For a transi-
tion metal, one usually finds only 0.6 sp electrons/spin be-
cause the remaining 0.4 electrons are transferred into the
d band via the s—d hybridization.% In the HM state the
majority-spin band is almost filled and on the average
contains 4.5 d electrons. The remaining 2.9 electrons oc-
cupy the majority-spin band and fill those states exactly
to the band crossing described above. This distribution
of majority- and minority-spin electrons also explains
why most of the Invar systems show an average magnetic
moment of about 1.6ugz/atom. Increasing or decreasing
the e/atom ratio sets the Fermi energy above or below
the band crossing so that the described effects can no
longer occur.

IV. FSM-GL DESCRIPTION OF
THE MAGNETOVOLUME INSTABILITY IN Fe;Ni

The FSM-GL theory has been used to describe
itinerant magnetism in a series of transition-metal alloys.
In the case of coexisting LM and HM states near a mag-
netovolume instability as in Fe;Ni, the FSM-GL theory
used so far must be modified in order to account for the
two different ground states.
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FIG. 8. Results of total-energy calculations for Fe;Ni for the
Bain transformation from the fcc to the bee structure. The en-
ergy difference between the two structures is of the order of 1.5
mRy/atom. Note that the volume of the bcc structure is larger
than the fcc structure. This is achieved by keeping the distance
between neighboring Fe atoms constant during the transforma-
tion. Fcc: rps=2.60 a.u.,, M =1.56uz/atom. Bce: rys=2.67
a.u., M=2.11pug/atom.

If one compares the binding surface of Fe;Ni (Fig. 3)
with the binding surfaces of the constituents, one gets the
impression that the surface of Fe;Ni is a superposition of
the fcc Fe® and Ni* surfaces. With respect to magnetic
moment and volume, the LM and the HM states of Fe;Ni
correspond to the LM state of fcc Ni and the HM state of
fcc Fe, respectively. However, we have shown in the
preceding section that in Fe;Ni the Ni moment cannot be
stabilized in the LM state, which is at the borderline
where the Ni moment starts to order antiferromagnetical-
ly (Fig. 3).

An FSM-GL expansion in terms of the average mag-
netic moment and elastic contributions is not susceptible
enough to account for this antiferromagnetic ordering.
Therefore, if we think that the GL expansion corresponds
to the continuum limit of an effective localized spin mod-
el for Fe;Ni, we should use an expansion in terms of two
magnetization fields, one for Fe and one for Ni. In addi-
tion we must add a constraint which fixes the average
magnetic moment per atom. This leads to

7{=LVfd3r %Bw2+7/a)3+8w4+a1(w1—w)m%(r)-i-blm‘l‘(r)-l*clm?(r)+d1m§(r)+a2(w2~w)m§(r)
+b,m3(r)+c,mi(r)+d,m3(r)+J m?(r)mi(r)+J,m,(r)m}(r)+J,m}(r)m,(r) | , (1)

M(r)=1[3m,(r)+m,(r)] .

Here, m, is the Fe and m, the Ni moment;
0= (V(T)—V,)/V, is the relative volume, ¥, a reference

volume, B the bulk modulus, and o, , are introduced for

convenience.

()

Calculations are done according to the FSM method.
We fix the average magnetic moment per atom and deter-
mine the individual moments self-consistently. This leads
to a binding surface with coexisting LM and HM states
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close to the instability. GL parameters are obtained from
a fit to the original FSM binding surface (Fig. 3). This fit
shows that the binding surface can indeed be considered
as a superposition of an Fe and Ni surface. In the calcu-
lation we allow the Ni moment to be antiparallel to the
Fe moment. This arrangement is indeed stable at low
values for the average moment. At larger average mo-
ment values, the Ni moment is forced to be parallel to the
Fe moment. Thus, this theory reproduces the results of
the FSM total-energy calculations. The inset in Fig. 3
shows the fine structure around the LM state obtained
with the FSM-GL theory. It closely resembles the fine
structure of Fe;Pt which Podgérny has obtained in his
FSM-LMTO calculation. *’

With increasing temperature we expect that the LM
and the HM states come closer and finally merge at T,.
We would like to stress that for a GL expansion using a
single magnetization field, HM and LM states do not
merge with increasing 7. They are independent ground
states. In the extended FSM-GL theory used here, it is
the constraint for the average moment which can force
the HM and the LM states to merge. We consider this as
a typical Invar effect, since the merging of high-volume
and low-volume states means low thermal expansion.
However, this is not the basic mechanism for Invar be-
havior, since the discussion in the preceding section has
shown that Invar is associated with a subtle charge
transfer concerning electrons in states close to E,. Nev-
ertheless, the merging of the HM and LM states can be
considered as an important aspect of Invar.

For true Invar composition, FegsNi;s, statistical disor-
der of the atoms on the fcc lattice will lead to more than
two states because of local environment effects. First re-
sults of supercell calculations for FesNi; show that it is
not the Ni moment which is unstable in Invar but one of
the Fe moments is unstable in an otherwise ferromagnetic
matrix. This comes close to experimental findings. %%

|
== Zloe, 3| |U=g [(on+ 3
i,y i
+ 2 [(U’_J)< qipg zpo)ama r;w+J<a1p“*
i,u#u',o

Here, 0,,=(2/#)S,, is the spin operator of the d elec-
trons in 0rb1ta1 W, (L n; ) is the number of d electrons in
orbital u, and (n;) is the total number of d electrons.
The terms in the second line of (5) are local charge-
transfer terms, whereas the last term contains an anoma-
lous expectation value which mixes states of different
bonding and spin character. The self-consistent evalua-
tion of this term will help to describe the electronic struc-
ture of Fe;Ni along the lines discussed in Sec. III. This
term leads to a pseudogap in the electronic spectrum
which vanishes at 7. It also may serve to describe the
crossover from the HM to the LM state with increasing
T. Therefore, we may consider this anomalous expecta-
tion value as the order parameter of Invar. Due to the
presence of the volume terms in (3), the charge-transfer

—+J-U
2
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The stability of the Fe moment and the instability of the
Ni moment in Fe;Ni show that this compound is not a
true Invar system.

In spite of its success the FSM-GL theory has the
disadvantage that it cannot describe microscopically the
competition of bonding, magnetism, and structural stabil-
ity. To do this a microscopic theory is needed. Since this
is beyond the scope of the present paper, we only outline
in which frame the electronic details addressed in Sec. I1I
can be discussed. A good starting point is the multiband
Hubbard model for s,p, and d electrons with simple cou-
pling to the volume,

Ho= 3 [enko+ (3N, /30)00]
nko
Xar:rkaanka+%Bw2+7/a)3+6w4 ) (3)
1
7{1:_ 2 2 Uaﬁyﬁai.txaa;ﬁa'aiya'aiﬁa ’ (4)
ioco' aByd
()

where a]) is the creation (destruction) operator of an
electron at the lattice site R; in orbital a with spin o, and
w is as before, the relative volume. Note that the Bloch
energies are given by €2, plus the one-electron contribu-
tions from ##,, whereby expectation values must be evalu-
ated self-consistently. 7, contains only local Coulomb
correlation and exchange terms.

A good fit to the FSM band structure of Fe;Ni is ob-
tained if we keep a single intraatomic Coulomb integral U
(for electrons in the same d orbital) and U’ (for electrons
in different d orbitals) and a single intraatomic exchange
integral J for the d electrons. The renormalization of the
single-particle energies €%, due to the interaction terms
we have kept is obvious from a Hartree-Fock decomposi-
tion of #,, which leads to

v <n,'#>n,'y,

in' —a)atyo ty.a_U <al[.t0 m—a>am “Ualyo] . &)

terms and the order parameter will strongly depend on
the volume. This brief discussion of (4) and (5) shows
that this Hamiltonian is useful for first-principle FSM
calculations at finite temperatures. °

V. CONCLUSIONS

In the present work we elucidated some of the micro-
scopic mechanisms which seem to be responsible for the
Invar effect and the related instability against a martensi-
tic phase transition. The central feature of our findings is
that the Fermi energy is found in a very special position
in the minority-spin band. Our first-principles band cal-
culations confirmed the earlier result by Kaspar and
Salahub drawn from cluster investigations. We find that
for majority spin, Ej lies in a high peak of ¢, and 7,, an-
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tibonding states. In the minority band, E is found be-
tween f,, nonbonding and e, antibonding states. In
terms of a single-particle picture the following mecha-
nism should take place: on thermal excitation, electrons
can be transferred from majority-spin antibonding states
to minority-spin nonbonding states. Because of the large
number of states for both spin directions around Ej this
mechanism should occur at low enough temperatures,
and should also explain the observed rapid drop in the
magnetic moment for low temperatures. Unfortunately,
the characteristic temperatures which scale the single-
particle excitations are of the order of 2000-6000 K for
the transition metals”' so that single-particle excitations
cannot be responsible for the Invar effect. The position
of the Fermi energy in the minority band, being at the
crossover between nonbonding and antibonding states, is
also responsible for the tendency of most Invar systems to
undergo a martensitic phase transition.

Thus we have two competing energies in the system:
one is related to the energy gain in Fe;Ni upon structural
changes from the fcc to the bec structure; the other is re-
lated with the magnetovolume instability and corre-
sponds to the energy difference of the HM and LM states.
The lower one of these excitation energies will determine
whether, at a given concentration of Ni atoms, Invar

with premartensite or martensite is the stable low-
temperature phase.

In Fig. 7 we have shown the opening of the gap due a
static tetragonal distortion simulating a phonon of the
desired symmetry. This gap between the nonbonding and
antibonding states results in two effects. First, the gain in
nonbonding states and the loss in antibonding states lead
to a shrinking of the lattice as desired for an Invar behav-
ior. Second, because of the gain in band energy due to
the formation of the gap, this mechanism favors a possi-
ble martensitic change to the bcc structure along this
Bain transition path. We also expect that the gap actual-
ly can pin the Fermi energy which could explain the low
thermal expansion in Invar alloys over a large tempera-
ture range.
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