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Effect of small interchain coupling on one-dimensiorial
antiferromagnetic quantum Heisenberg spin systems: The integer-spin case
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A two-dimensional array of weakly coupled antiferromagnetic spin chains is investigated using the
Schwinger-boson technique. This method is known to give a good description of integer spins already at
the mean-field level. We find that a finite coupling is necessary to introduce long-range antiferromagnet-
ic order, consistently with the presence of a gap for a single chain. The energy gap and spin-spin correla-
tions are calculated. These calculations correspond to the behavior of a nonlinear o. model without the
one-dimensional topological term.

I. INTR&DUCTION

The discovery of high-temperature superconductivity
has stimulated much activity in the field of strongly
correlated and low-dimensional systems. In this paper,
we study the effect of a weak interchain coupling on a
quantum antiferromagnetic two-dimensional array of
spin chains. For an isolated chain, strong quantum fIuc-
tuations destroy long-range order even at zero tempera-
ture. However, for an isotropic two-dimensional unfrus-
trated lattice, it has been rigorously proved that there is a
long-range Neel order for S ~ 1, ' and this is widely be-
lieved to be the case for S =

—,
' also. The question we ad-

dress is whether this ordering occurs in the presence of
any infinitesimal transverse coupling or not. Actually,
for an XY model, the 1D chain is gapless, with power-law
spin-spin correlations. As a result, the staggered spin
susceptibility is infinite and we expect that long-range or-
der arises immediately at any finite coupling. The situa-
tion is different in the case of the Heisenberg model.
Indeed, it was first pointed out by Haldane that isolated
integer spin chains with nearest-neighbor coupling have a
finite correlation length and an energy gap, whereas half
integer spins remain massless. From this picture, one
would expect that a finite transverse coupling is required
to generate long-range order in the integer spin case. For
half integer spins, the situation is much less obvious,
since the absence of a gap is due to a topological term in
the long wavelength effective action. This topological
term has a dramatic inhuence in the pure one-
dimensional case, but is expected to have much less of an
effect in two dimensions. We then have a competition
between the tendency towards ordering and the loss of
strict one dimensionality which may suppress the action
of the topological term.

In this paper, we shall use the mean-field. Schwinger-
boson method. It has been shown that this formalism
provides a very good description of singlet disordered
states such as in the two-dimensional system at finite tem-
perature, and. the one-dimensional chain at T =O. ' The
results obtained there are quite similar to the behavior of

the nonlinear o. model which is the effective long-
wavelength action in the absence of a topological term.
In this respect, our treatment is mostly relevant to the in-
teger spin case. Other methods should be used to treat
properly half integer spins. We hope to address this
question in the near future.

This work has also been motivated by recent ideas
about the normal state of high-T, materials. ' These au-
thors suggest that a Luttinger liquid may exist in more
than one dimension. This statement has to be contrasted
with weak-coupling renormalization-group arguments,
which claim that transverse coupling between chains is
always relevant and destroys the Luttinger liquid.
Weakly coupled spin chains may provide some insight in
understanding these issues better. However, as already
stressed, the most interesting situation, namely, for half
integer spin, is not accessible by our method.

In the first part, the Schwinger-boson formalism is used
to obtain mean-field equations in the presence of aniso-
tropic couplings. The behavior of the gap is then studied
in the second part. We show that a finite coupling is
necessary to stabilize long-range Neel order and calculate
the phase boundary as a function of spin S. Furthermore,
spin-spin correlation functions are also calculated. The
conclusion is devoted to a comparison with experimental
observations on spin 1 quasi-unidimensional spin chains.
We also make a few remarks on the half-integer-spin
problem.

II. DERIVATION OF MEAN-FIELD EQUATIONS

A. Schwinger bosons

The SU(2) antiferromagnetic model on the anisotropic
square lattice is given by the Hamiltonian

H=J g S;.Sj+Ji g St S
(i j ) (I I)

where the sums (i,j ) and ( l, m ) are defined for the first
nearest neighbors along the x and y directions, respec-
tively. J is the exchange coupling on the x axis and J~ is
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the one on the y axis. Weakly coupled spin chains corre-
spond to the limit J~/J (& 1. Before extending the model
to SU(N) symmetry, let us review the Schwinger-boson
formalism in the case of %=2. In this representation,
the spin operators are written as follows:

S+ =atb, S =abt, S'=
—,'(a a b—b),

with the holonomic constraint 2S =n, +nb, where
n, =a a and nb =b b are the number of the a and b bo-
sons, respectively. The commutation relations of the spin
components are satisfied. If we assume that the lattice is
bipartite (Fig. 1), and so there is no frustration, then on
one sublattice we perform the unitary transformation
a —+ —b and b —+a, i.e., S+ is transformed in —ab .

The generalized SU(N) Hamiltonian is

(2)

where S&(i) [S&(j)] is the generalized spin on sublattice
2 (on sublattice 8) defined by

SI(i)=b, bp, [Sp(j )= bi3 b ]—.

The constraint becomes

xA xB xA xB

xB xA xB xA

xA xB xA xB

xB xA xB xA

FIG. 1. Illustration of the sublattice definition on the square
lattice.

SU(N) transformation U, but under staggered transforma-
tions, namely, Uon 2 and U+ on 8, respectively.

B. Path-integral formulation

Once the Hamiltonian is written in the bosonic opera-
tors b; the partition function can be given by the
coherent state functional integral:

Z = f D( b, bk, )e xp[ —J(b, b;A, )]

where the action J(b, b;A, ) is

J(b, b;A, )= f dr gb, b, ——g A, A,

N

g S (i)=NS
N

g S (j)=NS
a=1

Equation (2) may be expressed in a set of new variables

N

A; = g b;b,

and this reads

H= ——g AJ A;— +

(i,j) (I,m)

The resulting Hamiltonian is not invariant under a global
I

+ QA, , (b;b; —S)
i, a

where b, is a c number, b, (r) is its complex conjugate,
and A, , is a Lagrange factor which imposes the occupation
constraint. Using two Hubbard-Stratonovich fields for
every bond: Q," along x axis and P& along y axis, the bi-
quadratic interaction terms may be decoupled, resulting
in

Z = f D(b, b;Q, Q, P, P;A, )e

with now:

I= f dr gb, b, +—Q Q Q+ g (QA;,. +QA;, )+ g P( P(
n — 8 N — — — N

+ g (PI Al +P( 3( )+ g A(b;b, —S)

Q;~ and P& are interpreted as effective hopping terms
depending respectively on the bonds (i,j ) and (i, m ),
and the timer. Q,~ =~Q, ~e ",PI =~PI ~e ', and A, ; is
a pure complex function of the site position and ~. In one
dimension (P, =0), the phase P, . of Q;, can be eliminat-
ed by a time-dependent Read-Newns gauge transforma-
tion" which replaces the integration over Q,.J by an in
tegration over only the magnitude ~Q;~~. The phase P;~.
then plays no role in the difference between integer and
half-integer spin chains. Now, when the chains are weak-
ly coupled, the phases P," and Pl cannot be eliminated

I

by a gauge transformation, but we will suppose that the
relevant saddle points correspond to a Auxless
configuration. This choice is motivated by the success of
such a mean-field approach for the isotropic two-
dimensional system. Thus, we search for solutions where

Q, . and P& are equal to their magnitudes, respectively.
A, is also replaced by its magnitude at the mean-field lev-

12

The mean-field equations are obtained at the saddle
point which is given by minimizing the action with
respect to Q; (r), PI (r), and A, , (r):
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ar
BQ;.(r) dp( (r) M,;(r)

We shall restrict ourselves to uniform and time-

independent saddle points. This means that we take
~Q;~~=Q, ~p/~=P, and )A.;~=A, , all of them time and
space independent. After easy calculations, we get the
following mean-field Hamiltonian k space:

HMF=~ Q—2+~ P' ~~ SgS J S J S

+—g [A(bk b~ +b" k b I, )+(2Q cosk +2P cosk )(bk b k +bkt bt
k )],1

ka

with X, is the total number of sites. 0 "is diagonalized
by a Bogoliubov transformation. The mean-field free en-
ergy is obtained after integration over the bosonic vari-
ables

FMF g2 p2 1+ ——(2S+1)+—

dkX ln 2 sinh
(27r )

We shaH show below that 5 is a decreasing function of
J~/J and goes continuously to zero at a critical value
(J~/J), which depends on the value of the spin S. This
behavior of 5 indicates a second-order transition from a
one-dimensional disordered phase to a two-dimensional
phase with long-range Neel order. The presence of a
finite gap 5 in the one-dimensional region suggests that
the method does not allow us to study half integer spins,
and that only the case of integer spins can be treated
here.

where

cok = [A, —4( Q cosk, +P cosk» ) ]'

is the dispersion relation at the mean-field level. The
mean-field equations, derived from the saddle-point con-
dition, are as follows:

Q d k ~~k
cothJ (27r) 2

A. Calculation of the critical value of J~ /J at the transition

A,
—4(Q+P) =0 . (13)

In connection with Eq. (12), the above equation [Eq. (13)]
gives for large S (see Appendix A)

The divergence of the correlation length g as the ener-
gy gap b, vanishes (g-1/b, ) is a consequence of the
second-order transition. The condition 6=0 yields:

X cok 'cosk ( Q cosk„+P cosk ),
d2k ~~k

coth
(27r)

(10) p/g e
—%2S) (14)

In the same spirit as in Appendix A, Q/J and P/J~ are
found to be

2S+1

Xcok 'cosk (Q cosk +P cosk»),
r

d'k
z coth COk

(27r) 2
(12}

The integration Jd k/(27r) is taken over the first Bril-
louin zone. The above three equations constitute the
mean-field solution to this problem. In the following, we
will define the reduced variables:

PQ= —and P= —.

Q 1 Q—=—lnJ ~ P
(15)

P 1 1=2 —+ — t/QJ, 7r V'2 (16}

From Eqs. (14)—(16) the critical value (J~/J)„where
the system has this second-order transition from the one-
dimensional to the two-dimensional regime, is calculated
for large S. We have:

(Ji/J), -Se

III. ANALYSIS OF MEAN-FIELD EQUATIONS AT T =0

The energy spectrum is given by

cok = [A, —4(Q cosk„+P cosk ) ]'»

where Q, P, and A, are functions of J, J~, and the spin S
[Eqs. (10)—(12)]. It exhibits an energy gap

a = [X'—4(g +P)']'" .

It becomes obvious that for large spin S, a finite value
of the transverse coupling J~ is needed to get the antifer-
romagnetic long-range order, in agreement with Ref. 10.
Spin-wave theory gives a similar asymptotic behavior for
(Jj /J), . We found (Jz/J), -e +2 '. In fact, in spin-
wave theory, (J„/J), is calculated imposing the condition
that the correction to the Neel magnetization is such that
(S') =0. This condition leads to the following equa-
tion22:
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d k(S') =—2S+1—
2 (2~) [(Ji+J) —

(J cosk, +Jicosk ) ]'
=0. (18)

We know that if Ji =0, the integral in Eq. (18) is equal
to —~. This implies that the standard spin-wave theory
is uncontrolled in the case of one-dimensional systems.
But the correction introduced, when J~ is finite, behaves
as ln(Ji/J). The condition (S') =0 means that the
lowest-order in spin-wave theory becomes self-consistent,
and this appears to not be equivalent to the onset of a
phase with long-range order where (S') is not equal to
zero. However, the precise reason for the discrepancy be-
tween the result of Eq. (17) and the result of spin-wave
theory, for (Ji/J)„ is not well understood yet.

When J~/J is larger than the critical value the energy
gap remains equal to zero. As noted by Arovas and Au-
erbach, the mean-field equations do not have solutions
for S ~0.2 in the isotropic case, Ji =J. Above (Ji/J)„a
Bose condensation at T=0 must exist in the ordered
phase because a nonsymmetry breaking mean-field solu-
tion does not exist. This Bose condensation is equivalent
to a two-dimensional Neel ordered phase.

The result of Eq. (17) can be written in the following
asymptotic form for the large spin S:

(19)

where g, D-e"' is the one-dimensional antiferromagnetic
correlation length. With this analysis we get the condi-
tion satisfied by the couplings J and Ji (Jig&D- J) in or-
der to have the transition from a disordered to an ordered
antiferromagnetic phase. Equation (19) can be derived if
we say that the transverse coupling times the one-
dimensional correlation length must be of the order of
the gap. But, following a naive argument saying that the
critical transverse coupling should be of the order of the
one-dimensional gap 6—e ' gives

(Ji/J), -g)~,
where the exponent is minus unity instead of 2 as in Eq.
(19). Note that as the gap is equal to zero in the case of
spin —,', the above arguments would give a critical trans-
verse coupling Ji=0 because g'iD= oo. This question is
still unsettled.

B. Energy gap 5,

Analytical expressions for the energy gap will be given
both in the vicinities of the one-dimensional limit and the
transition. The one-dimensional limit is defined by
Ji /J « (Ji /J), . An approximate evaluation of the ener-
gy gap 5 in the large spin limit gives

I
1/2

J (22)

in the vicinity of the transition.
The asymptotic behavior of the gap, as a function of

the spin S in the case of J~=0, 6-Jse ', is in agree-
ment with the result of Arovas and Auerbach. A
correction term quadratic in J~/J rather than linear in
Ji/J is obtained for 6 in Eq. (21).

C. Phase diagram

D. Asymptotic spin-spin correlation functions

We are interested in calculating the asymptotic behav-
ior of the correlation functions as the distance IIRII goes
to infinity. These functions have the form"

(23)

We restrict ourselves to the calculation of the antiferro-
magnetic correlation functions in the x and y directions
and take, respectively, R=(R„,O) or R=(O, R~). The

The problem we are studying depends on two parame-
ters at zero temperature: the spin S and the ratio Ji/J.
For fixed S, the phase space shown in Fig. 2 is one-
dimensional. The critical value (Ji/J), separates two re-
gions, the first one (A), which is characterized by

Ji/J &(Ji/J), ,

is a disordered phase while the second one (8), which is
given

(Ji/J), &Ji/J,
does have antiferromagnetic long-range Neel order.

Now, if the spin is allowed to take any value, Eq. (17)
will allow us to draw the [1/S, (Ji/J), ) phase diagram
(Fig. 3), for large spin value S. On the same figure we
draw the boundary which we get from the spin-wave
theory analysis. Note that the discrepancy between these
results is not very important. No transverse coupling J~
is required to obtain long-range order in the classical lim-
it S = ~. But for finite S, quantum Auctuations destroy
the antiferromagnetic order so that (Ji/J), is finite but
exponentially small.

T 2
4 m(2s) J5-Se ' 1—

384 2S J (21)

in the one-dimensional limit and FIG. 2. Jj /J phase diagram for a fixed spin value S.
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Ordered Phase

The correlation length along the x and y axes, denoted re-
spectively by g„and g, are given by

g„=1/2m

and

g» =( I/2m)&P/Q

g» is zero when P vanishes (J~ =0), which is as expect-
ed. We should mention that these asymptotic behaviors
are given in the limit where mR is much larger than uni-
ty, and all of them are decaying exponentially with the
distance R in agreement with the absence of long-range
order for this quasi-one-dimensional phase.

0.0000

I

0.0004

I

0.0008
I

0.004 2 0.0016 0.0020

Flax. 3. [1/S, (J~/J), ] phase diagram. The solid line is the
result of the Schwinger-boson analysis and the dashed one is the
result of an approximate evaluation of Eq. (18) obtained from
the spin-wave analysis. These lines separate the antiferromag-
netically ordered phase from the disordered one.

quantities f (R) and g (R) are given by

)
1 j d k

(2m )

1

[1—4(Q cosk +P cosk ) ]'

Q cosk +P cosk»
(R ) e&kR

(2m') [1—4(Q cosk, +P cosk» ) ]'

(24)

(25)

(S S ) Q+P 3' 1

g 4 2'
I' R

12gm
e

—2mR

(26)

and in the vicinity of the transition (mR ))1), we have

( )
3 Q+P 1

32m 3
Q mR

—2mRR' (27)

Along the y axis, the correlation functions are found to
have the same asymptotic behavior in both limits (we
drop the subscript y):

3 exp( —2mR 3/ Q /P )

32~ Q R
(28)

We can show that whenever R~ or R„belongs to the odd
sublattice f (R) vanishes, and that whenever R„or R is
on the even sublattice g (R) vanishes (recall that the lat-
tice is bipartite).

The asymptotic expressions of ( SoSR ) in the vicinities
of the one-dimensional limit and of the critical coupling
are calculated for both the x and y directions. We can
refer to Appendix 8 for the expressions of P and Q and
the definition of m which appears below. For correla-
tions along the x axis, we get the following: in the one-
dimensional limit, R„=—R, and I is finite so that

r 2

IV. CONCLUSION

We have used a SU(N symmetry bosonic representa-
tion based on Schwinger bosons to generalize the SU(2)
Heisenberg model for weakly coupled spin chains and
searched for a saddle-point solution. It is shown that a
phase transition between a disordered phase and an anti-
ferromagnetically ordered one occurs at a finite value of
J~/J. The dispersion is found to have a finite energy gap
6 in the disordered phase. We know from the mapping
onto the O(3) nonlinear o. model that, in the case of one-
dimensional systems, the long-wavelength effective action
of half integer spin chains possesses an extra topological
term while the action of integer spin chains is equivalent
to the O(3) nonlinear o. model. This topological term is
responsible for the gaplessness of S =

—,
' spin chains,

where the dispersion is calculated exactly. ' For S =1,
exact diagonalization' and Monte Carlo simulations' in-
dicate the existence of an energy gap to the excited state
at the wave vector k =~ which is half of the gap at k =0.
The Schwinger-boson representation at the mean-field
level leads to a gap 6=0. 1 J at both k =~ and 0. This
seems to indicate that corrections beyond the saddle-
point approximation are qualitatively important. Clear-
ly, it would be quite interesting to know if incorporating
fluctuations can reproduce this ratio of 2 between the
gaps at k =0 and ~.

The energy gap is reduced by the transverse coupling
and vanishes at the transition. The asymptotic spin-spin
correlation functions are shown to have an exponential
decay with the disance in the disordered phase with a
correlation length g„or g depending on the direction.
In the x direction we found that g, behaves as I /b„
which means that g diverges at the transition. In the y
direction g behaves as ( I /b, )&P/Q (see Appendix 8 for
the expression of P /Q as a function of J~ /J). It vanishes
as J~~0 and diverges as J~ tends to the critical value.

The model for real experimental S = 1 systems contains
a single-ion anisotropy Dg,.(S,') . The values of typical
coupling constants are J~ /J = 1.7 X 10 and
D/J= —0.02 for CsNiC13, ' ' and J~/J=4X10 and
D/J=0. 2 for Ni(CzH8N2)zNOzCPO4 (NENP). ' '' The
presence of the D term makes the comparison of our re-
sults to experiments difficult. A second difficulty comes
from the large S expansion of our calculations, since
S = 1 for the above-mentioned systems. However, we can
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draw an interesting conclusion if we ignore the effect of
the D amsotropy (this is, of course, unrealistic). It is
known that NENP reveals no transition to long-range an-
tiferromagnetic order down to T=1.2 K (Ref. 20); we
will assume, in order to conclude, that even at T =0 K
no transition happens. CsNiC13 gets a transition to 3D
long-range order at T =4.2 K.

Our estimate of the critical value J) /J from Eq. (17)
for S=1 is (Jj/J), -Se "'=1.86X10 . Sakai and
Takahashi give a numerical estimate (Jl /J),
= 1.3 X 10 using spin-wave theory as we did in Sec.
IIIA, and another one (Jj /J), =0.025—0.026 using a
mean-field method in connection with an extrapolation
from finite size Lanczos calculation of
(J) /J), = I/y, .„where y„ is the one-dimensional stag-
gered susceptibility. Using our estimates and ignoring D
we can place CsNiC13 and NENP, respectively, in the B
(ordered phase) and A (disordered phase) phases of Fig.
2. In the case of CsNiC13 the single-ion anisotropy will
change the predictions because ~(D~ /J and Jl /J are of the
same order and D (0" ' so that at low temperature the
energy can be minimized if the z components of the spin
are either —1 or +1 and not zero. The observed three-
dirnensional order is clearly due to the effect of both D
and Jz.

The half integer spin case is much less obvious because
of the topological term in the long-wavelength effective
action. The interchain-coupling tends to enhance long-
range order but the topological term, responsible for the
gaplessness in the one-dimensional systems, becomes less
effective in high dimension. ' ' A formalism based on

I
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APPENDIX A

In this appendix, Eq. (14) is derived. Let cok be the
dispersion relation. The energy gap 5 equals

A[1 —4(g+P) ]' (A 1)

where Q=Q/1, and P=P/1, . Equation (12) reduces at
T=0 K to

with

2S+1 f d k 1

A, (2~)2 cok
(A2)

cok =A, [1—4(Q cos k +P cos k )] (A3)

Note that the main contributions to the integral of Eq.
(A2) come from the center and the corners of the first
Brillouin zone, i.e., two points. We shall then expand the
cosines and keep only the second orders. Equation (Al)
becomes

fermionic representation for the spin operators gives a
power-law decay for the spin-spin correlation function in
one dimension, which suggests that it may be relevant for
half integer spin S. Clearly, the problem of half integer
spins remains quite open.

2S+1= 1 d k 1

(2m. ) [1—4(Q cosk„+P cosk ) ]'~ (2~) [1—4(Q+P) +4(Q+P)(k, Q+k P]'~

The factor 2 in front of the integral is here because of the contributions of two points. Using the result of Eq. (13) one
gets

dk + dk2S+l=&2 f' 277 ~ 277 (gk&+Pk2)(&2

This is then rewritten as

n+(Q/P)(Ilk )

2S + 1 =+2/Q ( I /m )f '~k, f
Using the fact that P ((Q and then Q —

—,', we have in the large S limit

12S =—1n
7T P

which implies Eq. (14).

APPENDIX B

This appendix is devoted to the calculation of P/Q and the gap 6 in the one-dimensional limit and the vicinity of the
transition. In the one-dimensional limit the integrand is developed in (P/Q)(1/m ) and calculated in the same spirit as
Appendix A. In this case Eq. (12) reads

dk dk 12S+1=
V g(g+P) () ~ () ~ [m'+k'+(P/Q)k, ']'"

(B1)
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with (85). The energy gap is estimated to be

1 —4(Q+P)
m

4(Q+P)Q
(82)

4
5=2SJe +' ' 1—

384

&2S+1) J~
2S+1 J (86)

After a straightforward calculation one finds
r

m. P 1

6Qm
1 1 2m2S+ 1=——ln
Q m m

Equations (10) and (11) give, in the same way,

(83)

P
'2

Jq
4m

Using Eqs. (81), (82), and (84), we get

(87)

m P 1

6Qm
m

4n
m P+ 2l 2'
8 Q m

(3—m) P
1

2m—ln
6n Q m

1 1 277 vr—lnJ (1+P/Q)~~~ 7r m 2

(84)

where we can take the one-dimensional result for 6
(Je ' for large spin S.

Now, in the vicinity of the transition, the small param-
eter used to expand the integrand is (P/2)(k~/m) for
k ((Q/P)m and (Q/P)(m/k~) for k ) (Q/P)m; this
allows us to evaluate P/Q and the energy gap. We get

P P
J~ Q

1/2

(85)

P
S+1/2 J

I /2

(8&)

The contribution coming from the two-dimensional re-
gion in the Brillouin zone dominates in the last equation

(89)
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