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Analog stochastic quantization for a one-dimensional binary alloy
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The technique of analog stochastic quantization (ASQ), originally introduced in relation to the quan-

tum harmonic oscillator, is applied to a more complicated quantum system: namely, a one-dimensional

binary alloy. The results from an electronic analog simulator are compared with those obtained from

numerical solutions of the Schrodinger equation, with which they are shown to be in agreement. It is ar-

gued on this basis that the ASQ technique can in principle be apphed to one-dimensional quantum sys-

tems with arbitrary potentials.

I. INTRODUCTION

Electronic analog simulation is a well-established tool
for finding solutions of awkward nonlinear equations. Al-
though largely eclipsed by digital techniques in relation
to deterministic systems (e.g. , deterministic chaos ), it has
enjoyed a resurgence of popularity over the last decade
for the treatment of intractable problems in stochastic
nonlinear dynamics where exact analytic solutions are
frequently unobtainable. Recently a variant of the tech-
nique, analog stochastic quantization (AS@), has been ap-
plied successfully to one of the simplest of all quantum
mechanical systems —the quantum harmonic
oscillator —through exploitation of the well-known
mathematical connection that exists between the
Schrodinger and Fokker-Planck equations. In the
present paper we show how this idea may be extended to
the treatment of a rather more complicated quantum sys-
tem, namely, a one-dimensional (1D) binary alloy. First,
however, by way of general background, we review
brieAy the basis of the analog technique and its role and
value in classical stochastic nonlinear dynamics.

The use of electrical circuits to study stochastic non-
linear equations (e.g., Langevin equations), employed by
Landauer and Stratonovich, was subsequently extended
and developed by a number of other workers including,
particularly, Morton and Corrsin. The basis of the tech-
nique has been reviewed in detail elsewhere but is, in
essence, extremely simple. An electronic circuit is built
to model the equation (or system of coupled equations)
under study. With use of modern analog components,
this procedure is relatively straightforward and can usu-
ally be eFected in a few hours at most. The various
mathematical elements of the equation (e.g. , addition,
subtraction, integration) can be provided by suitably con-
nected operational amplifiers, or by use of more special-
ized integrated circuits where appropriate [e.g. , the AD
534 (Ref. 9) or MPY 534 (Ref. 10) for multiplication or

division, or the AD 639 (Ref. 9) for trigonometric func-
tions]. The circuit model is then driven, as appropriate
for the equation under study, by external noise from one
or more noise generators and, in some cases, by deter-
ministic forcings as well. The fluctuating voltage(s)
representing its response is (are) digitized, and then ana-
lyzed by means of a digital computer to calculate and
ensemble-average the statistical quantity being sought
(e.g. , a one-dimensional or multidimensional stationary or
time-evolving probability distribution, a spectral density,
a correlation function, a first-passage-time distribution, a
return-time distribution, or a prehistory probability dis-
tribution).

The analog electronic approach to stochastic problems
has enjoyed a number of successes, having been used both
to confirm some theoretical predictions, and also to rebut
a number of others; it has also led to new discoveries in
its own right. A full review would be inappropriate here,
but highlights of the last decade would include the fol-
lowing: the first demonstrations of noise-induced phase
transitions, in the Stratonovich model" and the genetic
model' ' equations, respectively; the first observation of
stochastic postponements of critical onsets' in a bistable
system; measurements of stochastic phase portraits' for
the double-well Dulong oscillator, leading to the quite
unexpected discovery that these become skewed with in-
creasing correlation time of colored noise; the observa-
tion of a similar skewing e8'ect in the ring-laser gyroscope
equation investigations of swept parameter systems re-
lated to chiral symmetry breaking in prebiotic evolu-
tion, ' transient optical bimodality, ' the postponement
of Hopf bifurcations in the Brusselator, ' and studies of
the role of Auctuations in the laser start-up problem; the
first convincing demonstrations of stochastic resonance '

(SR) and of its occurrence in underdamped systems; a
vindication of the proposal that SR be treated in terms
of linear response theory and the Auctuation dissipation
theorem, a demonstration of the relevance of SR to
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sensory neurons, and a resolution of the recent contro-
versy about phase shifts in SR; the rebuttal of a theoret-
ical prediction of a noise-induced divergence in the re-
laxation time of the Verhulst model; the discovery of
modulation-induced negative differential resistance (a
deterministic phenomenon); the first observation of su-
pernarrow spectral peaks near a kinetic phase transi-
tion; pioneering experiments with quasimonochromatic
noise; studies of fluctuation phenomena ' associated
with a multibranch potential; and a demonstration of the
physical reality of optimal paths, leading to the unex-
pected discovery of marked dispersion in the width of the
prehistory probability distribution at intermediate time.

In a significant minority of these investigations, digital
simulation of the stochastic equations was also used.
The question arises, therefore, as to what may be the rela-
tive merits of the analog and digital techniques. Al-
though no precise, universally applicable, answer can be
given to this question —because their relative advantages
and disadvantages naturally depend on the nature of the
particular system under study —we can nonetheless offer
the following general remarks. First, digital simulation is
in general the more accurate of the two approaches pro-
vided, of course, that the relevant algorithm has been
correctly designed and programmed. Digital simulations
are not subject to the parameter drifts, or the effects of
internal noise in active components, which can some-
times plague the analog approach. Second, however, for
many types of system (especially, but not exclusively,
those involving coupled equations, or the combined
effects of more than one noise source), digital simulations
can become very greedy (often requiring hours) of central
processor unit (CPU) time, if the results are to be of
reasonable statistical quality. Analog simulations, on the
other hand, can produce results of excellent statistical
quality relatively quickly (in minutes) to an accuracy typ-
ically of a few percent. Third, partly on account of its
relative speed, analog simulation readily enables large
volumes of parameter space to be surveyed for interesting
phenomena, often by turning knobs to adjust the relevant
parameters while examining changes in the resultant dis-
tribution of a visual display, the equivalent procedure for
a digital simulation is usually much slower and more pon-
derous.

In view of the above considerations, most scientists ex-
perienced in both analog and digital simulation seem to
regard them as complementary techniques for the study
of stochastic nonlinear problems. Each of them has its
own particular advantages and disadvantages; which of
these is emphasized or deemphasized will depend on the
properties of the particular equation under study. As in
any experimental investigation, it is possib1e to make mis-
takes and generate artifacts in either form of simulation.
Consequently, in tackling really awkward problems for
which there is no existing theory, or where the theory ap-
pears to be suspect, it is prudent to use both the analog
and the digital simulation techniques together, with the
one acting as a check on the other.

Given that electronic analog simulation is of proven
value" ' for the investigation of classical systems,
it is natural to wonder whether it may also be useful in

relation to quantum systems. There is, however, no
unique way of applying the technique to a quantum sys-
tem. One approach would be to try to model the
Schrodinger equation directly, treating the real and imag-
inary parts separately (as was successfully achieved previ-
ously in modeling optical bistability under the inhuence
of colored noise). A quite different approach is the ASQ
one mentioned above, where we make use of the close
correspondence between the Schrodinger and
Langevin —Fokker-Planck equations. It is the latter vari-
ant of the analog technique that we explore in the present
paper, where we treat a quantum system that is
significantly more complicated than the one for which
ASQ was originally introduced.

ASQ represents a variant of the more conventional sto-
chastic quantization technique, * adapted for im-
plementation using standard methods of analog electron-
ic simulation. As described in detail elsewhere, sto-
chastic quantization allows information about a quantum
mechanical system, such as eigenvalues, eigenfunction in-
tensities, and the density of states, to be obtained by the
simulation of a stochastic differential equation (SDE).
The SDE is chosen in such a way that its corresponding
Fokker-Planck equation reduces to the quantum mechan-
ical eigenvalue problem of interest, but in imaginary
time. In the original demonstration of the feasibility of
ASQ, applying the technique to the quantum harmonic
oscillator it was shown that the eigenvalues and eigen-
function intensities of the lowest-lying excited states
could be obtained and that, for higher energies, the densi-
ty of states could be found from measurements of the par-
tition function. However, the quantum harmonic oscilla-
tor is of course a very simple system with a simple analyt-
ic (quadratic) potential. In practice one would really like
to be able to extend the ASQ technique to facilitate the
simulation of a quantum mechanical system with an arbi'-

trary potential function.
To this end, we here report the successful simulation of

a system with a periodic potential. The potential func-
tion (actually the force) was programmed into a bank of
EPROM's which were incorporated into a conventionally
designed analog simulator. In principle, any potential
function can be programmed in this way and, conse-
quently, any one-dimensional (1D) quantum mechanical
system can be simulated. The periodic quantum mechan-
ical potential studied here, used to illustrate the tech-
nique, consists of alternating negative and positive 6
functions and is therefore a simple model of a 1D binary
alloy.

II. THEORY
OF ANALOG STOCHASTIC QUANTIZATION

In its simplest form, for a single degree of freedom, x,
the ASQ technique starts from a SDE of the Langevin
type,

with
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which has an associated Fokker-Planck equation

ap(x, t) a aW a'
ax ax+

where

=Hg,
Bt

a'H= D—+ V(x)
Bx

Making the substitution p(x, t)-p'~ g(x, t) where
1/2 —W/D

ppq
—e is the stationary probability density,

reduces (2) to an imaginary-time Schrodinger equation of
the form

Z(t) t
—(P +1)

Therefore the exponent can be extracted from a log-log- og
plot of Z (t) versus t at short t.

Having demonstrated the feasibility of ASQ for the
simplest of quantum mechanical systems, namely, the
quantum harmonic oscillator, we now show how the
method can be modified to facilitate the simulation of an
arbitrary 10 potential. For this study the classical
Langevin potential W(x) was chosen to be a periodic
function with five cells of half-width a, separated by walls
of gradient ~c) W/Bx) =a/2, as shown in Fig. 1. The cor-
responding quantum potential V(x) has alternating posi-
tive and negative 5 functions, and thus provides a simple
model of a one-dimensional binary alloy.

With appropriate boundary conditions we have the
Hamiltonian

and the quantum mechanical potential V(x) is related to
W'(x) by the Ricatti equation

B8' 1 08'V— (5)

H= —,
' —8 ++5[y —A (2n +1)]—5[y 2A—n],

where we have defined

One can now readily show that if x =xo at t =0, the
solution of (2) takes the form

p( x, t )xc)=g o( x) g e
(xo ) (x)

Qo(xo )

P=, A =Pa,

and the dimensionless variables

(12)

where f (x) is an eigenstate of H with eigenvalue A,

Thus, by simulating the SDE (1) and measuring
p(x, t)xo ), information about the quantum mechanical
system can be obtained. In practice the return time den-
sity p(x, t)x), which from (6) is seen to be

p(x, t~)x) =gP (x)e (7)

1s measured experimentally for an analog electronic cir-
cuit model of (1). To obtain estimates of the eigenvalues,
Eq. (7) is integrated over x to yield the partition function (b) 0------ ------

Z(t)= g e
m=0

As long as the eigenvalues are well separated analysis f0
( ) at large times gives estimates of the lower-lying eigen-
values. Once these have been obtained, their correspond-
ing eigenfunction intensities f can be found using (7),

g, -[p(x, t~x) —go]e '

In principle this subtraction of lower-lying eigenstates
can be carried on indefinitely, but in practice the cumula-
tive buildup of errors limits the technique to the first two
or three levels only.

Finally, one notes that if t is much less than the inverse
level separation, (g) can be replaced by an integral to
yield

Z(t)= f dA, N(A, )e

where N(X) is the density of states at A, . If N(A, ) varies
like k, then this yields, for small t,

(c)

FIG. 1. (a) Classical potential W(x) used in the Langevin
equation (1) in order to simulate a quantum mechanical one-
dimensional alloy. It is periodic, with five cells of half-width a,
and with end walls that are finite but very much higher than the
cellular potential maxima. (b) The corresponding force
—BW(x)/Bx programmed into EPROM's for the digital func-
tion generator. There are ten forcing regions of magnitude
)a/2) and width a. (c) The corresponding quantum mechanical
potential V(x) given by Eq. (5). The arrows represent positive
and negative 6 functions.
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y=Px, r=DP t (13)

III. ANALOG SIMULATION

The electronic analog simulator used to study Eq. (1)
was in part of conventional design and is shown
schematically in Fig. 2(a). However, an unusual feature
of this circuit is the incorporation of a digital function
generator (DFG) to generate the forcing function
BW/Bx. The DFG is similar in general design to one
used earlier' and is shown schematically in Fig. 2(b). It
consists of an analog-to-digital converter (ADC), which
transforms the analog signal x(t) into a 12-bit address
which is then used to access one of the 4K memory loca-
tions in the EPROM's, where the forcing function had
previously been programmed. Therefore, the forcing
function could be specified at any given x(r). Finally, a
digital-to-analog converter (DAC) was used to convert
the digitally encoded force back into an analog voltage.
The processing time of the DFG, which introduced a
slight delay in the system, was 4 ps. The circuit was
therefore time scaled so as to ensure that this was by far
the shortest time scale in the system. For all the results
reported D =0.10, p= 5, and A =4.2.

The data processing was carried out by a Nicolet 1180
data processor. The processor discretized x (t) in both x
and t, with a 12-bit precision in x and 256 or more time
channels. The sampling interval was set either to 10 or
8000 ps, which rejects the difFering time scales of interest
(energies of interest) in the eigenvalue spectrum. The re-
turn density was constructed using the algorithm de-
scribed previously.

have been introduced. The return density (7) is then
given by

p(y,

eely

) = gg'„(y)e

A typical example of a realization of x(t), obtained
from the analog simulator is shown in Fig. 3. The "parti-
cle" can clearly be seen to be diffusing between the stable
states corresponding to the potential minima. Two re-
turn densities measured for different time scales are
shown in Figs. 4(a) and 4(b). Because of the periodic na-
ture of the potential, the eigenvalues form in bands of
five, there being five unit cells comprising our lattice.
The first band, formed by the hybridization of the
lowest-lying bound states of isolated cells, is character-
ized by relatively small eigenvalues —10 . Consequent-
ly, a large ~ is necessary to allow the excited states of the
lowest band to decay, thus enabling the ground-state
eigenfunction intensity p(y) to be obtained from the rela-
tion lim, „p(y, r~y) —+p(y). Figure 4(a) shows, predom-
inantly, the decay of the first band, the ground state being
just about approached at ~-2500, as shown, in Fig. 5(a).
Figures 5(b) and 5(c) show other slices obtained from
p(y, ~~y) at two different times r. Although it is in princi-
ple possible to obtain estimates for the higher-order
eigenfunction intensities, by subtraction of the ground
states from slices such as these, this procedure cannot be
carried out in the present case. This is due to the banded
nature of the eigenvalue spectrum, in which the lower-
lying eigenvalues are insufficiently well separated to allow
a subtraction to be made unambiguously.

To judge the accuracy of the technique, the eigenvalue
problem associated with (1) was also solved numerically
by digital computer and the results compared with the
data obtained from the analog simulation. The prob1em
can be cast in the form of a free wave scattered by the 5
functions, with appropriate boundary conditions. Clear-
ly, the propagation of the Bloch wave from one boundary
to the other is given by a product of spatial transfer ma-
trices and 5-function scattering matrices. The eigenvalue
spectrum is then computed subject to the requirement
that the Bloch wave satisfies the boundary conditions.

(a)

c}W
BX
= 'DFGI-

&( X

= x(t)

x {t)

(b) 12-bit busses

x(t)
ADC DAC

bW
QX

0 '-

0
I

640

FIG. 2. (a) Schematic diagram of the analog electronic cir-
cuit used to model the one-dimensional alloy. (b) The digital
function generator (DFG).

FIG. 3. Typical x(t) trajectory for the electronic circuit
model of the one-dimensional alloy, showing temporary
residence in each of the (classical) potential wells of Fig. 1(a).
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q( ) g ikx+ g —ikx (14)

and the plane-wave amplitudes B+ of the cell to the left
of a 6 function of strength 6 are related to the amplitudes
B+ of the cell to the right by

B+
T B /

where

The problem is solved by noting that, in the Rat regions
between 6 functions, any eigenstate of H will be of the
form

The boundary conditions need special care. In fact, for
t e region outside the 10 alloy, as well as two negative 5
functions located at the boundar th lary, e actual potential

(x) used in the analog simulationsns gives a quantum
ge u nite. From themec anical potential which is larg b t fi

'
. F

iccati equation, if the negative 5 functions at the boun-
daries are of strength —(D+—') h D

'
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FICx. 4. Return-time probability densities p(y, r~y) measured
for the electronic circuit model: (a) over long times and (b) over
shorter times.

FIG. 5. Sectionctions through return-time probability densities

p(y, r~y) measured in counts (solid curv ) f th 1curves or t e electronic
a ~= . , and (c) at ~=0.8. Thesimulator: (a) at ~=2560 (b) at ~=3 2 d

dashed curves re resd p esent numencal computations for the quan-

ment.
turn mechanical system, scaled vertically to mat h thc e experi-



47 ANALOG STOCHASTIC QUANTIZATION FOR A ONE-. . . 8585

tity, we find that the potential in the classically inaccessi-
ble region is given by D ——', where we have assumed
that the potential in the accessible region has the value
zero. It is straightforward to modify the theory to ac-
count for these peculiarities. As expected, we find that
the vector k becomes imaginary in the classically forbid-
den region, and we require on physical grounds that the
amplitude of the exponentially increasing function van-
ishes. For a boundary located at xo, the plane-wave am-
plitudes 8+ of the adjacent cell, taking into account both
the finite height of the potential and the negative 6 func-
tion, are given by

(D+ —,
' —)8+= 1+ e '

2 ik

(D + —,
'

) —„0(r+,k)B = 1+ e
2 ik

where Bo, the amplitude of the wave function in the for-
bidden region, is determined from normalization condi-
tions and y=+V D —1/4 —k . The upper (lower) sign

of y corresponds to the left (right) boundary.
To compute the allowed k vectors [and hence the al-

lowed eigenvalues and wave functions g(x)], we choose a
trial k and set Bo=1 in the classically inaccessible region
to the left. The wave function in the classically forbidden
region to the right is then obtained from a product of
transfer matrices and the allowed values of k obtained
from the condition that the wave function in this region
must decay for large X.

In practice, Bloch wave functions with boundary con-
ditions corresponding to an infinite potential barrier plus
an infinite negative 6 function are close enough to the ex-
act solution to give a good initial guess for the allowed k
vectors, at least for the lowest eigenvalues.

IV. DISCUSSION

The experimental p(y, r ~y) cross sections (solid curves)
from the analog simulation are compared with the nu-
merically computed ones (dashed curves) in Figs.
5(a) —5(c). The agreement is clearly very good, especially
if some allowance is made for the discretization (128

Z(x)
(b)

10

0 I I I I I I

500
I I I t I I

1000 1500 2000 2500
I

3

Z(v)
Z(x)

20 I I I I I I I

10

20 200 2000 Q.025 Q.25 2.5

FIG. 6. Partition function Z(~) for the one-dimensional alloy (arbitrary ordinate units); Measurements made with the electronic
simulator (dashed lines or squares) are compared with numerical computations (solid curves): {a) for large times, (b) for short times,
(c) for large times on a double logarithmic scale, and (d) for short times on a double logarithmic scale.
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values) of the abscissa in the experimental case, which
has the effect of reducing the height of sharp peaks. The
characteristic changes of shape with ~ found in the exper-
iment are also seen to occur in the calculated curves. In
Fig. 6(a) and 6(b) the numerically computed partition
function Z (r) is compared with that obtained from the
analog simulation. It can be seen that, as in the case of
the cross sections, the agreement between the two curves
is good, thus confirming that the analog circuit accurate-
ly simulates the quantum mechanical system. The loga-
rithm of the partition function is shown in Figs. 6(b) and
6(c). Again the theory is seen to describe the experimen-
tal data well. This discrepancy which is observed at
small r is due to the truncation of the summation in (8).
At such large energies (small r) very few of the eigen-
states have decayed and thus an excessively large number
of terms would be needed to obtain an accurate result.

One interesting feature of the small r data [Fig. 6(d)j is
that the gradient at r-2 is ——

—,'. This reflects [see Eq.
(10)] the fact that, at this value of energy, the quantum
system approaches that of the free-electron model, with
its well known E ' density of states. At still smaller 7

(larger energies) the gradient is seen to decrease; this is
due to the finite barrier height of the boundaries in the
quantum mechanical system.

We note that any potential function W(x) could have

been inserted in the EPROM's of the DFG: It is not
necessary that 8'(x) should be of a simple analytic form.
The above results therefore demonstrate that the ASQ
technique may be extended to allow the simulation of an
arbitrary, time-independent, one-dimensional quantum
system. However, they have also highlighted an inherent
limitation of the technique in relation to systems whose
low-lying eigenvalues are close together, in that it then
becomes impossible in practice to extract the lower eigen-
values or eigenfunction intensities unambiguously using
(7) and (8). The latter method worked well for the quan-
tum harmonic oscillator precisely because its eigenvalues
are well separated, whereas the one-dimensional alloy
considered here represents an example of a system for
which the procedure cannot be used. For the future, it
will be of interest to determine whether such problems
can be circumvented by direct electronic simulation of
the full, real-time, Schrodinger equation. Such investiga-
tions are currently in progress.
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