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Dynamics of micromagnetic measurements
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The response of a micromagnetic system to changes in ambient temperature or applied field is studied
as a function of the overbarrier relaxation rate and of the intermediate nonequilibrium states through
which the system is passing. We first derive an equation for the thermomagnetic curve and the corre-
sponding time-dependent dc susceptibility. Next we write down an equation for the hysteresis loop and
discuss its applications to calculation of the frequency and temperature-dependent coercivity. In con-
clusion we present a model calculation of the switching-field distribution for a system of noninteracting
uniaxial particles. Both the reversible and irreversible susceptibility are recovered from our results as
limiting cases.

I. INTRODUCTION

Observed properties of small, single domain ferromag-
netic particles depend strongly on the measurement dura-
tion: The outcome of an observation whose waiting time
is much larger [e.g. , vibrating-sample magnetometer
(VSM) or SQUID] than the intrinsic magnetization
switching time difFers radically from what one obtains if
the system cannot relax appreciably while under observa-
tion (e.g., in Mossbauer spectroscopy). For this reason
the concept of blocking temperature T~ was introduced. '

T~ is defined as the temperature at which the decay rate
of the system is I =10 Hz. Above T~ the particle by
assumption switches freely on the measurement time
scale while below Tz its magnetization remains blocked
at a local energy minimum. The blocking temperature
model has proved very successful in applications but a
more realistic description bridging the gap between the
two regimes is clearly called for. We consider therefore
the response of a particle ensemble to some change in its
environment a6'ecting its relaxation properties. Our aim
is to give an analytic expression for the time evolution of
the probability distribution function and thence to derive
the time-dependent nonequilibrium magnetization and
susceptibility. These quantities are given in terms of the
overbarrier decay rate I, the equilibrium properties of
the system, and of all its past history. The regime ob-
tained below Tz is recovered if the past persists, either
because of low temperature or short observation time.
Obversely, in the high-temperature limit the past is "for-
gotten" and has no bearing on the present.

We study first the initial thermomagnetic curve of
an array of noninteracting single domain particles within
the coherent rotation model. We consider two kinds of
measurement distinguished by their history. In the first
kind (direct transition measurement) the system finds it-
self initially in a disordered demagnetized state in zero
field at some low temperature To well below the Curie
point T&. Then an external magnetic field is turned on
and the temperature is raised to T & Tc, both of these
changes occurring so rapidly that the initial state persists
until the observation temperature T is attained. We in-

troduce here some basic definitions and proceed then to
study the case where temperature is being raised gradual-
ly at a constant, finite rate (sequential transition measure-
ment). In either evolution mode we write down an equa-
tion for the thermomagnetic curve, derive an expression
for the time-dependent dc susceptibility, and discuss their
limits of validity. The model also finds application in the
theory of cluster spin-glass alloys. '

From a practical point of view, the dynamic response
of ferromagnetic particles to the time-varying magnetic
field is of far greater importance than the thermomag-
netic curve and we therefore apply our theory also to gra-
dual changes in magnetic field and derive an equation for
the hysteresis loop. At the end of Sec. IV, we then dis-
cuss our calculations of the coercivity' ' of an array of
noninteracting particles and also some further applica-
tions of our theory. Finally, in Sec. V we present a nu-
merical calculation of the frequency and temperature-
dependent switching field distribution of such an array.
The well-known high- (purely reversible) and low-
temperature (purely irreversible) limits are recovered
from our results.

Let us yet establish some basis definitions. Unless oth-
erwise specified we assume " that below T& both the
saturation magnetization M, and anisotropy constants
E'"' are temperature dependent:

M, (r) =M, (0)(1—r)'

~(n)( ) ~ [M ( )M
—

1( )0]n(n+ )/)2 (2)

where r= T/T, ~ 1 is the reduced temperature. In par-
ticular, for the first nonvanishing anisotropy constant we
obtain E( '=—K(r)=K(0)(l —r). Within the model of
coherent rotation we parametrize the magnetization vec-
tor M in terms of the variables' '" (p, (b),

p =cosg&( —1, 1) and (bH (0,2m), and the integral over
this domain is designated as Tr. If a, are direction
cosines then, in this parametrization,

M=M, [(1—p )' cosg, (l p)'~ sing, p]—
=M, a .
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Further let I=vM be the magnetic moment of a particle
of volume V with magnetization M and let also (x ), be
the thermal average of x at temperature ~. We set kz =1
throughout.

II. THERMOMAGNETIC CURVE
UNDER DIRECT TRANSITION

For definiteness we initially base our qualitative discus-
sion of the direct transition measurement on a model sys-
tem consisting of only two noninteracting uniaxial parti-
cles whose easy axes are oriented either along the three or
one direction. At t &0 the system is in a demagnetized
state at some low temperature 7.

O & 1. At t =0, a constant
magnetic field B )0 is applied in the three direction and
at the same time temperature is increased to ~&7p. The
energy of either one of the two particles becomes

E=KV[1—2ba3 —(a&cosf —a, sini)'j) ],
where /=0 for the parallel particle whose easy axis is in
the three direction or g =~/2 for the perpendicular par-
ticle. At t (0 the parallel particle has two equivalent
equally populated minima at o.3=p =+1 separated by a
barrier at p =0; the biasing action of the field shifts the
barrier to the point p = b(r) whe—re

BM,
b(r) = =P(1 —r) ~ 1 .

2K

In this definition /3=BM, (0)/[2K(0)] =B/B~(0) is a re-
duced applied field and Bz(0) is a nucleation field at
T=0. The two barrier heights are then
Q+(r)= VK( )v[1+ (b )r] . To every P(1 there exists a
volume-independent critical temperature ~&,

at which b(rt3)=1 and the barrier vanishes. This temper-
ature thus heralds the onset of approximately reversible
behavior and we assume that for ~~ ~& the particle is in
thermal equilibrium at all times. The perpendicular par-

ticle exhibits this reversible behavior only: The two
equivalent minima initially at points (0,0) and (O, m) shift
at r ( std to (b, 0) and (b, m) yielding nonzero net magneti-
zation. There is no bias and no thermally driven overbar-
rier Aux since, by assumption, the two minima are equally
populated. At ~=~& these two minima merge. Our two
particles thus represent the extremes of stationary
(thermal equilibrium) and nonstationary behavior, any
other alignment of the axes leads to a combination of the
described processes. Stationary eFects place the peak of
the thermomagnetic curve to the temperature ~&. Over-
barrier relaxation, with net rate I (r,P), results in a shift
of the peak towards lower temperatures and the magni-
tude of this shift increases with increasing waiting time t.

Now let P(r, P) be a normalized equilibrium distribu-
tion function. Within the approximation of decay rate
theory, at constant r and P, the time-dependent probabili-
ty distribution I' evolves in time as

P(r, 13) t, O) =P, ,e ""t'"+-(I e ""Is—")P-(r,p) . (7)

where the static average

(mI) ',=M, (r)V TrIPP~~((r, P)J .

The initial demagnetized state P,
(I

does not contribute
to m)) '. For t &0 the function m))

' is discontinuous at
~=~& but in this temperature region the exponent is
negligible for any time of interest. The perpendicular
particle satisfies mi '( rP)t)—:(m(i ') at all times. For
the time-dependent dc susceptibility of the parallel parti-
cle we obtain

This formula' is obtained by replacing the relevant
Fokker-Planck equation by q = —I q, q =P P(r, P).—
There is P, o=P(ro, 0) by assumption and the time-
dependent projection of the mean magnetic moment of
the parallel particle into the field direction is

(1—e mll ' r rp—(3)I() (r, )(3)t,O)= '

( (3) ) )m
)) ~ p i vp

am"' &I&~«'&' '~+&M(i") &~~»~~« "
)l

V BB X(((r P» r rtp, — (9)

where the static dc susceptibility

y (r,P)=(T) 'I([M' '] ) —(M' ') j

Within the blocking temperature theory, Eq. (9) was
given previously by Gittelman' without the anomalous
term originating in change of decay rate with field. The
Fourier transform V[@](co) has Drude form, '' but Eq.
(9) describes a nonlinear response to the applied dc field
which depends on the time t elapsed during measurement
and has no relation to an external ac field of frequency co.
The peak of g(r) shifts to lower temperatures with in-
creasing t and is therefore not located at the boundary be-
tween reversible and irreversible behavior, i.e., at
which is often interpreted as spin-glass temperature. In

the perpendicular particle there is no overbarrier decay at
any temperature and its susceptibility yi(r, I3) is static at
all times. The high-temperature limit of y~ and g)) is
given by the usual Langevin formula y((-yi-M, V/(3T)
as KV/T~O while the low-temperature limit yields the
often quoted ' results yi-M, /(2K), y((=O(T/V) as
KV/T~ ~.

The simple formulas (7)—(9) hold for evolution at con-
stant r and P (direct transition measurement) but they are
approximately valid also for sequential measurements
provided that the barrier height is very large so that a
small change in temperature leads to a large change in
the Arrhenius factor exp( —Q/T). Thus, as the tempera-
ture is gradually raised the initial disordered state persists
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until some critical temperature at which relaxation effects
on the time scale of the measurement set in. Thermal
equilibrium is then attained over a narrow temperature
interval and Eqs. (7)—(9) approximately hold. We shall
encounter a similar situation in Sec. V where we discuss
coercivity at very low temperatures.

Let us list now some generalizations and possible appli-
cations of our simple two-particle model. The most trivi-
al generalization is achieved by allowing for volume vari-
ation within the sample. The volume and thermal aver-
ages are carried out independently and the resultant ther-
momagnetic curve is a superposition of curves with vari-
ous waiting times. Thus, for BaFe&20» particles of mean
size 10 m, Popov et ah. report a maximum close to 7&
and apparently little affected by thermal activation intro-
duced into their numerical simulation only as a
refinement of the reversible process. On the other hand,
Chien et a/. ' found in Fe-SiOz the peak shifted to tem-
peratures 7=7&/3 for Fe particles of size 10 m. Here
the overbarrier mechanism dominates and the direct
transition model is no longer applicable; the shift of the
peak and the relaxation process extending over a large
temperature interval can, however, be described by
means of the sequential transition model treated in the
next section. Further applications: Angular distribution
of the particles [0 & g & m /2 in Eq. (4) for E] is easily tak-
en into account since formulas (8)—(9) still hold, but r&
can in this case only be found numerically the same as for
particles of more complex symmetry. An important ex-
ception is provided by cubic systems in an external field
parallel to one of the easy axes where the nucleation field
is known. ' For Fe-type particles, K' ' =0 and
E' '&E' '&0, there exist two nucleation fields. At

8 & 8& =0.544K' '/M„ the decay proceeds in two

stages: First from the metastable minimum at p = 1 into
the four equivalent minima initially in the (0,0, 1) plane
and then to P = —1. At 8& &8 &8& =2K' '/M„ the

1 2

decay proceeds directly from p =1 into —1. By virtue of
Eqs. (1) and (2) the critical fields decrease rapidly with
temperature, 8& ~ (1 —r) . For Ni-type cubic symmetry

(K' ' & 0) there exists but one nucleation field
8&=4(K' ' K' '—/3)/(3M, ) which decreases uniformly
with 7.

III. THERM(3MAGNKTIC CURVE
UNDER SKQUKNTIAL TRANSITION

The merit of the direct transition model lies in the sim-
ple time evolution law (7)—(9) but in experiments the ini-
tial disordered state is usually heated up gradually (zero-
field cooling) and, as discussed above, the initial disor-
dered state does not necessarily relax over a narrow tem-
perature interval. We therefore address now the sequen-
tial measurement in which the external field is held con-
stant at times t & to=0 while the temperature is being
raised at a uniform rate p ', dt =pd7. We trace the fol-
lowing sequence of events: At t ~to, the system is in
thermal equilibrium in zero field, P;„=P(ro,0). At t = to,
a magnetic field p is turned on and the system is allowed
to relax towards the new equilibrium state P(ro, p) for a
time period ht. At t

&

= to+ At, the temperature is raised
to 7&

=70+ A7 and again the system is allowed to relax to-
wards P(r„p) at this temperature for a time b, t after
which the temperature is raised anew. We may therefore
schematically write

jo :P(rolti, tp) :P(rilt2, t& )

72
~ ~ ~ .- P(r„ l t„+, , t, ),

where for simplicity of notation we omit the P depen-
dence of P written out explicitly in Eq. (7). The values of
7; above the arrows show at what temperature the relaxa-
tion is taking place. At constant temperature we may use
Eq. (7) on every subinterval and write down the sequence

P(ro, Plt„to)=P;„e ' +(1—e ' )Po,
-r, at -1 &AtP(1 I plt2 tl ) =P (ro plti to)e ' +( 1 e )Pi

I

P;„ in constant field and at uniformly varying tempera-
ture. We introduced here the function y „=g,"= I;
and wrote I;=I (r;,P) and P; =P(r;,P) for brevity. The
distribution function at 7=7„ is therefore a superposition
of the equilibrium distributions P, , i n, the most recent
ones having decayed least. Their relative abundance at
r=r„depends on the functional form of I (r, P), i.e. , on
the set [I, I;E&0„,). In the limit b, t~0, Eq. (11) be-
comes

P(Pl t, t )=o[P;„—P(ro, P) ]e

+(1—e " )P„.
Successive substitutions then yield

P(pl t„+), to) =(P;„Po)e—
+ g (P, , P)e '" +—P„

j=1
for the normalized distribution function P evolving from

+P(r, P) Jdr'-, e-
+p 87

where t =to+p(r —ro) and the function y is

y(r, r)= I dx I (x,P) . (13)
1

The first term in (12) represents the discontinuous transi-
tion due to the sudden switching on of the field. The
derivatives of the normalized equilibrium distribution are
conveniently calculated from the relation
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BP/Br=~ [E—(E&, —~(E' —&E'),)]P. (14)

The total energy E depends on temperature via relations
(1) and (2) and E'=BE/Br.

Given Eqs. (11) or (12) it is easy to write down expres-
sions for the time-dependent magnetization m and the dc
susceptibility g which replace Eqs. (8) and (9) in the ir-
reversible domain ~&~&. The thermomagnetic curve be-
comes

separate the intrinsic and incidental components of obser-
vation data.

m(r, pit)= —&m), e
"'"

In the last term m'=Bm/Bw by virtue of Eq. (1). Obser-
vation results depend now on the sweep rate p ': In a
fast sweep the system finds itself in effect blocked until
some critical temperature at which thermal effects occur
on the measurement time scale. This is the direct mea-
surement limit recovered from Eq. (15) if y(~, r') ~~ ro-
is independent of the intermediate temperatures. A very
gradual sweep results in a large shift (and spread) of the
peak due to increased reversal probability at lower tem-
peratures. For the time-dependent dc susceptibility y we
obtain the relation

g(pit, t, ) = (M ), —

.„,B~(r) B

~o 3w' QB

—y(ro)e

—f dr', e-~r'"+q(r),, B~(r )

~0 87

which replaces Eq. (9) at r('&. The derivative By/BB
depends on the studied model but the derivative of the
static susceptibility y may again be expressed in terms of
averages. Let, for brevity, g be written as
g(~) =g(r)/(TV) where g=(m ),—(m ),. Then

Bg/B~=~ '[(Em'), —(E),(m'), ]
—~ '[(E'm'), —(E'),(m'), ]

+2[(mm'), —(m ),B(m ),/Br] . (18)

This formula concludes our study of the thermomagnetic
curve and time-dependent dc susceptibility. We wish
again to emphasize that the position of their extrema
reflects not only the intrinsic properties of the system, but
also the mode of measurement. In the currently available
micromagnets of size 10 —10 m this dependence be-
comes prominent and our equations may be used to

B(m ),.
dw' e Pr '+(m)

o 87

and the derivative of the equilibrium magnetic moment
(m ), is expressed as

B(m ),/Br=r ((Em ),—(E),(m ),)

—7. '((E'm ),—&E'&,&m ),)+(m'&, .

IV. THE HYSTERESIS LOOP

Within the Stoner-Wohlfarth theory the static hys-
teresis loop of a particle with uniaxial anisotropy,
E=E(p), is easily found from the conditions
dE/dp =E~ —=0 and E~„~O. The astroid A'", so popu-
lar in applications, allows one to construct it by
geometric means. Interestingly enough, an analogous
two-parametric surface A' ' exists in three dimensions
Let E= —b a(p, P)+f(p, P). The equations
E =E&=Hess(E)=0 then yield A' '=lb, , b2, b3],
where

b, (p, g)= —(1—p )
'r [2singf&+5cosg]/2,

b~(p, g)=(1 —p )
' [2cosgf~ —5sing]/2,

b3(p, p) = [2f~ p(1 p—)f~~-
—p(1 —p') 'lf +Dl]/2.

5=(1 p) f +f—~~+D,
D'=4[(1

p')fop+�—

pfp]'+ [fop (1 p')'f—pp]'—.

(19)

(20)

(21)

The static hysteresis loop discussed above neglects re-
laxation effects and does not allow one to study the
temperature-dependent dynamic response of the system.
Let us therefore address now a dynamic hysteresis loop
based on the coherent rotation model. The problem is of
considerable practical interest and a number of approxi-
mate model treatments exists. ' Our discretization pro-
cedure leads to an ab initio expression for the nonequili-
brium magnetization in the time-varying magnetic field.
The theory has a number of applications which are
briefly discussed in the conclusion to this section and in
the next one where we present a calculation of the
switching-field distribution.

We shall assume that at constant temperature the ap-
plied field varies with time according to B =B(t) and that
the inverse t=t(B) exists. Typically B(t) is a periodic
function whose inverse is defined only piecewise on every
half-period and this restricts our description of the hys-
teresis loop to one branch at a time. The discretization
procedure is essentially the same as in the previous sec-
tion and we write directly

P(B,BO) =P(T,B)+[P;„P(&,BO)]e—
—'(a, a')

/BI (22)

"here BO=B(to) is the initial applied field and the func-
tion p is defined by the integral

If E =E&=0 then also dbi/db3=tan8cosg and

dbms ldb3 =tan8sing and all points on the two tangents to
A~ ' which are in the 1-3 and 2-3 planes satisfy the equa-
tions E =E&=0 identically. For E =E(p) one recovers

A'"=
l f"(p)(1—p—')'r', f'(p) f"(p)p(1 ——p')] .
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e(B,B ) =I dt'I" [ T,B(t') ]

= J'dB ', r(T,B').aB' (23)
0.60

In Eq. (22) we introduced the normalized probability dis-
tribution P which evolves at constant temperature in the
time-varying magnetic field. The derivative in (22) is
easily calculated: r)P/dB = T '((E')~ E')—P, where
now E'=BE/BB. In hysteresis measurements P;„ is usu-
ally the equilibrium state at 8 =Bc, P;„=P(T,Bo), e.g.,
at the origin of the virgin curve or at high saturation.
The second term of Eq. (22) then vanishes. The equation
for any branch of the hysteresis loop is given by
M(B,Bo)= V 'm(B, Bo), where the magnetic moment is

m(B, Bo)=(m )ii+[(m );„—(m )z ]e

—0.40

B(m)~,
dB' e

—c(B,B')
Bo

(24)

000 IIIi~llt/III IIIlll fI
0.00 1.00 2.00

reduced

I I I f I I I
I

I I I I I I I I I
f

I I I

3.00 4.00 5.00
terr] peratur e

and

B(m ) /BB = T '[(E') (m ) —(mE') ] .

Same as in the preceding section, the integrals over histo-
ry are done over a product of two well-defined functions
which, unfortunately, can only be done numerically even
for the simple model (4). There is no need, however, to
carry out numerical differentiation since all requisite
derivatives are expressed in terms of easily calculated
thermal averages. '

Equation (24) lends itself well to the study of hysteresis
effects. We have employed' it, using model (4) with
/=0, to calculate the coercivity B,(f, T) as a function of
applied field frequency f and temperature T. As a special
refinement of the method we included (approximately)
backscattering effects by considering the net Aux over the
barrier, i.e., both to and from the initially overpopulated
well. Equation (24) has a wide range (in temperature and
frequency) of validity and we found that there exist two
distinct relaxation regimes of the nonstationary process:
The prefactor dominated regime at high temperatures
where coercivity is but weakly T dependent and the Ar-
rhenius factor dominated regime (low T) in which coer-
civity depends strongly on both temperature and sweep
rate (see Fig. 1). The influence of T-dependent anisotropy
and magnetization on coercivity was studied in Ref. 11
together with the possibility of experimentall observing
temperature dependence of the decay rate prefactor. Our
model makes it possible to easily accumulate large arrays
of hysteresis curves and we used' it to calculate the coer-
civity of an ensemble of aligned uniaxial particles (/=0)
with log-normal volume distribution and of misaligned
particles (0+lb+m/2) with cos"f angular distribution.
The possibility of applying our theory to clusters of in-
teracting particles with multiple relaxation channels is
currently under investigation. The applicability of our
theory is not confined to models of coherent rotation:
The distribution function P(T,B) of Eq. (22) can also,
e.g. , refer to a domain wall in a (possibly) multistable
rather then bistable) pinning field.

FICx. 1. The reduced coercivity b, =B,(f,B)/B~ (solid lines)
and the reduced field b~=B~(f,8)/B~ (dashed lines) at which
the susceptibility j[f,d~b, —1] has a maximum. The curves
correspond to the sweep rates f= 10 Hz ( X ), 10 Hz ( a ), 10'
Hz ( 6 ), 106 Hz ( o ), and 10' Hz (0).

V. SWITCHING FIELD DISTRIBUTION

i[f,~lB«)]= dM[f, BiB(t), B~]—
aB(t)

~Q[f,ajB(t ), B]—
bB(t)

In this section we apply Eq. (24) to calculate the
switching-field distribution (SFD) of an array of the uni-
axial particles (4) in parallel alignment with the field,
/=0. For simplicity it shall initially be assumed that nei-
ther E nor M, vary with temperature so that b =B/B~ is
independent of T. For our purposes only the barrier
height Q =K V in zero field is of relevance and we write
Q/T=(KV/Tz )8 ', where T„ is an arbitrary tempera-
ture. The value of the product EV/T~ is specified by
demanding that I '=1 yr (we take fo=e Hz for the
prefactor) at the reduced temperature 8=T/Tz
=4X10 '. In conclusion to this section, Eq. (27) below,
we show how to relate these calculations to the tempera-
ture ~= T/T&.

The system is driven by the field B(t)= Buncos(2rrft )—

and at t =0 it finds itself by assumption in thermal equi-
librium at B=—B~, i.e., in the spin-down state. At
given temperature tl and frequency f we calculate from
Eq. (24) the nonequilibrium magnetization
M[f, B~B(t),—B&] for one half-sweep of the applied
field on tE(0, 1/2f ). The coercivity B,(f,8) satisfies
the equation M[f, B~B,(f,8), Bz]=0 and —the
switching-field distribution is found by numerically
differentiating the calculated hysteresis curves with
respect to the instantaneous value of the applied field B at
time t:
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The curves yf(8~8) have a single maximum at the
point Bz(f,8) and we begin our discussion by comparing
the value of Bz(f, t't) with the coercive field B,(f,6)
whose plot is shown in Fig. 1. It is seen that B, is very
close to B+ yet consistently somewhat larger. We explain
this as a backscattering efFect' which slows down the net
overbarrier relaxation rate as the reversing field is gradu-
ally increased during the sweep: At B= —B& virtually
all particles are in the spin-down state. On the other
hand, at B=0 there is equal probability of jump in either
direction but the spin-down well may still be (depending
on f) heavily overpopulated while the spin-up well is al-
most empty. The net fIux therefore goes from spin-down
to spin-up states. Close to. the coercive field, B =B,&0,
the two populations are almost equal and despite the
biasing field there does exist a reverse Aux, in particular,
at low bias (small 8, or high temperature). The max-
imum relation rate is therefore attained somewhat earlier
than coercivity. Beyond coercivity, at very high fields
B=B&, the reverse Aux cancels the net overbarrier Aux

altogether and detailed balance (n, I, z=nzI z

where n; are the populations in the two wells) is estab-
lished. The disparity between B, and B& is enhanced by
increased temperature which, apparently, reduces the
biasing effect of the applied field.

Let us now address the most prominent feature of
graphs 2 and 3, to wit, the variation of the susceptibility
peak value jf(6 ~8&) with temperature. Figure 4 shows
the loci of points IBr,gf(8~8+)) for six values of the
sweep rate f. These are one-parametric curves in which
the parameter (temperature) increases from right to left.
The values of jf (8~8+ ) plotted as functions of tempera-
ture, [i),jf(6~8+)I, are shown in Fig. 5, the one param-
eter of these curves being B&. Also shown in this figure is
the equilibrium susceptibility y~~(8, 0) in zero field. These
two plots clarify the origin of the extrema in the peak
value of susceptibility: As temperature is increased the
values of both B, and B+ decreases until at sufIiciently
high temperatures the nonequilibrium curve 1& runs al-
most parallel to the equilibrium curve (M )ii a small dis-
tance away from it. Further increase in temperature has
but scant effect on the already low values of B, and B&
but y~~(8, 0) rapidly decreases to zero. This is manifest in
Fig. 5 where the loci of points I B,gf(8, 8+) I first rise to
meet the limiting curve yi(8, 0) and then follow it to zero.
In a very slow sweep this quasiequilibrium regime is
reached at low temperatures for which g~~(8, 0) is large.
Within the precision of our calculation we could not nu-
merically differentiate the rapidly varying (near zero field)
10 - and 10 -Hz hysteresis loops but there is no doubt
that the corresponding two curves in Figs. 4 and 5 attain
a maximum and turn subsequently to zero. An interest-
ing feature is the virtual absence of local extrema at very
high frequencies (here 10 Hz) where coercivity ap-
proaches zero only at high temperatures for which
yi(8, 0) is small. In slow sweeps one can thus distinguish
in Fig. 5 an initial low-temperature region of irreversible
susceptibility and a high-temperature region where sus-
ceptibility is essentially reversible. In both of these re-
gions the peak value of yf (8'~Br ) decreases with tempera-
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FIG. 5. The same peak values of reduced susceptibility as
shown in Fig. 4, but plotted vs the reduced temperature 6. The
solid line denotes equilibrium susceptibility g~~(8, 0) at zero field.
The tail section of the f=10 - and 10 -Hz curves could not be
calculated with sufficient accuracy.

in the vicinity of 8, . I (t) is here a time-varying relaxa-
tion rate,

I (t)=foexp[ (KV/T)I 1+cos(2' ft)) ]—.

For BW+8& there is

ture while in the transition region it increases. The sharp
segregation of the reversible and irreversible domains
vanishes at high sweep rates. The effect is also observable
in Fig. 1 where low-frequency coercivity has a distinct
kink absent at high f.

The remaining features of our graphs are as expected:
At constant temperature susceptibility becomes more
sharply peaked at small f since, upon reaching a low
enough barrier height Q, the system has sufficient time to
appreciably relax while Q (and the applied field) change
but a little. A similar argument also holds for the
broadening of jf(8~8) with increasing temperature: At
very low 8 the decay rate is essentially zero for B (B,
and then grows rapidly for B & B,. On the other hand, at
high temperatures I (8,8) varies slowly with 8 so that
relaxation begins at smaller fields and persists over a
longer interval.

The low-temperature property of the decay rate makes
it possible to estimate low-temperature coercivity
8, =b,B& by demanding that Zf= I ( T,B, ), where for
system (4) with P =0 Sharrock's formula
(1 b, ) =(T/KV)ln—(fo/Zf ) follows, the proportionali-
ty constant Z turning out to be on the order of unity.
This formula allows one to estimate the peak value of the
purely irreversible susceptibility jf(8~8+)=yf(8, 8, ) at
low T and f. To this end we write approximately

M(t ) = —2M, e '"'+M
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dIM =B '(27rf sin2~ft ) 't)lt)t

and therefore

dM(t) 4
~ KV(1 b )~( )

r(—t)tM

BB & B~ T t=t(B )

KV, fo
Bx T Zf

1/2

(26)

We assumed here that (1 b, )K—V IT ))1, used
Shar rock's formula for B„and set the product
1 te ~'=1. The temperature dependence of this formula
is not easily verified because of its limited validity but the
predicted frequency dependence corresponds to our Figs.
4 and 5. To see this let Zf =e . Then

r)M/r)B ln'
If I(Zf )I =5(1—o /50)

decreases linearly with small o.. In our case deviations
are observed only at the 10 -Hz curve.

Temperature dependence of the magnetic parameters
K and M, given by Eqs. (1) and (2) may be included by
the following argument: We have chosen the arbitrarily
scaled temperature 0 =T/T„ to label our graphs but this
way of labeling is a mere matter of convention. There ex-
ists (at fixed KV/T„) a one-to-one correspondence be-
tween 8 and I and we could just as well label our graphs
by the decay rate in zero field (or any other field, for that
matter). We can therefore establish a correspondence be-
tween t).=T/T„and r=T/Tc introduced in Eq. (I) by

demanding that

I (8,0)= I (r, 0) .r=6qc /(8qc+q„) .

In this equation q&=KVIT& and qc=K(0)VITc for
brevity. The value of qz has been fixed for our graphs
previously by setting I" '(0.4,0)=1 yr and qc may now
be chosen at will. The reduced field
b =B/B~~b(r) =B /Bz(r) of Eq. (5). To every
B=bB& of our graphs there corresponds therefore the
field B(r)=B[B~(r)/BE�](B. Equation (27) merely re-
labels our graphs and the subsequent rule results in a
nonlinear contraction of the B axes.

In conclusion let it yet be remarked that the inequality
B(M )ii/BB & BM/t)B holds at arbitrary temperature
since any system shall relax more during an infinite time
than during a finite time interval. This purely thermo-
dynamic property explains the existence of the limiting
curve yl( T,O) but the complicated structure of the region
bridging the reversible and irreversible limits is model
dependent and should, in our opinion, be also studied for
other models. In particular, we conjecture that in mul-
tistable (rather than in bistable) systems the function
gf ( T

~ Br ) is likely to be very complex.
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