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Quasiharmonic lattice dynamics of noble metals
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To study the thermal expansion of fcc metals we propose an interatomic potential that considers
both two- and three-body uncoupled forces that allo~s for the separate evaluation of both contribu-
tions. The aim was to develop a simple model that can explain a broad spectrum of lattice properties.
This was satisfied by a model with only four independent parameters that are Btted to the exper-
imental values of the second-order elastic constants and the Gruneisen function for T —+ oo. We
calculate the dispersion curves, the second- and third-order elastic constants, and the temperature
dependence of both the heat capacity and the Gruneisen function and compare with experimental
data, We also analyze the contribution of each normal mode through its angular frequency and its
Griineisen parameter.

I. INTRODUCTION

To simulate the lattice properties of a metal requires
knowledge of the effective imteratomic potential. Its char-
acterization from 6rst principles is, at present, not pos-
sible; hence, a phenomenological approach will be very
useful, particularly when one considers essentially anhar-
monic properties, such as the thermal expansion.

When we search through the literature about the
models used to study the lattice properties of metals,
one finds that many of the works consider only central
forces, which cannot explain the observed violation of
the Cauchy relations. Others works use the general force
model, which, owing to the greater number of param-
eters, is difBcult to extend to consider also essentially
anharmonic properties.

Recently, Zoli and Zoli et al.3 have used a model that
includes three-body forces to calculate, for the noble met-
als, the phonon line shifts and the Griineisen function
for temperatures greater than 100 K. They have fitted
the parameters of this model to the experimental dis-
persion curves and second- and third-order elastic con-
stants (SOEC's and TOEC's). As the quasiharmonic ap-
proximation is essentially valid at low temperatures, we
consider it very convenient to extend the calculation to
this range. On the other hand this range has a particu-
lar physical interest because of the observed "anomalies"
in both the heat capacity and the Gruneisen function.
Moreover, compared with more complex systems the fcc
metals are relatively simple ones. So, in order to allow
an extension of the model to these last materials, we
consider that it would be very useful not to include the
dispersion curves in the Bt of the parameters because,
mainly, these data are not always available for other sys-
tems. Instead these data could be used as a further check
of the developed model. A similar situation occurs with
the use of the TOEC, or the SOEC pressure derivatives,
but in addition the experimental error in these can be
considerable. When available, the differences of reported

values of the SOEC pressure derivatives from different
authors make greatly diKcult, as we will show later, the
characterization of the anharmonic contribution to the
total potential.

On the other hand, only in recent years have there
been proposed other interaction potentials that consider
many-body forces. For example, in the embedded atom
method the interaction is assumed to be the sum of
two-body (repulsive) and n-body (cohesive) potentials.
In this approximation the n-body potential is described
through the embedding function which depends on the
radial distribution of neighbors but not on their angu-
lar distribution. So this approach would not enable us
to study the relative importance between central (two-
body) and angular (three-body) forces. Moreover, this
approach does not give (at least with the parametriza-
tion presently available) a good description of the dis-
persion curves and then their extension to the study of
also anharmonic properties is not immediate.

In the interstitial electron model, the many-body in-
teractions are indirectly taken into account by treating
the valence electrons as classical particles localized in
tetrahedral holes. Li and Goddard parametrized this
model with the experimental values of the SOEC's and
frequencies of vibration at the point X in reciprocal
space. Again, this model does not allow us to study the
relative importance between two- and three-body forces
and its extension to include also essentially anharmonic
properties would involve a greater number of parameters,
which could not be adequately determined from the ex-
perimental information available at present.

So, in this paper, we have two main objectives. First
we are interested in the study of the relative importance
between two- and three-body forces in the lattice dy-
namics of fcc metals. And, second, we wish to calcu-
late the TOEC's and the temperature dependence of the
Gruneisen function in order to consider also the evalua-
tion of essentially anharmonic properties. The main idea
of this work is to study the characteristics that the effec-
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tive interaction potential should verify, in order to allow
us the evaluation of a great number of lattice properties
(both esentially harmonic and anharmonic ones). For
this, we propose a simple interaction potential that con-
siders two- and three-body uncoupled forces. This model
is applied to the concrete case of fcc metals for which we
calculate the dispersion curves, the second- and third-
order elastic constants, and the temperature dependence
of both the lattice heat capacity and the lattice contribu-
tion to the Gruneisen function for temperatures between
0 and 300 K. We analyze also the microscopic information
the model gives.

II. DESCR.IPTION OF THE MODEL

Here we propose an effective interatomic potential (4)
that can be expressed as the sum of two- (4) and three-
body (X) uncoupled potentials. We consider the two-
body potential of the form

N
C = —).4(r~),

2

where rA is the distance between atom A and the one at
the origin. The summation indicated in Eq. (1) must be
carried out, in principle, over all atoms A of the crystal;
however, here we consider the interactions only up to the
second neighbors.

The three-body potential can be expressed as a func-
tion of the cosine of each angle subtended by each triad
of atoms; with one of these fixed to the origin,

N
A = —) y[cos (8~@)],

AB

where 8AB is the angle subtended by the bonds rA and
rB. The prime in the summation indicates that terms
in which two indices are equal must be omitted. The
interaction potential associated with each angle (not each
triad of atoms) can be developed as

X = X(cos 8~&) + &'(cos8&&) b(cos8~rr)
+ zg (cos 8~rr) [6(cos 8~re)]

+ s y"'(cos 8&rr) [b(cos 8~re)],

where 8&rr is the angle subtended by the atoms A, B,
and the one at the origin when they are in their mean
positions.

To develop the expressions for the pressure, the elastic
constants, the dynamical matrix, and its strain deriva-
tive, it is useful to define the following quantities:

origin and the atom A when both are in their mean po-
sitions. So we can characterize the interaction with the
first neighbors given nr, Pr, and b'r, and with the second
neighbors given nz, Pz, and 6'z.

If we inspect the expression for the elastic constants,
the dynamical matrix, and its strain derivative, we can
see that the parameters y'(cos8&&) and y" (cos8&&) do
not appear independently but through the combination

g ( o 8AB) sg (CoS AB)o'
XAB

where Xp is half the lattice spacing. So, with this model,
we can characterize the three-body forces by giving the
parameters g and y"'(cos8&rr) (for the fcc structure
and considering only the common nearest-neighbor three-
body interaction 8&o& ——60'). However, the parameter
y'" appears only in the TOEC, not in the SOEC, neither
in its pressure derivatives, nor the dynamical matrix, nor
its pressure derivative. Moreover, the parameter y"' ap-
pears in the TOEC expressions in such a way that the
contribution owing to these terms verifies the third-order
Cauchy relations. After a detailed examination of the
experimental error in the determination of the TOEC,
we concluded that the parameter y"' is essentially inde-
terminate. So we chose y"' = 0; in other words we are
neglecting the anharmonic contribution of the three-body
forces. Fortunately this does not involve any further ap-
proximation in the calculation of the dispersion curves,
the pressure derivatives of the SOEC, the temperature
dependence of the heat capacity, or the Gruneisen func-
tion, which are the properties we wish to calculate.

III. RESULTS

A. Parametrization

In Table I we give the input data used to characterize
the model. The given SOEC's correspond to the 0-K
extrapolated values. 7 For the T ~ oo limiting value of
the Gruneisen function, p, we have used the T = 298
K values as reported by White and Collinss without any
attempt to reanalyze the experimental data.

As we have mentioned the parameters of the present
model would be nr, nz, pr, pz, h'r, 62, and (, with 6r'
and b2 the anharmonic ones. However, in this work we
neglect nr, n2, and 6q. We could consider the parameters
nr and n2 by using in the fitting a frequency of vibration
of the experimental dispersion curves and the stability
condition, but we do not do this because the properties
we wish to calculate have shown to be relatively insen-
sitive to these parameters (which are approximately two

p
A

(4)
TABLE I. Input data used to parametrize the model. The

C,, are in 10"N/m and Ae in 10 m. p is dimensionless.

p~ = 4' (&~) —n~,

~~ = &~ &"'(&~) —»~

(5
Metal

Cu
Ag
Au

where rA indicates the distance between the atom at the

1.805
2.045
2.040

1.762
1.315
2.016

1.249
0.973
1.697

0.818
0.511
0.454

1.98
2.38
2.96
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TABLE II. Bpo/BC,'~ calculated with the elastic contin-
uum model and the experimental SOEC's.

CU

Ag
Au

Bgo/8Cii
-0.29
-0.59
-0.10

~7o/~&4
+0.70
-0.67
+0.55

~'Yo/~+44

+1.21
-1.19
+1.08

orders of magnitude smaller than the corresponding P's).
We discard bz, i.e. , we restrict the anharmonic interac-
tion to first neighbors, because we wish to use only one
(measured with enough precision) experimental property
in the fitting. The quality of the obtained results shows
the validity of this assumption.

Now it is convenient to discuss why we have used only
the SOEC's and p~ to parametrize our model. First
we emphasize that we wish to develop a model with its
corresponding parametrization to calculate a broad spec-
trum of lattice properties and for several metallic sys-
tems. So, although the dispersion curves are available
for the noble metals, this information is not the case for
other metals. The experimental dispersion curves will
be used, then, to test the model. On the other hand
several authorss have used the TOEC's or the pressure
derivatives of the SOEC's to parametrize their models.
However, this method does not assure us good values
of po (i.e. , the T ~ 0 K limiting value of the Gruneisen
function) owing to the error in the experimental values of
the C,' . Indeed, with the elastic continuum model (valid
for T ~ 0 K) we can calculate the partial derivatives of
p& with respect to the C!,giving the values listed in Ta-
ble II. For this we must mention here that po is (within
the elastic continuum model) a linear function of the C,',
and so its values are not necessary to calculate Bpo/BC,'

Then, from the differences in the experimental values
of the SOEC pressure derivatives reported by different
authors (Table III), we can estimate roughly that the
experimental uncertainty in these are not less than
5'%%uo. Then we estimate the uncertainty in po as ApIi
~70/~C11 +Cll + ~YO/~C12 +Ci2 + ~70/~C44 +C44
resulting in about 14%, 17%, and 25'%%uo for copper, silver,
and gold, respectively. This Apoi is greater than that ob-
tained from thermal data. s For ionic crystals it is usual
to calculate po from the t,'. ; however, in these systems
the last problem is not present because the Opoi/BC, 'f's
are one order of magnitude smaller approximately.

B. Elastic constants

Once the model was parametrized we calculated the
SOEC pressure derivatives and the TOEC's given in Ta-
bles III and IV, respectively. As a measurement of the
absolute uncertainty in the experimental C,' we can take
the differences between the values reported by Hiki and
Granatoii and Daniels and Smith, o resulting in about
10%, 30%, and 20% for Cu, Ag, and Au, respectively.
For the uncertainty in the experimental TOEC, we ex-
pect a value still greater because their measurement re-
quires more difficult conditions. With this consideration
we can see that the agreement between experimental and
theoretical values is satisfactory.

C. Dispersion curves

As we have mentioned, we computed the dispersion
curves along the most symmetrical directions of recipro-
cal space. These are given in Fig. 1 together with the ex-
perimental data as measured by neutron diffraction. The
maximum difference occurs at the point (100) of longi-
tudinal branches being approximately 14% for Cu. If we

TABLE III. Experimental (by difFerent authors) and theoretical (with the present model) SOEC
pressure derivatives (dimensionless).

OCii
OP

P

OC44
P

Theor.

Expt.
Expt. '
Expt. '
Theor.

Expt.
Expt. b

Expt. '
Theo r.

Expt.
Expt. b

Expt. '

6.04

5.91
6.36

4.70

5.03
5.20

2.40

2.63
2.35

Ag

6.20

5.12
7.03
6.79
4.88

3.61
5.75
5.48
2.45

3.04
2.31
2.32

Au

5.26

5.72

7.01

4.62

4.96
6.14

1.93

1.52

1.79

Reference 10.
Reference 11.

'Reference 12.
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TABLE IV. Experimental (with the reported error) and theoretical (with the present model)
TOEC in 10 N/m2.

+112
&123
+144
C166
C'456

Expt.
-12.71+0.22
-8.14+0.09
-0.50+0.18
-0.03+0.09
-7.80+0.05
-0.95+0.87

Theor.
-14.87
-8.44
-0.14
+0.43
-7.87
+0.72

Ag

Expt.
-8.43+0.37
-5.29+0.18

+1.89+0.37
+0.56+0.26
-6.37+0.13

+0.83+0.08

Theo r.
-11.31
-6.73
-0.15
+0.46
-6.11
+0.77

Expt.
-17.29+0.21
-9.22+0.12
-2.33+0.49
-0.13+0.32
-6.48+0.17
-0.12+0.16

Theo r.
-15.05
-10.43
-0.41
+1.24
-8.77
+2.07

Reference 11.

consider the small number of parameters used and the
relative simplicity of the model, we can see the agree-
ment as good. Anyway, the agreement will be sufficient
to calculate thermodynamic properties, such as the spe-
cific heat, which are slightly dependent on the frequency
spectrum.

D. Heat capacity

The lattice contribution to the speci6c heat was cal-
culated previously by several authorsi is i4 with good

I I I I

agreement with the values obtained from experimental
data. Here, we report our calculated values to prove the
present model, which contains a smaller number of pa-
rameters than previous ones (the present model, 4 in-
dependent parameters; Lynn, Smith, and Nicklow, i 14
parameters; Miller and Brockhouse, 12 parameters;
Kamitakahara and Brockhouse, i 22 parameters). We
have calculated C„from experimental data, using the
thermodynamical relation

C„=C (1+PpT),
where P is the volumetric coefficient of thermal expan-
sion and p is the Griineisen function, defined by p =
PVBs/C„. V is the molar volume and Bs the adiabatic
bulk modulus. As sources of experimental data we have

20
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Au 0
25—
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0:.
0.0 0.2 0.4 0.6 0.8 1.0 0.8 0.6 0.4 0.2 0.0 0. 1 0.2 0.3 0.4 0.4

Reduced wove vector

0—
0 50 100 'l50 200 250 300

FIG. 1. Dispersion curves of copper, silver, and gold, ac-
cording to the present model (solid line) and from experimen-
tal data (Refs. 13, 14, and 1) (points).

I"lC. 2. | vs T curves calculated both from experimental
data (points) and with the present model (solid line).
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used the works of Martin 7 for the specific heat, White
and Collinsg for the thermal expansion, and Overton and
GaKney and Neighbours and Alers for the bulk modu-
lus. In Fig. 2 we show the C„(T)curves calculated both
theoretically and from experimental data, which show a
good agreement.

E. Thermal Expansion

V(T) = j=l
3N —6

) C„,
(9)

where

hv~ exp hv~/kT
kT (exp hv, /kT —l)2

are the Einstein specific heat and the Gruneisen param-
eter, both of the jth "normal" mode (N, the number of
atoms of the crystal).

Figure 3 shows the temperature dependence of the lat-
tice contribution to the Gruneisen function for the three
metals considered in this work. For copper and silver
there exists a very good agreement between the p'(T)
calculated with the present model and from experimen-
tal data for temperatures greater than 20 K. For lower
temperatures the theoretical curves pass through the very
scattered "experimental" points but below its mean. For
gold there is a reasonable agreement for temperatures
between 70 and 300 K; for temperatures below 70 K the

3.2

2.8—

According to the quasiharmonic approximation, the
Gruneisen function, at each temperature, can be eval-
uated as

3N —6

TABLE V. The 0 K hmiting value of the Gruneisen func
tion calculated (a) with the present model, (b) with experi-
mental SOEC pressure derivatives, and (c) from experimental
thermal expansion data.

Cu
Ag
Au

(a)
1.84
2.22
2.77

1.67
2.64
2.47

I,

YO

(b)
1.73
2.14b

2.91b
2.16'

(c)
1.67
2.29
2.96

1.78'
2.23'
2.94

Reference 11.
Reference 10.

'Reference 12.
Reference 9.

'Reference 18.

F. Microscopic information

The parameters Pr that characterize the nearest-
neighbor "harmonic" [see Eq. (5)] two-body potential
and the parameters ( that describe the common nearest-
neighbor three-body forces, within the present model, are
given in Table VI. As we can see, there exists a clear
trend in the absolute and relative contribution of the
three-body forces. Prakash and Upadhyaya have used
an explicit many-body potential to take into account the
three-body forces. However, they have not found a clear
trend in the relative importance of these forces possibly
because the many-body potential they considered cou-
pled the two- and three-body forces and their separation
is difFicult.

agreement is not very good with a maximum difI'erence
of about 2%%uo at T 25 K.

At very low temperatures the long wave phonons pre-
dominate and, in the T ~ 0 K limit we can use the
elastic continuum model to calculate pot, using the theo-
retical SOEC pressure derivatives; the results are given
in Table V together with the values calculated using the
experimental C,' and those obtained from thermal data.
These poi can be also calculated as the limiting of p'(T)
for T ~ 0 K in agreement with Eq. (9). However, this
independent calculation is a test of the adequate evalua-
tion of p'(T) at very low temperatures which is the zone
where the integration mesh in reciprocal space must be
fine enough.

2.6
C. Gruneisen rule

2.2

2.0—
~ ~~ ~~ ~

~ ~ +
~ 0

~ ~
~ ~

~ ~ ~

~ ~ ~

'0 ~ ~
e

~ ~
~ +0

I
~ Is+4 ~ $g4+ Cu

According to the Gruneisen rule all the "normal"
modes have the same Griineisen parameter [Eq. (11)],
leading to a function p'(T) [Eq. (9)] independent of tem-
perature. To study the validity of this rule we define

1.6

, , [

3 5
I

10 30 50 100
I

300
TABLE VI. Parameters Pr and ( of the present model.

I (K)

I IG. 3. Lattice contribution to the Gruneisen function
calculated with the present model (solid line) and from ex-
perimental data Ref. 9 (points).

Metal
Cu
Ag
Au

A
39.90
33.50
52.33

-3.46
-4.20
-11.27

A/(
-11.53
-7.98
-4.64
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10 is constant is a consequence of an adequate weighting of
the pz's by their corresponding C„,. 's [Eq. (9)].

IV. CONCLUSIONS

CU

FIG. 4. Griineisen parameter distribution function calcu-
lated with the present model.

the Griineisen parameter distribution function h(p) such
that h(p) dp represents the relative number of "nor-
mal" modes with the Gruneisen parameter between p
and p + dp. In Fig. 4 we give the h(p) function calcu-
lated with the present model.

Prom a microscopic point of view, the Griineisen rule
requires that p~ be constant. As we can see from Fig. 4
this is approximately obeyed for silver, to a lesser degree
for copper, and very poorly for gold. On the other hand,
from a macroscopical point of view, the Gruneisen rule
requires that p'(T) be constant. As a measurement of
the fulfillment of this, we can use the difFerences p~
which are 0.27, 0.26, and 0.12 for Cu, Ag, and Au, re-
spectively. These differences represent changes in p'(T)
for T between 0 and 300 K of 13%, 11%, and 4%, re-
spectively. So we can conclude that the Gruneisen rule
is approximately obeyed by the three metals and partic-
ularly in a good degree by gold.

Therefore gold shows the interesting behavior that it
fulfills p'(T) = const to a good degree, but with a broad
spectrum of the Gruneisen parameter. These two aspects
are, of course, not incompatible and the fact that p'(T)

We have proposed an interaction potential that con-
siders both two- and three-body uncoupled forces and
given a scheme of parametrization in which the four in-
dependent parameters of the model were fitted with the
experimental values of the second-order elastic constants
and the Griineisen function for T ~ oo. The selection
of this experimental data to characterize the Inodel is
an important feature of this work because this approach
would allow us to study other systems in which more
experimental information is scarcely available.

With this model we have calculated a broad spectrum
of both essentially harmonic and anharmonic properties,
dispersion curves, specific heat, second-order elastic con-
stants, and Gruneisen function for copper, silver, and
gold, obtaining, in all cases, a reasonable agreement with
experimental data.

We have also studied the importance of three-body
forces, showing the increasing importance of these in the
series Cu-Ag-Au. In all cases the parameter I,

' that char-
acterizes the three-body forces is negative, suggesting
that these interactions are essentially repulsive.

With this model we have shown that the fulfillment
of the Griineisen rule [p (T) constant] is in silver a con-
sequence of a narrow Gruneisen parameter distribution
function and in gold due to an adequate weight of the
diferent p~. In copper the two eKects together give a
p'(T) const.

We wish to emphasize that the aim of this work was to
develop a simple model, with its corresponding scheme
of parametrization, which allows us to calculate a broad
spectrum of lattice properties. To test the model we have
applied our approach to the noble metals because for
these there are enough experimental data with which to
compare.

At present we are applying our approach to study sys-
tematically all fcc metals for which there are less exper-
imental data and expect in the future to extend the cal-
culation to other structures.

J. W. Lynn, H. G. Smith, and R. M. Nicklow, Phys. Rev.
B 8, 3493 (1973).
M. Zoli, Phys. Rev. B 41, 7497 (1990).
M. Zoli, G. Santoro, V. Bortolani, A. A. Maradudin, and
R. F. Wallis, Phys. Rev. B 41, 7507 (1990).
M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).
I . Ercolessi, M. Parrinello, and E. Tosatti, Philos. Mag. A
58, 213 (1988).
M. Li and W. A. Goddard, Phys. Rev. B 40, 12 155 (1989).
W. C. Overton and J. Gaffney, Phys. Rev. 98, 969 (1955).
J. R. Neighbours and G. A. Alers, Phys. Rev. 111, 707
(1958).
G. K. White and J. G. Collins, J. Low Temp. Phys. 1, 43
(1972).

' W. B.Daniels and C. S. Smith, Phys. Rev. 111,712 (1958).' H. Hiki and A. V. Granato, Phys. Rev. 144, 411 (1966).
P. S. Ho, J. P. Pourier, and A. L. RuofF, Phys. Status Solidi
35, 1017 (1969).
A. P. Miller and B. N. Brockhouse, Can. J. Phys. 49, 704
(1971).
W. A. Kamitakahara and B. N. Brockhouse, Phys. Lett. A
29, 639 (1969).
D. Prakash and J. C. Upadhyaya, J. Phys. Chem. Solids
49, 91 (1988).
D. L. Martin, Rev. Sci. Instrum. 58, 639 (1987).
D. L. Martin, Phys. Rev. 141, 576 (1966).
K. O. McLean, C. A. Swenson, and C. R. Case, J. Low
Temp. Phys. 7, 77 (1972).


