
PHYSICAL REVIE%' B VOLUME 47, NUMBER 14 1 APRIL 1993-II

Short-time behavior of the diffusion coef6cient as a geometrical probe of porous media
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We investigate the time-dependent diffusion coefficient, D(t)=(r (t))/(6t), of random walkers in

porous media with piecewise-smooth pore-grain interfaces. D(t) is measured in pulsed-field-gradient
spin-echo (PFGSE) experiments on Quid-saturated porous media. For rejecting boundary conditions at
the interface we show that for short times D(t)/DO=1 —AD{Dot)'~ +BoDot+O[(Dot)'~ ], where

Ao =4S/(9&sr Vi ) and Bo= HS/(12—V&) g, (L; /V—r )f(P; ). Here Do is the diffusion constant of the

bulk Quid, S/Vp is the surface area to pore volume ratio, H is the mean curvature of the smooth por-
tions of the surface, L; is the length of a wedge of angle P;, and the function f(P) is defined below. More
generally, we consider partially absorbing boundary conditions, where the absorption strength is con-
trolled by a surface-relaxivity parameter p. Here, the density of walkers (i.e., the net magnetization) de-

cays as M(t)=1 pSt/Vz+— , and D(t) is defined as (r (t)), /(6t), where (r (t) ), is the mean-

square displacement of surviving walkers When. p&0 we find that the coefficient Ao of the +Dot term
in the above equation is unchanged, while the coefncient of the linear term changes to Bo+pS/(6').
Thus, data on D(t) and M(t) at short times may be used simultaneously to determine S/Vp and p. The
limiting behavior of D (t) as p~ ao is also discussed.

I. INTRODUCTION

The ratio of surface area to pore volume, S/V~, is an
important parameter describing the microgeometry of
porous media, and is a key factor governing numerous
physical processes such as catalysis, electrolytic conduc-
tion in systems with charged interfaces, and nuclear mag-
netic resonance (NMR). ' Recently, we described a
method of determining S/Vz using the time-dependent
difFusion coefficient of Quid molecules in Quid-saturated
porous media as measured by the pulsed-field-gradient
spin-echo (PFGSE) technique. PFGSE experiments
measure the diffusion of nuclear magnetization in fIuids
which arises, physically, out of the diffusive motion of the
fIuid molecules. ' The magnetization density can be
visualized as the density of an ensemble of random walk-
ers moving through the pore space and getting either
refIected or absorbed at the pore-grain interface.
Physically, the absorption of walkers reAects the
enhanced relaxation of magnetization associated with
paramagnetic impurities at the grain surfaces. Let
(r (t) ), be the mean-square displacement of the walkers
surviving to time t. We derive a perturbation expansion
for the time-dependent diffusion coefficient,
D(t)=(r (t)), /(6t), at short times. Successive terms in
the perturbation series contain integer powers of the
diffusion length (Dot)'/ . The first term of this expansion
was exploited successfully by Latour et al. " to determine
S/Vt, in a number of experimental systems.

We make the observation, important in the context of
PFGSE experiments, that the coefficient of the (Dot)'
term (in the expansion described above) is unaltered by

the presence of enhanced surface relaxation. Thus the
(generally unknown) surface-relaxivity parameter p does
not enter the determination of S/Vz. By contrast, tradi-
tional methods of measuring S/Vp using NMR are based
on the fact that the decay rate of the net magnetization,
M(t), is enhanced by an amount p(S/Vp). The utility of
this method is clearly limited by the fact that the value of
p is required to determine S/V~. The present results sug-
gest a method of determining p and S/V„ together by
combining measurements of the short-time behavior of
M(t) and D(t). We believe this to be the only reliable
way of determining S/Vz values relevant to NMR mea-
surements in Quid-saturated porous media. The widely
used Brunauer-Emmett-Teller (BET) method suffers from
several drawbacks in that it generally employs gas mole-
cules interacting with a dry pore-grain interface. '

NMR, however, is sensitive to the wetted surface area
which can be very different from the dry surface area,
especially when expandable clays are present. Further,
the surface area determined by the BET method often de-
pends on the size of the gas molecule used and the dead
volume in the instruments can introduce additional un-
certainty. '

We wish to emphasize that the results derived here
hold as well for early-time diffusion coefficients deter-
mined by other methods, such as light-scattering experi-
ments on macromolecules in porous media. ' This is true
because the underlying diffusion equations and the
boundary conditions are identical. The time-dependent
PFGSE amplitude M(k, t) corresponds to the intermedi-
ate scattering function in light-scattering experiments. In
addition, M(k=O, t) corresponds to the heat Aux in a
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thermal-diffusion problem or to the solute concentration
in catalysis or electrochemistry problems. '

The study of the short-time transients of the diffusion
equation in restricted geometries has a long and colorful
history which is described in a classic paper by Kac enti-
tled "Can one hear the shape of a drum?. "' More recent
citations are given in Ref. 14 which deals with mass and
heat transfer problems. Kac considered the problem of
determining the geometry of the boundary from the spec-
tral function

M (t ) = 1 ptS /V~+ 0 (t—'"),
D (t)/Do =1—2+Dot +BDot +0 (t ),

(2a)

(2b)

where

4S

9' &~

8(t)= g exp( A,„t),—
n=1

where I X„ I are the eigenvalues of the diffusion equation
in a region surrounded by perfectly absorbing walls.
More recently, de Gennes discussed an analogous prob-
lem related to the decay of magnetization, M(t), in a re-
gion where the relaxation rate at the boundary is
infinite. ' The present study involves the diffusion
coefficient D (t), which is related to the second moment of .
displacement. We will see that M (t) and D (t) involve in-
formation about both the eigenfunctions and eigenvalues
of the diffusion equation.

This paper is organized as follows: In Sec. II we sum-
marize how D(t) is measured in PFG experiments and
present a simple physical picture for the early-time be-
havior of D(t). Section II concludes with the derivation
of a perturbative expansion for the diffusion propagator.
In Sec. III we consider in detail the early-time behavior
of D (t). Beginning with refiecting boundary conditions,
we treat first smooth interfaces and then wedgelike singu-
larities. The inhuence of partially absorbing boundary
conditions is then included. An illustrative example,
diffusion within an isolated spherical pore, is presented in
Sec. IV. In Sec. V we describe the results of numerical
simulations on model two- and three-dimensional pore
geometries. An alternate derivation of the inhuence of
surface relaxation using an eigenfunction expansion is
given in the Appendix.

Because the formalism developed below is somewhat
complex, this section concludes with a brief summary of
our principal results. In a porous medium with a pore
surface which is smooth except for wedge-shaped regions
where the curvature is allowed to be singular, and with a
finite surface relaxivity p, one has

H= —fd~ +1 1 1

S R1 R2

Here R1 and R2 are the principal radii of curvature at
each point on the interface and L,; is the length of the ith
wedge with angle P;. The function f (P) is given in a
later section. As p becomes larger, the crossover time,
after which terms higher order in p become important,
becomes shorter, until at p= ~, the leading square-root
term changes and gets a new coefficient. At p= ~, we
show that

M(t)=1 (2+—D tS)/(Harv )+O(t),
D(t)/Do=i —A, +Dot +B,Dot+O(t' '),

where

(6a)

(6b)

A. Pulsed-Beld-gradient spin-echo measurements

In PFGSE measurements, the spin-echo radio frequen-
cy pulse sequence is combined with the application of two
gradient pulses, each of which, briefly, imposes a spatial
dependence on the static magnetic field (Fig. 1). We
make the simplifying assumptions 5~0, and g ~ ~ such
that the gradient-pulse strength 5g remains constant. We
also assume that all transverse evolution times approach
zero. In this limit we can neglect (1) diffusion while the
magnetization is in the transverse plane and (2) the effects
of spatial randomness in the local Larmor frequency.
Physically, the two gradient pulses act to dephase and
then rephase the spins involved in the underlying spin-
echo measurement. In the absence of diffusion the effects
of these two pulses cancel exactly. However, if a spin
originally at r diffuses to r' at time t, its net phase change
is y5g (r —r'), where y is the gyromagnetic ratio. The
wave vector k=—y5g is then a tunable parameter and the
spin-echo amplitude is given by

M(k, t)= f drdr'G(r, r', t)e= 1

P

B,= — H ——g -f, (P;) .s
6 VP VP

Thus the coefficient of the +Dot term in D(t) changes
only by a factor of 2 when p changes from a finite value
to infinity. The methods developed in Sec. III A 2 could
be used to derive an explicit representation for the func-
tion f, (P). However, because the p~ oo limit is of little
experimental interest, we have not completed this calcu-
lation.

II. GENERAL CONSIDERATIONS

1 S I pS it'
12 v, +6 Dv, ~ v f'~" ' (4) The propagator G(r, r', t) satisfies the diffusion equation

in the interior of the pore space,

where 0 is the mean curvature averaged over the smooth
parts of the surface,

BG(r, r', t) 2=DoV'G(r, r', t), t &0,
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FIG. 1. Tanner stimulated pulse-echo se-
quence (Ref. 6). Here the radio frequency
pulses are of duration ~, the field-gradient
pulses are of duration 6, gp is a constant back-
ground gradient, and 5g &)7gp.

Bln[M(k t)] " r s

o gk2
(12)

More generally, the diffusion coefficient is a symmetric
3 X3 tensor.

B.Physical arguments

In the absence of surface relaxation, the random walk-
ers simply bounce ofF the interface X, their number being
conserved. Under these familiar conditions, the equation
D(t)=(r (t))/(6t) provides a natural definition of the
time-dependent diffusion constant. In absence of the in-
terface, D(t)= D,othe diffusion constant of the bulk
Quid. With the interface restricting the motion of the
walkers, D (t) decreases in time from its initial value Do.
At early times, assuming a piecewise-smooth interface,
only walkers within a difFusion length (Dot)'~ sense the
presence of the reQecting boundary. Since only the frac-
tion (Dot )'~ S/Vp has sensed the boundary, the diffusion
coefficient starts decaying as

D(t)=DO(t)[l a(Dot)'i S—/Vi, +O(Dot)], (13)

where a is a numerical constant. If the diffusion is not
anomalous at long times, then D (t) saturates to an
asymptotic value, lim, D(t)=D which is related to
the electrical conductivity o. of the Quid-saturated net-
work,

where o.f is the conductivity of the bulk pore Quid. '

In the presence of surface relaxation, the number of
random walkers is not conserved, so that the motion of
the walkers is no longer diffusive in the usual sense.
However, the PFGSE measurement still provides a time-
dependent diffusion coefficient via the operational
definition (12). We consider the rms displacement
(r (t) ), averaged over only those walkers surviving to
time t and define D(t) as (r (t)), /(6t). As a concrete,

subject to the initial condition G(r, r', t =0+)=5(r—r').
The boundary condition at the pore-grain interface X is

Don. VG(r, r', t)+pG(r, r', r) ~,~+=0,
where n denotes the outward (i.e., into the grain) normal.
In isotropic porous media the PFGSE experiment opera-
tionally defines a time-dependent diffusion coefficient
through the relation

but trivial, example, consider random walkers moving in
free space, but in the presence of a uniform density of
sinks; here the number of walkers decays exponentially in
time, but the surviving walkers move the same distance
that they would have without the sinks. Accordingly, in
this simple case, we have D (t) =Do. If the distribution of
sinks is not uniform, D (t) no longer equals Do. Howev-
er, we note the remarkable fact that the presence of a
finite surface relaxation has no effect on the leading term
in Eq. (13). this can be crudely understood in terms of a
simple dimensional argument, at least for smooth sur-
faces. We will show below [Eq. (20)] that, for smooth
boundaries, there is a perturbation expansion of the prop-
agator, with successive terms containing positive integer
powers of the surface area S and surface relaxivity p. At
early times, the deviation of D(t)/Do from 1 should be
proportional to S/Vp. Since D(t)/Do is dimensionless,
we have to multiply S/Vz by a length to obtain this devi-
ation. When p=O, to the lowest orders in time, this
length is clearly given as (Dot)' +Dot/R +O(t ~ ),
where R is some other geometric length scale in the sys-
tem, such as the mean radius of curvature. When p is
nonzero but finite, to the same order in time, the only
other length we can construct is pt. (Note that p has the
dimensions of velocity, and we are allowed only positive
integer powers of p. ) Thus the deviation in D (t)/Do can
be written as a(Dot)' S/VI, +P(p+Do/R)t+0(t )

(where p is a numerical coefficient), so that the leading
term in (Dot )'~ is manifestly unaffected.

C. Perturbative expansion for the propagator

Don VG(r, r', s)+pG(r, r', s)~,~@=0 . (16)

Let Go(r', r",s) be any other function that satisfies the
diffusion equation in the pore space, i.e.,

sGO(r', r",s) —5(r' —r")=DOV' Go(r', r",s ) .

In this section we derive a perturbative expansion of
the propagator that is good at short times, and use this
expansion in the following section to derive the short-
time expansion of the diffusion coefficient expansion at
short times. It follows from Eq. (10) that the Laplace
transform G(r, r', s) of the Green's function satisfies the
equation

sG(r, r', s) —5(r —r')=DOV G(r, r', s) .

The boundary conditions are also Laplace transformed,
to give
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Converting the volume integrals to surface integrals, and
using the boundary condition (16), we obtain

G(r, r",s ) =Go(r, r",s )

Do f—do'G(r, r', s)

X n'. V'+ Go(r', r",s) .
0

(19)

Direct iteration of the integral equation (19) leads to a
series expansion for G. The expansion is valid at large s,
corresponding to short times. The first two terms in the
expansion are

G(r, r",s) = Go(r, r",s)

Do f der—'Go(r, r', s)

X n' V'+ Go(r', r",s)
0

+ ~ ~ ~

For an appropriate of Go(r, r', s), Eq. (20) yields a pertur-
bation series in integer powers of +Do ls .

III. SHORT- TIME EXPANSION

Multiplying (15) by Go(r', r",s), (17) by G(r, r', s), in-
tegrating over r', and subtracting, we obtain

G(r, r",s) =Go(r, r",s )

+Do f dr'[Go(r', r",s)V26(r, r', s)

—G(r, r', s)V Go(r', r",s)] .

(10) and (11), leads to

sR (s)= 6Do dr'—2Do f f dcrG(r, r', s)(r —r') n .
s t/'p

(21)

+ ~ ~ ~

where R „Rz are the principle radii of curvatures at r. '

The geometry is illustrated in Fig. 2. In this coordinate
system, Go is given by

1Go(r', r",s) =
4m.Do

0 1 0 2
—(s/D )1/2r —(5/D )1/21.

+

The second term on the right-hand side of (21) consists of
a surface integral over the point r and a volume integral
over the point r'. At large s, corresponding to short
times, the integrand is exponentially small unless r' is
within a dift'usion length +Do/s of r. Thus, for fixed r,
only the region of the surface within a diffusion length of
the surface need be taken into account. Let us first as-
sume that the surface is smooth in a small neighborhood
of the point r. At the shortest times, the surface may be
approximated by the tangent plane at r. Using the
short-time expansion (20), we shall take Go to be the
propagator satisfying reAecting boundary conditions at
the tangent plane at r. It will be convenient to hold r
fixed and perform the integral over r' in (21). To do this,
we set up a coordinate system with the origin at r and the
positive z axis along the inward surface normal. If the x
and y axes are chosen to lie along the principle directions
of (interface) curvature, then, close to the origin, the sur-
face is described by the equation

1 x yz + 7 (22)
2 R1 R2

A. Refiecting boundary conditions

1. Smooth interfaces

The short-time expansion of the diffusion constant may
be easily derived with the help of the equation of motion
satisfied by the mean-square displacement R (t)
=(I V/)tJ drdr'(r —r') G(r, r', t). Working in the La-
place representation, this definition, together with Eqs.

where

r, =+(x' —x") +(y' —y") +(z' —z")

and

rz='}/(x' —x") +(y' —y") +(z'+z")
Substituting the expansion (20) with p=0 into Eq. (21),
we get

6D0
sR (s) =

2D f dr' f dcr(r —r') n Go(r, r', s) —f dcT"Go(r, r",s)n" V"Go(r",r', s)
VP

Let us look in detail at the first integral on the right-hand
side of (25); reversing the orders of integration we have

I

z'(x', y')=1/2(x' /R&+y' /R2) to z'= ~. Integrating
over r' using the coordinate system pictured in Fig. 2, we
have

2Do f do. fdr'(r —r') nGo(r, r', s ) .
P

(26) dr' r —r' n60 r, r', s

Since Go(r, r', s) falls off' exponentially when
~r —r'~ ))+Do/s, and since +Do/s is very small, the
interface can be replaced by the surface (22). Thus, in the
r' integration, the variable z' ranges from

g3
+O(e') .

Do
(27)

0

f dxodyo f zodzo
2~Do zp(xp yp ) To
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effects coming from the boundaries of the wedge. Let us
set up the coordinate system, so that the z axis is along
the axis of the wedge, and the x axis is along one of the
sides. Motion in the z direction is free and decouples
from the x-y motion. Because the time domain propaga-
tor factorizes [i.e., 6 (r„rz, t) =6 (p„p2', t)Gp(z „z2,t),
where p, = [x, ,y, ] and pz= [x2,yz] ], we can integrate
over z before performing the Laplace transform,

sR (s) = 6D o L
s Vp

X f dp2 fd&16(pl, p2, $)(pl p2)'nl

FIG. 2. Principal radii of curvature are indicated {by the
shaded circle segments) for a typical surface element. Also
shown is the coordinate system employed in Sec. III A 1.

Here the diffusion length e=+Dp/s has been used to
scale the integration variables. In the rescaled coordinate
system, zp(xp, yp)=e/[2(xp/R&+pp/R2)]. Also,

I, ~„~ dz p
——Jp dzp —Jp

'
dzp. In the last step of

(27) we have expanded the integral in powers of e, noting
tllat zp(xp pp ) is of order e when xp, yp are of order one.
(When xp, yp are much larger than 1, the integrands are
exponentially small. ) Thus, for the integral (26), we ob-
tain 2S/Vz(Dp Is) ~ +O((Dp/s ) ). The second in-
tegral (25) can be worked out in an analogous manner
and we have

6Do
sR (s) = S

Vp

3/2
Do +

+O((Dp/s) ), (28)

where ( . . ) =S ' jdo( . . ). Taking the Laplace
transform of (28), the leading terms in the early-time ex-
pansion for D (t) are

D(t)=Dp 1 — —(Dpt)'S 4
Vp 9&m.

(D,t)( + +O((D, i)'") .
1 2

(29)

To derive the effect of a wedge, we return to (21). Con-
sider a wedge of angle P and length L. We shall neglect

It is interesting to note that for rejecting smooth walls,
the sign of the linear term in D(t) is that of the average
curvature. This can be intuitively understood as follows:
First, for a flat surface, the linear term is absent. If the
surface is slightly concave, e.g. , in the interior of a
sphere, the walker is somewhat more restricted at short
times than it would be by a Aat wall. Thus, the effect of a
positive curvature is to decrease D (t) even more than its
leading QDpt correction. This crude argument gives
the right sign of the linear term.

2. beets of wedges

(30)

where G(p&, p2, s) is now a two-dimensional Green's func-
tion. Now the Green's function for a wedge of internal
angle P in two dimensions is known' in terms of a
Kontorovich-Lebedev transformation (which is essential-

ly a Fourier transform for the radial variable). We re-
scale variables so that lengths are measured in terms of

the diffusion length QDpls. For reflecting boundary
conditions the rescaled propagator is given by

f dxK;„(p, )K;„(p2)

X cosh[xg & ]cosh[x(P &
—P)]

sinh[mx ]
sinh x

(31)

Using this form of the Green's function, we find that the
integral in (30) is divergent; however, a finite answer can
be obtained by subtracting the value at P =m (corre-
sponding to a Aat surface, for which contribution has al-
ready been calculated). Finally, after a Laplace trans-
form, the result is

D (t) =Dp 1 — —(Dpt)'i (Dpt)f(P)—
Vp 9&sr 3Vp

+0[(Dpt) ], (32)

where f(p) =g(p) g(tr), g((t ) be—ing given by

mx cosh(gx ) —cos(P)
g = dx tanh

2 sinh(Px )
(33)

The function F(P) is plotted in Fig. 3. An amusing
feature of this result is that the wedge correction Vanishes
for P=vr/2. The function f(P), shown in Fig. 3, changes
sign at m/2, and the correction from an acute wedge ac-
tually increases D(t) over its fiat surface value. It is as if
the walkers near an acute wedge are effectively pushed
out of the corner by repeated bouncing off the walls.

B. Partially absorbing boundary conditions

In this section we show that for finite surface relaxivity
p, the coefficient A of the QDpt term in Eq. (2b) remains
unchanged, and the coefficient of the linear term changes
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0.2-

Go(x, x', t) are free propagators [e.g. , 6 o( x, x', t )—(x —x') /(4Dot)=e (4vrDot )
' ]. As above, we fix r at the

coordinate origin and carry out the integral over r':

2D S
sR „„(s)= — dz' z' —4Do, + z'

0 V, ' az' V,
04-

-0.6-

KZ

X +2dDoM(s) .
~Do+P

(37)

-0.8-

-1.0-

Here a. =Qs/Do and we have employed the Laplace rep-
resentation of the one-dimensional Green's function for
finite p,

FIG. 3. Function f(P) that describes the angular dependence
of the wedge contribution to the term linear in Dot. (The hor-
izontal axis is measured in radians. )

G(z(,z),s) =
F0

KZ &&0 P KZ. —.Z

e +e
Do+p

(38)

to g =g(p=0)+pS/(6V~). Thus, a finite p does not
affect the leading short-time behavior of D (t). The densi-
ty of the walkers starts decaying as M(t)
=1 pSt/Vp+O— (t ) This . means that the data at
short times on D (t) and M(t) can be combined to deter-
mine p and S/Vp, two important parameters governing
NMR relaxation in porous media.

By our earlier definition (12),

& [.(i)-'(0)]')„„6tD(t) =
M O, t

1 dr dr'G(r, r', t)(r —r'), (34)
Vpkf (0, t)

where the subscript "un" denotes un-normalized expecta-
tion value. The evaluation of the short-time diffusion
coe%cient is facilitated by considering the equation of
motion (t )0),

t)( [r(t) —r'(0) ]')„„Do
at Vp

drdr'(r —r') V G(r, r', t) .

(3&)

Integrating by parts, we have

After performing the integration, we expand in powers of
+Do /s . Laplace transforming, and dividing
throughout by M(t) =1 ptS/VI, +—O(t ~ ), we have

1 + +O((D ) )
4 DtS

D, 9V~V'~ 6V~
(39)

In this section exact results are presented for diffusion
inside a sphere. These results provide a check on the gen-
eral equations derived above. We use the eigenfunction
expansion to compute the Green's function. In this case
there is rotational symmetry about the direction of the
field gradient and the eigenvalues and eigenfunctions are

1

Tln

Dok.
a

(40a)

fl, +I J (kl. «a»lo(() 0) (40b)

where jl are spherical Bessel functions of order l, Fl are
spherical harmonics, Xl„ is a normalization constant,
and the root gl„corresponds to the nth root of the equa-
tion

An alternate derivation of this result is given in the Ap-
pendix.

IV. ISOLATED SPHERICAL PORE

+2dDoM(0, t) . (36)

B([r(t)—r'(0)] )„„ dr'ds VG(r, r', t)(r —r')
Bt Vp

Dp—2 Jdr'ds (r —r')G(r, r', t)
Vp

kl Jl (kl )
D jl(kl

0

M(k, t) is given by

tg2/ 2

6(2I +1)g
M(k, t)= g

l. =O

(41)

Now, consider a flat surface at which partially absorbing
boundary conditions are imposed. This gives the lowest-
order correction in p, which we will find is linear in time.
Including effects of curvature as above produces only
higher-order effects. We set up our coordinate system
with the z axis lying along the surface normal. The
Green's function is separable in this coordinate system,
so that G(r, r', t)=G (o,xx', t)G (oyy', t)G(z, z', t). Since
the z axis is along the surface normal, Go(y, y', t) and

kaj i'(ka)+ j l(ka)
0

2
PQ 1 2 2

1n+g —(l+ —')
2

0

(42)

A. Rejecting boundary conditions

From the eigenfunction expansion of the propagator,
we obtain
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R '(t) =—6tD (t)= ( [r(t)—r'(0) ]') V. DIFFUSION SIMULATIONS

(43)

where the eigenvalues are given by

j,(rg, „/a)
(44)

These sums can be evaluated by transforming into the
Laplace domain:

sR (s) = 12a
1

„=1(g,„+sa /Do)(g, „—2)

Using the identity

To illustrate the utility of the analytic results derived
in the preceding sections we have carried out random
walk simulations of diffusion in a number of simple pore
geometries. These simulations do not impose any fixed
grid on the pore space; walkers move by taking steps of
fixed length in a randomly chosen direction. At the
pore-grain interface, either rejecting or partially absorb-
ing boundary conditions are applied.

We begin by considering a two-dimensional example
based on an isosceles triangular pore with interior angles
of vr/6, 1r/6, and 2'/3. The triangle's base length was

7'-Dimensional Tnangular Pore

2x

n=l x Pln

j", (x)
j', (x)

1.00—

Do
t +0(t'")

2a
D 4S
D. '9V, (47)

which can be established using the method of contour in-
tegration, ' we obtain a closed-form expression for R (s).
(Calculations based on the above equations are presented
in Fig. 5 below. ) To obtain the short-time behavior, we
consider the large s expansion for R (s) to obtain

' 1/2
Dot

0.95—

0.90

B. Perfectly absorbingboundaries: p= 00

The eigenvalues g&„satisfy

j1($1„)=0 . (48)
0.000 0.0P.5 0.050 0.075

(ts.)'~'
0.100

The decay of total magnetization involves only 1=0,
since it is assumed that the initial magnetization is uni-
form, giving

Two-Dixnensional Triangular Pore

—DOn vr t/a

M(t)=6 g
n =1

(49)

1.00—

0.95—

The un-normalized displacement squared average is given
by

0.90—

([r(t)—r'(0)j )„„=12a
—DOn'~t/a'

n 4~4 (n n —6)
0.85—

0.80—
—DO()„ t/a

—12a' g
n —1 1n

(50)

1/2
Dot 3Dot

v, Q
(51)

D 2S
Do 9V

Dot
1/2

t +O(t'~') .
a

(52)

Again the Laplace transform of the above quantities can
be evaluated in the closed form, and making a large s ex-
pansion, we obtain

0.70

0.00 0.05 0.10 0/5 0.20 0.25

FIG. 4. Variation of D{t) is shown for a two-dimensional
isosceles triangular pore with internal angles of ~/6, m/6, and
2~/3. In (a) calculations based on two difFerent random walk
step sizes are compared with the results of a Richardson extra-
polation. In (b) data for a=0.005 are compared with the linear
and second-order corrections calculated in Sec. III A 2.
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Spherical Pore: Diameter = 2 Random Sphere Pack: y = 0.376

1.00 10 "

0.9
O

0.75

0.7 ~ ~ ~ ~

0.50

Q

0.6
0.0 0.2

'(L) g)'~~

0.25—
0.0

Exact Results

0.1 0.3

FIG. 7. Numerical simulations for a dense random sphere
pack are compared with the linear and second-order corrections
calculated in perturbation theory.

FIG. 5. Exact normal-mode calculations of D ( t) (thick
curve) and numerical simulations (open circles) are compared
for a spherical pore. Also shown (dashed curve) are the linear
and second-order corrections calculated from the perturbation
theory.

taken to be 2&3, and its height was unity. Working with
p=O, our interest is (l) to examine the influence of step
size on the numerical data and (2) to illustrate the effects
of the sharp angles on the behavior of D(t) in accord
with the results presented in Sec. III A 2. In Fig. 4(a) we
compare, at very early times, the results of simulations
carried out with two different step sizes with the leading-
order correction of Eq. (32). For a given finite step size e,
the numerical data generaly overestimate the decrease in

Simple Cubic Sphere Pack [p = 0]

A = 0.8; y = 0.782

Simulations: Spherical Pore

Diameter. d = 2.00
n = 2p/D,

1.00 ~& I ~la I ~ ~
O~ ~

i!~ o
ii) ~

Ig ~
5li ~0.75—

D (t) because, for any e, walkers with a distance e of the
interface can be influenced within a single time step.
Shown in Fig. 4(a) are simulation results at the earliest
times for two values of e together with their Richardson
extrapolation. ' The latter are seen to be in quite satis-
factory agreement with the analytic estimate provided by
the leading term of Eq. (32). From Fig. 4(b) we see that
at somewhat later times the value of D(t)/Do moves
aboue the +Dot estimate in accord with the arguments
given in Sec. IIIA2. Shown also in this figure are the
combined first- and second-order corrections. Cxenerally
the agreement between the simulations and the analytic
results is quite satisfactory.

In Fig. 5 we consider the behavior of D (t) for an isolat-
ed spherical pore. Here, our numerical simulations are

0.95—l0

O.SO— 0.50—

n= 0.0

n = 0.20

+ n=100
a = 2.00

Ig
~ g

~ 5
~ g

0.85
0.0 0.3 0.25

0.0 0.1 .2 0.3

FIG. 6. Numerical simulations for a high-porosity simple cu-
bic sphere pack are compared with the linear and second-order
corrections calculated in perturbation theory. The difference
between the simulations and the analytic results is due, in part,
to finite step size effects.

FIG. 8. Numerical simulations are presented for a spherical

pore with various values of the surface relaxation parameter p.
We note that the differences between the a=0.0, 0.20, and 1.0
results are of the same order as the finite step size corrections.
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Random Sphere Pack: p = 0.376 D(t)/Do is relatively unchanged by the introduction of
weak surface relaxation. As we have already noted, the
limit of large p appears not to be relevant to systems of
experimental interest.

0.9

0.7

a cx = 20.0

~ n=105
+ cx = 0.20

Q n=000

+

+ Qh + Q
+ o o+ QQ

4 + + +
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APPENDIX: METHOD OF PHASE SHIFTS FOR
PARTIALLY ABSORBING BOUNDARY

CONDITIONS

0.0 0.2 0.4 0.6

FIG. 9. Numerical simulations are presented for a dense ran-
dom pack with various values of the surface relaxation parame-
ter p.

In this appendix, we provide an alternative derivation
of the short-time expansion (39) for a fiat surface p&0.
For t ~ 0, the Green's function can be written in terms of
the eigenfunctions

G(r, r', t)= g g„(r)f„(r')e (A 1)
compared with the exact results of Eq. (43) and with the
leading terms of the expansion (47). (The fact that the
simulation results lie below the solid curve is due to the
finite size of the random walk steps. ) A striking feature
of these results is the fact that the first two terms of per-
turbation theory provide a reasonably accurate estimate
of the diffusion coefftcient up to the point where D (t) has
fallen to half of its original value, Do. Note that because
the radii of curvature are equal and positive the
coefficient of the term linear in Dot is negative and the
value of D(t) drops below the lowest-order estimate. The
opposite behavior is seen in Fig. 6. Here we consider
diffusion in the interstitial region defined by a simple cu-
bic packing of spherical grains. The sign of the principal
radii is reversed and D (t)/Do data rise above the leading
estimate as in Fig. 4. Qualitatively similar behavior is
seen in Fig. 7 where we consider a dense random packing
of nearly monodispersed spheres. (The grain radii were
chosen from a uniform distribution whose half-width was
7.S%%uo of its center position, in rough accord with the sys-
tem studied experimentally by Latour et al. ") These re-
sults are in excellent agreement with the data presented
in Ref. 11. In the experiments of Latour et al. the mea-
sured lifetimes were long enough that the effects of
enhanced surface relaxation can safely be neglected.

In Figs. 8 and 9 we consider the effects of the surface
relaxation parameter p on the behavior of D(t)/Do. In
Fig. 8 we see that (in the spherical pore of Fig. S) (1) as
expected, the term proportional to +Dot is not affected
by p, and (2) the term proportional to Dot is infiuenced
only when p is large enough so that the first and second
terms on the right-hand side of (4) are roughly compara-
ble. For large values of p the sign of the Dot term
changes as predicted in Eq. (4). In Fig. 9 we see that, for
the dense random sphere pack, the short-time behavior of

n =1

where g„(r) are the normalized eigenfunctions of the
equations

DV f„=—,Dn. VQ„+pg„~,~~=0 .
T. ' (A2)

For a Oat wa11, we need the one-dimensional propagator
perpendicular to the wall. The appropriate eigenfunc-
tions are

%(q,x)= (e'~"+e 'e '~ ),&4~

where 6 is chosen to satisfy the boundary conditions

tann = ~
D q

which gives

(A4)

This result is not presently available in the literature.
Now let us proceed to evaluate M (k, t) using the above

Green's function. The magnetization satisfies an equa-
tion of motion analogous to that for the diffusion
coefficient. We assume that the times are short enough so
that the surface (assumed to be smooth) can be replaced
by a Aat wall. Integrating over the directions parallel to
the wall, and assuming that the normal to the wall is uni-
formly distributed, we obtain

+ oo dg —Doq t
G(z, z', t) = e ' cos(qz —

5q )cos(qz' —5 ) .
277

(AS)
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Bt 2 Vz —i o — 2m

where p=cosO with 0 being the angle between k and O'. For obtaining the short-time asymptotics, it is convenient to
take the Laplace transform, which gives, after integrating over q and x ' variables,

M(k, s) = 1 S + ~ p+s/Do+ k2(1 p~) Dokf dp
+Dok ~&Do ' ["t/s/Do+k (1 p)—+p/Do](s/Do+k )

(A6)

Note that the decay of total magnetization is obtained by
setting k =0 in above and integrating over p,

M(k=O, s) =——1 S
(A7)2I I' s (&s +p/+Do)

Thus for p)) +Do/t, we find the short-time decay be-
havior as

ting k =0 gives

BM(k, s )

Bk k=0
D(t)—M(k=O, t), (A10)

where I. ' denotes the inverse Laplace transform. After
much algebra, we obtain for p)) +Do/t, the short-time
decay behavior

1/2
S DotM=1 —2
Vp

+ ~ ~ ~ (AS)

1/2
D (t) 2S Dot

Do 9' + ~ ~ ~ (A 1 1)

while for p «(/Do/t we find the short-time decay be-
havior as

while for p «+Do /t we find that the short-time
diffusion coe%cient decays as

SM =1— pt+
Vp

(A9)

Similarly, taking a derivative with respect to k and set-

1/2
D (t) 4S Dot

D 9V
+ pt+ . . (A12)
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