
PHYSICAL REVIEW 8 VOLUME 47, NUMBER 14 1 APRIL 1993-II

Magnetization of ferromagnetic-antiferromagnetic double layers
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Using a Green-function method the spin-wave excitation spectrum and the sublattice magnetizations
of a system consisting of a ferro- and an antiferromagnetic layer are calculated. Both ferro- and antifer-
romagnetic interlayer couplings are considered. It is shown that in the extreme quantum case S = —' can-

sidered here interesting quantum e8'ects appear at low temperatures.

I. INTRODUCTION

Layered magnetic systems have been a subject of grow-
ing interest in recent years. In particular the research
has been focused on systems such as superlattices' and
multilayers. " Very interesting effects are found in su-
perlattices that are formed from two ferromagnetic ma-
terials which are coupled antiferromagnetically at the in-
terface or which are formed from alternating layers of
ferromagnetic and antiferromagnetic materials ' where
spins are frustrated at the interface. In the presence of a
magnetic field these systems show many different phases
and interesting canting transitions occur.

Another important effect was found by Diep'" in su-
perlattices consisting of two antiferromagnetic layers
with different interactions in the layers and between the
layers, respectively. At low temperatures a surprising
crossover between the layer magnetizations is observed
which is explained as due to quantum fm.uctuations. A
similar effect has been found in an antiferromagnetic
film. "

In this paper we want to investigate a system consist-
ing of a ferromagnetic and an antiferromagnetic layer
with a simple square structure which are coupled ferro-
or antiferromagnetically. The motivation for an investi-
gation of this system is that it is one of the simplest mod-
els in which frustrated spins exist without an applied
magnetic field (Fig. 1). Note that in the model of Hin-
chey and Mills ' frustration at the interface arises due to
an applied magnetic field. The model considered is of
special interest since in this double-layer system every
second spin in one of the layers is frustrated in the Neel
ground state. As we will show this frustration leads to
unusual quantum effects in the sublattice magnetizations
as well as to interesting spin-canting transitions for
strong interlayer coupling. From an experimental point
of view a double-layer system might be oversimplified.
However, the local magnetization at interfaces between
ferro- and antiferromagnetic layers in multilayers resem-
bles that of a double layer so that our model calculation
can shed some light on these more complicated situa-
tions. Our calculation shows that in case the layers are
coupled antiferromagnetically the sublattice magnetiza-
tions at low temperatures develop a surprising crossover
which is due to quantum fluctuations. If the two layers

are coupled ferromagnetically the system behaves similar
to a classical system. These results hold for not too large
interlayer coupling. If, on the other hand, the coupling
between the two layers gets too strong the spin-wave cal-
culations starting from a Neel-type ground state breaks
down which signals a reconstruction of the ground state.
Within a self-consistent mean-field calculation for a
simpler four-spin cluster we show that there exist a cant-
ing transition with a variety of different local spin
configurations as function of interlayer coupling.

In Sec. II we describe the model and give a short out-
line of the Green-function formalism for layered systems
used in this paper. In Sec. III we present and discuss the
results of the spin-wave calculations and the results of a
self-consistent mean-field calcu1ation for the canted spin
configuration.
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FIG. 1. A possible ground-state configuration for not too
large interplane exchange and low temperatures for the double-
layer system. A solid line means a (J',D') coupling, a dashed
line a (J,D ) coupling, and a pointed line a (J',D') coupling.
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II. THEORY

We consider a model consisting of two layers with a
square structure. In the first layer the exchange interac-
tions are ferromagnetic while in the second layer they are
antiferromagnetic. The interplane interaction between
the two layers can be either ferromagnetic or antiferro-
magnetic, respectively. The Hamiltonian reads

&=—2 g J;JS. S —2 g D;,S,'S',

where the sums are over distinct pairs of nearest-
neighbor spins only and S; denotes spin operators.
J; (D;. ) is equal to J'(D ') if both spins are in the first lay-
er, equal to J (D ) if both spins are in the second layer,
and equal to J'(D') if one spin is in the first and the other
spin in the second layer. J' and D' are both positive cor-
responding to ferromagnetical ordering along the z axis
which is assumed to be perpendicular to the layers while
J and D are both negative corresponding to antiferro-
magnetic ordering along the z axis. The interplane ex-
change J' and D' may have both signs. A configuration
of spin-expectation values in one of the degenerated
ground states for not too large interplane exchange is
shown in Fig. 1. It is convenient to introduce two sublat-
tices (A and B) corresponding to up and down magnetiza-
tions in the antiferromagnetically ordered layer. Note
that due to the interplane exchange (S2 „& is not the op-

posite of (S2 z & and that a certain A Bs-tructure is also
introduced in the ferromagnetic layer in the sense that
(S; „& is not equal to (S; s &.

Following Zubarev' we define four double-time Green
functions ((S;+(t);S~ (t') &&, where S;—are the usual spin
lowering and raising operators and we restrict ourselves
to S =

—,'. These Green functions are denoted by G;, (t, t')
if i and j belong to the same sublattice and FI (t, t') if i
and j belong to different sublattices. After writing down
the equations of motion for the Green functions G,J(t, t')
and F;,(t, t') we get higher-order Green functions which
are decoupled by the so-called Tyablikov decoupling
scheme

«s,'s,+(t);s,-(t')»=&s;&«s,+(t);s,-(t')» . (2)

In the following we assume that the expectation values
(S & are equal at equivalent sites in the sublattices, i.e.,
in the following we have to deal with the four order pa-
rameters:

f(S,', &/
—=m,',

where i =1,2 denote layer indices while U = A, B denote
the two sublattices. We now introduce for the Green
functions GJ(t, t') and F; (t, t') a two-dimensional
Fourier transform, which emphasize the layered struc-
ture of the system

EJ(t t')= I J dk dk f dotE„( k, ky)e
' e

2m'
(4)

where E; (t, t') stands for one of the four Green func-
tions.

k~~ =(k„k~ ) is a two-dimensional wave vector and
the indices m and n represent the z component (first or
second layer) of the positions of the spins at the lattice
sites r; or rj. Inserting (4) in the equation of motion for
the Green functions we obtain for each sublattice magne-
tization m (i =1,2;u = A, B) a set of equations of the fol-
lowing form:

with

A i
= 8(J'+D ')m ', +2(J'+D')m i,

A v —8(J2+D2)m v +2(Jz+Dz)m v

B =2J'ym, C =2J'm

(8)
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The matrix M' (u = A, B) and the vectors E,". (i =1,2)
and u,' are given as

and y =4[cos(k /2) cos(k„/2)].
The matrix M and the vectors E; and u; are obtained

from M, E;, and u; by replacing A and B and vice ver-
sa. To solve the four sets of equations we need another
set of equations which connects the Green functions with
the layer magnetizations. Using the spectral theorem
which relates the correlation function (S, SJ+ & with the
Green functions and considering that for S=—,

' we can
write for the sublattice magnetizations
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tion one would expect that the sublattice magnetization
m

&
should be larger than m

&
and m2" larger than m2.

The result of our calculation is shown in Fig. 2 and it
confirms this expectation.

In the case of antiferromagnetic interlayer coupling a
similar argument would lead to the expectation that m

&

should be larger than m
&

and m 2 larger than m 2". How-
ever, surprisingly this is not found at low temperatures.
Figure 3 shows the result of our calculations. There is a

FICr. 5. Sublattice magnetizations m," (&)), m, (Cl), m 2" (+),
and m& (X) with J = —1, D'=0. 1, D = —0. 1, D'= —0. 1 if
J, &0 and D, =0. 1 if J, )0 at T=O (all quantities in units of
J1)

clear crossover from the expected behavior obtained for
high temperatures to a different behavior at low tempera-
tures. This interesting efFect has its origin in the quan-
tum mechanics of spin operators. In the corresponding
classical model ferro- and antiferromagnetic interlayer
couplings lead to the same result since obviously these
two cases can be transformed into each other by a gauge
transformation S;~—S; of the spins in one of the layers,
i.e., for classical spins Figs. 2 and 3 should coincide. For
quantum spins, however, this is only the case for high
temperatures.

A similar quantum effect has been found by Diep' in an
antiferromagnetic superlattice. He investigated a super-
lattice with different antiferromagnetic couplings in the
layers and between the layers. He found that at low tem-
peratures the layer with the stronger coupling in the
plane has a smaller magnetization than the layer with the
weaker coupling in the plane. In ferromagnetic superlat-
tices and in classical systems he did not find this behav-
ior.

In Fig. 5 the dependence of the sublattice magnetiza-
tions on the interlayer coupling for T=0 is shown. The
calculations are restricted to values of the interlayer cou-
pling in the range —08&J'(0.8 for reasons to be dis-
cussed later. Here we find that in the ground state the
expectation values of &St z ) are nearly equal to —,

' for all

values of J', and the sublattice magnetizations are not
symmetric functions of J' in contrast to a classical sys-
tem.

These quantum effects observed in double-layer sys-
tems at low temperatures we found out are also present in
a simpler four-spin cluster coupled to four external fields
which are calculated self-consistently in a mean-field-like

)&

&S),) (»~) t

/(». .)

FIG. 6. Four-spin cluster
considered in a mean-field-type
calculation with J = —1,
D') 0, D &0, D' and (a)
JF)Jz)JAF (b) Jz)JF (c)

J'&J"" and (d) J'&J"" (all

quantities in units of J'). Note
that the total spin per site & S ) in

(c) deviates from the z direction.

S)
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fashion (Fig. 6). In this calculation the eigenstates of the
four-spin cluster in external fields are obtained exactly
and the fields which approximate the interaction with all
the other spins outside the cluster are determined self-
consistently. The sublattice magnetizations obtained are
in qualitative agreement with those from a spin-wave cal-
culation. The advantage of this simpler approach is that
some insight into the di6'erent behavior of the sublattice
magnetizations as a function of the interlayer coupling
can be gained. Analyzing the eigenstates of the four-spin
cluster it can be seen that the spin S, s in Fig. 6(a) which
corresponds to the B sublattice in the first layer in Fig. 1

indeed is practically fully polarized in the ground state.
The reason is that in low-order perturbation theory there
is a cancellation of those matrix elements leading to Aips
of this particular spin. This is independent of J' for not
too large J'. Increasing J' below a cri ical value J, " in

case of an antiferromagnetically coupling or above J," in
case of a ferromagnetically coupling there is a canting

transition leading to (S")%0, see Figs. 6(b) —6(d) where
three other characteristic spin arrangements with typicalJ' values are shown. This is precisely the region where
the decoupling scheme is expected to and indeed does
break down, i.e., only inside the J region shown in Fig. 5
the spins are polarized in a Neel-type state and the Tya-
blikov decoupling used is applicable.

The J' asymmetry in Fig. 5 corresponds to a similar
asymmetry in the energy eigenstates of the four-spin clus-
ter which has its origin in the quantum mechanics of spin
operators. The details of the spin-canting transition men-
tioned above are very interesting to investigate. This
problem is left for future research.
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