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Real-space renormalization-group study of the two-dimensional Hubbard model
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The one-band two-dimensional Hubbard Hamiltonian is analyzed using a real-space
renormalization-group block method. The renormalization-group method, previously applied to
the one-dimensional case has been extended to two dimensions. It is also shown how to avoid the
proliferation of new terms during the process if the shape of the blocks and the symmetries of the
kept states are chosen conveniently. We characterize the ground state by its energy per site, the
gap of charge excitations, the double occupancy, and the effective hopping. The system shows an
insulating behavior in the case of half 611ing for all nonzero interaction parameter, U, if the hopping
is isotropic (t„= t ); that is to say, the gap opens for all positive U, as in the one-dimensional
case. If the hopping anisotropy, o, = t„/t, is difFerent from unity and zero the ground state is a
conductor up to a critical value (U/t)„, which depends on n, We have analyzed in the same way
another filling, n = ~~. The system behaves as a conductor, paramagnetic up to a value (U/t)„2
and weakly ferromagnetic for higher values of U.

I. INTRODUCTION

The one-electron theory has been able to explain most
of the properties of periodic crystals: metals, semicon-
ductors, and insulators. This success could not hide,
however, the limits of the so-called "band theory. " In
this approach one takes into account the Coulomb in-
teractions between the electrons only in a mean-field
sense, and one cannot explain some important phenom-
ena such as the itinerant magnetism (Fe ferromagnetism)
or some of the metal-insulator (Mott-Hubbard) transi-
tions. Other approaches are then needed in order to
understand these phenomena. A few magnetic materi-
als have been described from a microscopical point of
view (see Refs. 1 and 2). The mechanism of the Mott-
Hubbard transitions is, on the other hand, far from be-
ing completely understood (see Ref. 3, Chaps. 4 and 6)
even if there are well-established microscopic models. Re-
cently, the discovery of the high T, supercondu-ctors by
Bednorz and Muller4 has added a new challenge to the
understanding of highly correlated electron systems. The
phase diagram of these materials at T = 0 shows strong
parallelism with the Mott-Hubbard insulators at least
in what concerns the existence of a conductor-insulator
phase transition (see Ref. 5 for an introductory insight
on the high-T, superconductors). There is a general be-
lief s "that the simplest microscopical model providing an
account of these surprising properties could be the Hub-
bard model. This Hamiltonian was proposed 30 years ago
by several authors in order to describe the transition
metal properties. It consists of two parts: a tight-binding
band H~, and an interaction term H„,

H = —) t;~c, c~~+U) c,.&c,tc,.&c,t = Ht+H„,
(i,j),o

where the () means hopping restricted to nearest neigh-

bors and c~ represents an s-like Wannier orbital. It
should be noted here that two important simplifications
have been used to obtain this model: the restricted hop-
ping and the intrasite interaction (completely screened
in the neighboring sites). The model shows several sym-
metries if the lattice belongs to the bipartite type. The
Schrodinger equation corresponding to (1) is in general
very diKcult to solve even if we are only interested in the
ground-state description. The exact solution is known,
however, in the one-dimensional case as well as some of
its ground-state properties such as the insulating gap in
the half Glling 3 case, the susceptibility, the excitation
spectra, is and, finally, the charge-charge and spin-spin
correlation functions. 6

In two and three dimensions it is no longer possible to
apply the Bethe ansatz to the Hubbard model and one
has to try other approaches. A physically appealing solu-
tion was proposed by Gutzwiller. s This solution consists
in projecting out an amount of the double occupancy D.
Some results of this solution in one dimension is are in
qualitative disagreement with the exact ones: at the half
filling the Gutzwiller solution predicts a conducting be-
havior for all the positive U/t values, which contradicts
the insulating nature of the Lieb and Wu ansatz. i2 In two
dimensions, where analytical results are not available,
Hong and Hirsch have analyzed the bare Hamiltonian
and the Gutzwiller function with the aid of the quantum
Monte Carlo technique, and they have concluded that the
Gutzwiller ansatz does not reproduce the features of the
ground state, mainly in what concerns its magnetic be-
havior. The results can be slightly improved if one takes
explicitly into account the spin symmetry breaking, but
then one finds a nonzero staggered magnetization even in
the one-dimensional case, where we know that the mag-
netic order does not exist for this model. ~6 There are
many other variational approaches like the resonating va-
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lence bond proposed by Andersons or that of von der
Linden and Edwards. z The former hss been constructed
to reproduce a superconducting phase and the latter has
been proposed to analyze the ferromagnetic behavior of
the Hubbard model, both in the U/t -+ oo limit. All
these variational approaches are reasonable and correct
from a physical point of view, that is to say, in order to
reproduce the actual behavior of some materials. One
could doubt, however, if these functions are able to de-
scribe the ground state of the Hubbard Hamiltonian (1).
Another analytical approach consists in imposing the ex-
istence of an order parameter that can be treated like
a mean field s' 4 or in a more sophisticated way as did
Schrieffer, Wen, and Zhang7 and Georges and Yedidia. zs

These two latter groups agree in what concerns the half-
filled system (the existence of an antiferromagnetic order)
but they are contradictory about the existence of the su-
perconducting phase. So far, we have mainly mentioned
analytical methods. There exist, in addition, some nu-
merical techniques such as quantum Monte Carlo 4'z

or exact Gnite-cluster diagonalizations, 2 which can
be performed without any additional hypothesis (bare
Hamiltonian), but it is possible to study the behavior of
some variational functions as well (see Refs. 30 and 21,
for example). Despite the a priori correctness of the nu-
merical methods they are limited to finite-size clusters,
which could hide some of the intrinsic properties of the
infinite systems like the phase transitions.

It is then reasonable to develop a nonperturbative
method with a minimum of constraints able to describe
the different phases of a system. This is the aim of
the real-space renormalization-group method, which we
present in this paper to analyze the nature of the two-
dimensional Hubbard model. The renormalization-group
techniques have had their main success in the analysis of
the Kondo problem by Wilson, s who applied the renor-
malization procedure in the k space. Afterward, Jafarey,
et aL developed the same idea in real space. The first
published paper was, however, by Drell, Weinstein, and
Yankielowiczss about the iterative construction of the
ground state of the Ay4 theory. Later, the same ideas
were applied to one- and two-dimensional spin systems
and finally to the one-dimensional Hubbard model. s4 ss

A pedagogical history of the real-space renormalization
can be found in Refs. 36 and 37. The present paper is
devoted to the renormalization technique applied to a
fermion system in two dimensions. Some work has been
already reported, ss ss but the results were not reliable
due to the small block size used in the perturbative de-
velopment (five sites). In Sec. II we discuss the sym-
metries of the model, which will be used later. Section
III describes the block method and the renormalization
of the more important quantities: Hamiltonian, double
occupancy, etc. We give an outline of the diagonalization
of the 3 x 3 block in Sec. IV, along with some discussion.
Finally, Sec. V contains an account of the main results.

II. SYMMETR.IES

There are three global symmetries of H independent of
the lattice: the total number operator N, = P,. c, c,

the projection of the total spin S, = P,. oct c, and the
total spin Sz = S~z+ 1/2(S+S + S S+), where S+ =
Q, c,&c,g and S = (S+) . The rest of the symmetries
are lattice dependent, and even if most of them remain
in three dimensions we shall focus our attention on the
two-dimensional square lattice.

The first symmetry pointed out in the literature is the
invariance of the energy spectra under the transforma-
tion t:—t, iz which works for many other quantities
as well, such as the double occupancy, the local moment,
the effective hopping, etc. Another interesting symmetry
of the Hubbard model is the pseudospin Z. It was dis-
covered by Castellani et aL, analyzed later by Nowak, 4i

and applied by others '4s in different situations. It con-
sists in a generalization of the spin algebra SU(2) to the
charge space. 44 This generalization is, in principle, not
possible for an extended system. In the Hubbard model
case one can write, however,

Z+ = ) dt)dt„, ~b'(s(k) + s(k') —g),

where the di, are the operators that diagonalize the band
term

Hq —) s(k)d&~ di, , s(k) = —2(t cosk +t„cosk„).

From (2) and (3) if we choose g = 0 and k' so that

k'= 1+m,

then we obtain

[a„z+]=0, [a„,z+] = Uz+,
[a, z+z-] =0

It is also convenient to write down the explicit form of
Z+ in terms of the Wannier operators c, in order to get
a real-space insight into this pseudospin operator,

Z+ =) (—I)'ct, ct, .

The Casimir Z+Z is therefore another symmetry of
the Hamiltonian (1). It should be noted that (4) is only
possible in an N, = L x L lattice if L is even (odd)
with periodic (free) boundary conditions. The spectra
of Z Z+ for a given number of electrons N, and a spin
projection S, is i

pi = (l + l)(Ns —Ne+ l)i

t = 0, 1, . . . , [2N, —iS, i],

N, &N„Sg &0.

Finally, we shall use later the spatial symmetry to con-
struct explicitly the Hamiltonian. In the case of the
square lattice and an anisotropic hopping t„g t, H
is invariant under the C2„point group. s This additional
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symmetry enables us to reduce by four the dimension of
the greatest subspace defined by N, and S» (see also Sec.
III).

III. THE BLOCK METHOD

The two main difhculties in treating a many-body
problem lie in the huge number of possible configurations
and in the complicated task to obtain the eigenvectors of
the Hamiltonian, in particular the ground state. We are
mainly interested, however, in the macroscopic properties
of the system, that is to say, the microscopic fIuctuations
are not very important to the physical result. We can
then, following Kadanoff's idea (see Ref. 46), divide the
lattice into blocks of size (as)", where a is the lattice
parameter, d is the dimension of the space, and s ) 1 is
the size factor. Afterward, we average over this block the
quantities we are dealing with: the Hamiltonian, the dou-
ble occupation, etc. In doing so we have neglected the
fluctuations down to a size s|2,. This procedure can be
repeated until we reach convergence, the so-called fixed
point in the parameter space (t, U).

In order to clarify this process we can visualize it for
the two-dimensional case, where we have chosen 8 = 3.
We assimilate then each block to a point belonging to a
new lattice with a parameter equal to 3a. So far, we do
not know what the Hamiltonian becomes. To have a first
insight we label the parameters of the Hamiltonian with
a for the original lattice and with 3a for the transformed
one; there will be then some relations between (t, Ua)
and (tsa, Usa, Jsa):

ts = yi(t„U ),
Usa —+2(ta, Ua) i

Jsa = Vs(ta Ua)

A. The efFective Hamiltonian

In order to construct the transformation introduced in
the preceding section we shall focus our attention on the
transformation of the Hamiltonian. Expression (1) can
be separated into two terms

where a is a block label, H~ is the intrablock Hamil-
tonian, and V stands for the hopping part between the
blocks. Let us assume that we know how to solve the
Hr, 's and obtain all its eigenvectors I/I, l ) exactly. We
can then formally rewrite H in this basis

~ = ). 14&(41~14'&(@'I

where I@) = Q I/I;) ).
Despite the tautological appearence of (10) it is useful

to indicate the first approach of the method: we shall
keep four of the eigenvectors in each block from the 4~
(N, = s"), which compose the total Hilbert space. This
choice allows us to reduce drastically the number of con-
figurations as well as to conserve the form of the Hamil-
tonian in the truncated basis. We shall restrict ourselves
to the situations where the intrablock term reproduces
the structure of the operator ngnT. Each block will be
then represented by four states I/i I ) that we shall call
10'),

I J, '), 1$') and
I
gt') by analogy with the original sites.

The explicit choice of these states will be done below.
We want now to project H onto the subspace spanned

by 1$&,l )'s. If we call P, the projector on to this sub-
space,

where J3 represents the possible couplings generated by
the process.

Furthermore, we are looking for a transformation that
conserves the fermionic character of the second quanti-
zation operators c, and, in addition, avoids the prolifer-
ation of couplings, i.e. ,

J3~ = 0.

We are interested in the explicit expression of the effec-
tive Hamiltonian

H' = P PHPP,
where P is the perturbed projector of the truncated basis
{the perturbation is V). It is now straightforward to
get47, 35

H' = ) . I@.) &v.4.~. +(&.Ivl&.') +(@.
I 10.') + (@!I
V(1 —P, )V

We have already mentioned that we want to avoid the proliferation of couplings. An inspection of (13) indicates
that the two first terms on the right-hand side will reproduce "roughly" the original model, and the third one will
introduce some new couplings such as spin-spin interactions and the hopping between next-nearest-neighbor blocks.
Hence, we keep the perturbative expression of H' up to the first order in V only.

We want afterward to express the effective Hamiltonian, H', in terms of some second quantization operators c'
in order to obtain a Hamiltonian as similar as possible to the original one. We choose then the two first eigenstates as

10 ) = IN, = N, —1, s = si, S, = —si, 8 = pi, Ei, & = &i),

I
$') = IN, = N„s = si + 2, S, = —si —2, 8 = pi —1, &2, & = &2),

(14)
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where N, is the number of electrons, s, the spin, p, the
pseudospin, and Z, stands for the irreducible represen-
tations of the spatial group C2„. The symmetries that
are not explicitly given in (14) will be provided by the
conditions that we shall impose later. We complete the
four states by applying the raising spin and pseudospin
operators on IO') and

I
g'),

= r*., I
o'&,

&
~'I, + sgn( —~) ~'. , I

—~'&;(TL' I, (20)

where the r, ~'s and the ii; 's are real numbers and
the other matrix elements, such as IO'),.(O'I,. vanish. It
has been demonstrated4s that if we choose the II)'s so
that

(15)

B. Renormalization of the
Hamiltonian parameters

In order to get the explicit expressions for pq and yq
in (8) we need to establish a correspondence such as

P,HbP~

P,VP
:H„'+ H„'+ K',
:H,'.

(16)

(»)

Here H„' represents a chemical potential term and K' is
a constant, which will give later the ground-state energy.
H~ stands for the hopping term between nearest-neighbor
blocks.

For the intrablock part (16) it is not very difficult to
obtain

where a indicates that S+ and Z+ are defined on the a
block.

The states IT') and IJ,T') are again eigenfunctions of
the intrablock Hamiltonian because Sz and Z2 are sym-
metries of the system. The energies Ei and E2 will be
the lowest compatible with all other symmetries.

, S+I &')

2(si + z)

and, in addition, a convenient shape for the blocks (we
restrict ourselves to the case of the 3 x 3 square block),
we get a spin-dependent renormalized hopping,

t', = 2(8, + —,')t', . (21)

In particular for the half-filled band we are looking for
the ground state of minimum spin, sq ——0, so that there
is no spin dependence for the renormalized band

t'„= —2A t y, (22)

where A =(0'Ic'.~I )').
From (22) we notice that the renormalization process

preserves the spatial anisotropy and, also, that the hop-
ping parameter changes its sign. This last feature is not
important as long as we are interested in obtaining quan-
tities that are invariant under the change t —+ —t.

z. I
i'& = 0

with the spatial symmetry given by Zi(Zz) = Ai(A2) the
completly symmetric (antisymmetric) irreducible repre-
sentation and, say

P,JIb P, = U'n&n& —p, &n&
—ptn&+ K', C. Renormalization of other quantities

where

U'=2(Ei —Ez) + U,

&'. = (Ei —E2)+s,
K~ —E] pJ N] $ pl'Ngf &

(18)

= I0);(~l, + sgn( —~) I
—~);(Tl I, ,

and then, assuming a natural expansion of the operators
on the border of the block n in the subspace spanned by
Io'&

I
l')

and Nip +NiT ——N, —1 and Ni~ —Nip = 2S,i. It is now
clear why we have to choose only four states to conserve
the repulsion term structure: had we chosen eight states,
for example, we would have created two kind of electrons
and therefore some new couplings.

The projection of the band, P VP„does not transform
so clearly. First it is interesting to write the c, operators
on the border of the block in terms of the IO), , , I J,T),.
states,

c; =c, (1 —n; )+c, n;,

We can extract directly the gap of the charge excita-
tions and the ground-state energy per site from the anal-
ysis of (18). The insulating gap is defined for a given N
by Refs. 12 and 49,

A(N) = [E.(N+1) —E.(N))
—[E,(N) —E,(N —1)]. (23)

U.(oo) (24)

If the system is not half filled U(~) does not represent
the gap any more because the eigenstate

I J.T') defined by
(15) is no longer the ground state in the N+ 1 subspace.
From the constant K' in (18) we obtain the ground-state
energy per site

~(n)
lim

n —+oo 9~ (25)

For the half-filled system, in the frame of the renormal-
ization group, we identify the ground state for N elec-
trons to be Io( l) and the N + 1 electron states to be
I0 l) and

I J, T( )). Here the symbol oo represents the
convergence limit and will be clarified later. The gap (23)
is then given by
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where

~{n+i} @{~& (~ 1) {~}+ 9~{m} (26)

In the free-electron limit it is possible to compare the
analytical results from the standard method with those
from the real-space renormalization group. We can com-
pare, for example, the exact value of the ground-state
energy, s'," = (4/—n) t = —1.62t to that obtained by
applying (26), e'g = —1.3t (t& & t ). That is, the sP is
about 8070 of the exact one. Another interesting property
is the dynamical exponent z defined by

9

d, =(0l) n, »,, l0),
i=1

9

d2 =(&'
I ) n'tn't l

1').

(30)

(31)

From (29) it is clear that if we choose s = r/2 then this
ratio keeps for the following iterations: s{"& = r{"&/2.
We obtain thus a closed expression for D,

t'=s t,
D = C(l, zi) + 2 (1 —6). (32)

which tells us how the energy is rescaled depending on
the length scaling. In Table I we show the renormal-
ization factors t'/t for two fillings and difFerent hopping
anisotropies. From these values we obtain a dynamical
exponent that varies at the half filling from z = 0.89
in the isotropic case (n = 1) to z = 0.63 if o, g 1.
These results have been obtained as the limiting case
of U « 1 and they already show the odd behavior of the
isotropic system at the half filling (see discussion about
this anomaly in Sec. V).

When we study highly correlated systems lt is also
interesting to analyze the qualitative behavior of some
quantities such as the double occupancy and the lo-
cal moment. We need, therefore, to construct an algo-
rithm to obtain these values in the renormalization-group
method.

The double occupancy is defined as

and then

d{n+1} d{n} d{n+1} d{n&
1 1 ) 2 2

In these cases C takes a simple form

(33)

( 1
C{fi~eg} rs — = — di — (N, —1)—(1 + v + v + ),~'2) 9( 2

where

v = [1+2(di —d2)]/g,

There are some points where the double occupancy is
easy to evaluate, these are the fixed points in the (U; t)
space so that

U{n+1} U {n&

t(n+1) t(n) '

1D=„) .,...).
2

(27) =1 2
(fi d) ~ 4 d + d

~ (34)

and the double occupancy has an analytical expression

We use, in fact, a more general expression

1C(rs) = — r) n,,Snn —s) n, )
. (28)

After the first iteration, for the 3 x 3 block, we obtain

C(r, s) = r —s +—-C (r, s ),
d]. No 1 1 I y

9 9 9

where

Two of the trivially fixed points are U/t = 0 and U/t =
oo, where we know that, in the half filling, D(0) =

4 and
D(oo) = 0. The results using expression (34) are shown
in Table II for U = 0 and two diKerent values of the
anisotropy ratio, n = t&/t~ (the limit U/t = oo does not
present any interest because D = 0 anyway). It should
be noted that for the isotropic system, n = 1, the method
does not reproduce the expected value, but, when o. g 1
we recover the a priori normal result.

Another interesting quantity is the local moment

r' = r + 2r(di —4), (s, ) = 4(s,, ) =
4 (n, 1+n,l —2n;tn, l).2 —3 . 2 —3 (35)

s = s + r(di —dz),
It can be obtained from the double-occupancy expression

TABLE I. Renormalizing factor of the hopping parame-
ter t'/t for different values of n = t„/t and two filling cases
n = ls 7/9.

TABLE II. Total amount of the double occupancy on the
3 x 3 block ground state in the N, = 8 (di) and N, = 9 (d2)
subspaces. We note the di8'erence between the isotropic case,
n = 1, and the anisotropic one, n = 0.9. We report as well
the double occupancy per site in the macroscopic limit.

1
0.9
0.0001
0

1
3/8
1/2
1/2
1 2

7/9
1/2
1/2
1/2
1/2

U=O

d2
D

0. =09
1.81246
2.18746
0.2499

A= 1
1.671 55
1.984 34

0.230
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) (...') = ,'n -—,'—LI,

and, also, we can construct an algorithm to calculate it
with the aid of the renormalization method. In order to
appreciate the border effects we shall focus our attention
in the central site of the block. The same kind of argu-
ments as in the preceding section leads to a recurrence
relation for (s~) (Ref. 34)

(s,') = ai+ s(a'- ai)(s,')'

where the label i stands for the central site and

subspace is labeled by N„S„Z,where Z represents one
of the four irreducible representations of C2„(see Table
III).

A. Classification in irreducible representations

The Hubbard Hamiltonian can be separated into two
parts easy to diagonalize independently, the interaction
H„and the band term Hq. The former is diagonal in
the Wannier representation, c,~, and the latter can be
diagonalized by a basis change (the lattice parameter a
is fixed equal to unity)

~ii (o'Is,'IO'), az = (l' Is,'I i')

IV. DIAGONALIZATION OF AN L x L BLOCK
where

2 ) sinkzxsink„y dgL+1
K j Q

(40)

(, N, (N, —1) (N, —N, l +1)
e~ z) Net' ~

N, (N, —1) (N, —N, g + 1)
N, g!

(39)

where N, ~(N, I) stands for the number of spin up (down)
electrons. For the 3 x 3 block the largest matrix cor-
responding to N, = 8(9), Sz = 0(+z) subspace has

d(8, 0) = d(9, z) = 15876.
We could, in principle, use 8 and Zz to reduce even

more the largest dimension. Unfortunately, this is not
technically useful, but we can add, nevertheless, the total
spin and pseudospin in the Hamiltonian input, in order
to obtain the eigenstates already classified as spin and
pseudospin multiplets. Finally, we explicitly take into
account the invariance of H under the elements of Cz„
in constructing the basis of the Hilbert space. Thus each

We report here the numerical analysis of the Hubbard
Hamiltonian in a 3 x 3 block with free boundary condi-
tions. Some of the results will be valid, however, for an
L x L cluster, where L is an odd integer. The diagonal-
izations have been carried out by the DSPSV subroutine
of the ESSI library in a 3090 IBM computer.

The total number of configurations for such cluster is
4~"~, that is 262144 if I = 3. However, if we make
use of the symmetries of the Harniltonian mentioned in
Sec. II, we are able to reduce the largest dimension of
the subspace we want to diagonalize. For example, if we
take into account the charge N, and the spin Sz symme-
tries the dimension of each of the subspaces so defined is
reduced to

kx(y) =
L + ~ Px(y) ~

and we get the expression

H, = ) s(k)d'„di, ,

k, a

where

S~(y) = &)L)

s(k) = —2(t cosk +t„coks„).

The three symmetries for
I P ) are then directly obtained:

N, =) nAf~f, ,

We are able then to rewrite all the operators we need
like H„, 9+, Z+, N„etc. , in terms of the di, ~, the
extended states. It is worth noting that, unlike the stan-
dard Bloch functions in an infinite lattice, 5 the dk have
the full symmetry properties of the spatial group. It is
then possible to classify these extended wave functions
in irreducible representations depending on the values of
pz(„l (see Table IV). Moreover, the representations of
Cz„are one dimensional, it is then straightforward to
construct the Slater determinants IP ) in the subspace
defined by N„S„danZ,

(42)

TABLE III. Character table for the C2„group (from Ref.
45).

TABLE IV. Relationship between the p numbers labeling
the extended states (40) and its spatial symmetry.

C2v
Ag

B2
Ag
By

E
1
1
1
1

1
—1

1
—1

1
—1
—1

1

1
1

—1
—1

Representation
Ay

B2
By
A2

PK
Odd
Even
Odd
Even

IQ
Odd
Odd
Even
Even
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TABLE V. Dimensions of the subspaces belonging to the Hilbert space of the Hubbard Hamil-
tonian in a 3 x 3 block; for (a) the Aq and (b) the A2 representations.

Ag

N,
1
2
3
4
5
6
7
8
9

0
25
0

328
0

1800
0

3996
0

4
0

80
0

760
0

2664
0

3960

0
8
0

176
0

1128
0

2616
0

0
0

16
0

276
0

1128
0

1736

0
0
0

30
0

294
0

760
0

0
0
0
0

36
0

200
0

328

0
0
0
0
0

24
0

80
0

0
0
0
0
0
0
8
0

16

2 5/2 3 7/2 4 9/2

A2
N,
1
2
3
4
5
6
7
8
9

0
16
0

328
0

1736
0

3960
0

1
0

80
0

760
0

2616
0

3996

0
8
0

200
0

1128
0

2664
0

3/2

0
0

24
0

294
0

1128
0

1800

0
0
0

36
0

276
0

760
0

0
0

0
30
0

176
0

328

0
0
0
0
0

16
0

80
0

0
0
0
0
0
0
8
0

25

3 7/2 4 9/2

If we take into account these symmetries we can compute
the dimension of every subspace for the 3 x 3 block. We
show the results for the Aq and A2 representations in
Table V. The dimensions of the B representations can
be calculated from (39), bearing in mind that the Bq and
B2 subspaces are of equal size.

The extended basis dA, is advantageous because it al-
lows us to separate easily the (N„S,) subspaces in Cs„
representations. On the other hand, the manipulation of
the two-particle operators in this basis is more cumber-
some than if we had used the Wannier states c, .

Fig. 3 for the local moment. We present the calculations
for two values of the hopping anisotropy a = t&/t~ = 1
and 0.9. The behavior for small U/t values depends on
whether the band term is isotropic or not. In the for-
mer case the existence of an accidental degeneracy on
the Slater determinants (see Table VII) produces a "gap"
in the degenerate subspace when the interaction, H„, is
switched on. The lowest state corresponds to a mini-
mization of the double occupancy. This explains the dif-
ferences between the isotropic and anisotropic cases for
small values of U/t.

B. Results for the 3 x 3 block

In the analysis of the ground-state properties we first
pay our attention to the total symmetries (observables)
like total spin and pseudospin. The latter is obtained
from (Z+Z ) where () represents the mean value in the
ground state. The results show, as expected, a zero value
for all possible subspaces. This seems reasonable as long
as we analyze the N, & N, region.

The total spin presents a more diversified behavior as
it can be concluded from the inspection of Table VI. One
of the most interesting questions concerning the spin is to
know if the Nagaoka theorem52 is fulfilled in a finite block
with free-boundary conditions. The Nagaoka theorem
states that for one hole and U/t = oo the ferromagnetic
state is the ground state of the system. We find that the
"critical" U/t is near 70, Fig. 1, which agrees with the
result of Callaway et aL (U/t), = 68.

We have also computed the double occupancy per site
D and the local moment on the central site. The results
are shown in Fig. 2 for the double occupancy and in

—6

—10
—I

10' 1O'
I

10'
U/t

I

10

FIG. 1. Ground-state energy for the 3 x 3 cluster com-
puted for N, = 8 (open squares) and N, = 9 (crosses) and
for two values of the anisotropy hopping, n = 1 (dashed line)
and n = 0.9 (solid line). The spatial symmetries correspond
to Aq at N, = 8 and Aq at N, = 9. The horizontal solid line
corresponds to the energy of the Nagaoka state at n = 1 (Az
symmetry) .
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TABLE VI. Ground-state total spin on the 3 x 3 block for different fillings. They are computed
in the symmetric subspace (Ai representation) except in the N, = 9 case (Az). In parentheses are
shown the values corresponding to the Nagaoka state (A2 symmetry).

U/t
1
10
100
1000

N, 3
1/2
1/2
1/2
1/2

5
3/2
3/2
3/2
3/2

7
1/2
1/2
3/2
3/2

8
0
0

3(4)
3(4)

1/2
1/2
1/2
1/2

The local moment in the central site presents the same
"anomalous" behavior in the U = 0 limit: the isotropy
enhances the local moment for small U/t values (Fig.
3). In order to get a more pictorial view of the one-hole
ground state we plot as well the local moment at the
central site from the expression (36).

V. RESULTS AND DISCUSSION

We are interested in the macroscopic properties of the
Hubbard Hamiltonian. In the frame of the real-space
renormalization the thermodynamic limit would corre-
spond in principle to nearly 16 iterations, so that each site
of the renormalized lattice represents close to 7.13 x 10is
original sites (equivalent to Avogadro's number in two
dimensions). One can, however, wonder about the neces-
sity to reach this number of iterations to get reliable re-
sults. In addition, we have not yet defined (numerically)
the concept of 6xed point which is crucial to interpret the
results. To clarify these two questions we report in Ta-
bles VIII and IX the results for U/t = 0.5, a = 1, 0.9 and
different numbers of iterations (n;&). From the analysis
of the data we can conclude the following.

(i) The amount of the quantities per site like energy,
double occupancy (extensive ones) does not depend on
the iteration number if n;t ) 4.

(ii) On the other hand, the quantities such as the gap

are more sensitive to the U/t(n;t) value and, then, to
the number of iterations n;~ and to the lattice size rep-
resented. Therefore, to assure that we have reached a
fixed point U/t(n;t) must be either zero or infinity We.
have chosen our zero in determining the number of it-
erations needed to get t&""~ 10 for U = 0. This
corresponds to 40 iterations approximately. The infin
ity has been arbitrarily chosen as U/t = 1000 because of
technical reasons: the CPV time allowed was finite, so
we have restricted the diagonalizations to the values of
U/t up to 1000.

If we would carry out strictly the renormalization pro-
cedure for each group of values (U, t, o.) we should diago-
nalize the Hamiltonian and then, from (18) and (22), we
would obtain the input values U', t' of the renormalized
Hamiltonian [o, does not change in the renormalization
process as it is indicated in (22)] and so on. This is, in
practice, inoperative because of the size of the matrix
and the huge number of iterations we need to realize.
We make use then of the fact that U' and t' as functions
of U/t are smooth and monotonous (as well as all other
properties of a finite system ). We can therefore exactly
compute these functions at some points and use after-
ward an interpolation algorithm to obtain other values.
We restrict the U/t interval to [0, 1000]. Furthermore,
to avoid the errors due to the interpolation algorithm

2.50
0.250-

0.200

. 15(f

0. 0.100-

IO
I

IO

0.100-
IQ-i 10

IO

Io l lO»O~
U/t

IO IO

D 2 4 6 8 10

FIG. 2. The double occupancy for N, = 9 (open squares)
and N, = 8 (open triangles) both at n = 1 and at n = 0.9 for
N, = 9 (stars) and N, = 8 (crosses). In the inset are shown
the N, = 8 and N, = 9 cases at o; = 1 for a wider range of
U t.

FIG. 3. The local moment measured on the central
site [Eq. (35)] in (a) for two difFerent fillings and hopping
anisotropies (where the markers have been chosen with the
same criteria as that in Fig. 2) and (b) for N, = 8, where we
compare the average local moment obtained from Eq. (36)
(crosses) to the one on the central site (open squares) both in
the isotropic case.
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TABLE VII. Degeneracy of the Slater determinants (42)
for different fillings. The v's correspond to the integer num-
bers we use to write the total energy of a generic determi-
nant: E(n, N, ) = ~2t(v + v„). The odd (even) particle
number states belong to the Aq (Ai) representation and to
the S = —1/2 (0) subspace.

2

10
15
40

—&o/&

1.18780
1.19075
1.19076

4x10 2

3x10
7x10 7

7x10"
0

D
0.13954
0.13955

(U/t)(n;, )
0.189
0.054

0.000 87
0.000 03

0

TABLE IX. The same analysis as in Table VIII in the
anisotropic case, cL = 0.9. The fixed point here is U/t = 0.

the first iteration is done at the points where we have
performed the diagonalization.

A. Half-611ed system

One of the first tests of a method, not necessar-
ily conclusive, consist in obtaining the ground-state en-
ergy per site. In Fig. 4 we present the result ob-
tained with the renormalization-group method for the
isotropic system (n = 1) to be compared with the lower
bounds4 and the trivial upper bound (Hartree-Fock).
The renormalization-group energy lies for moderate val-
ues of U/t above the limiting interval. This feature is
probably due to the neglected terms when we obtained
the efFective Hamiltonian (13). These terms could en-
hance the kinetic part and so lower the total energy of
the system.

The insulating nature of the ground state in the two-
dimensional Hubbard model has not yet been completly
understood. There is the general belief that an insu-
lating gap is open for all positives values of U/t This.
gap would be induced by the presence of spin-density
waves and be roughly proportional to the staggered
magnetization. z ~ 2s Another kind of approach consists
in obtaining the moment distribution n(k) and analyzing
its behavior around the Fermi moment k~.s The conti-
nuity of n(k) at this point would imply the existence of
no Fermi surface. Unfortunately all these methods have
been applied to the isotropic hopping system (t~ = t„),
where, as it is well known, the Fermi level coincides (at
U = 0) with a van Hove singularity. One can wonder if
the existence of an antiferromagnetic order still holds if
t~ P t„and then if a Mott-Hubbard transition occurs for

a finite U/t in this case.
We have obtained the insulating gap from expression

(24) and for two values of n. The results are shown in
Fig. 5. It should be noted that for the isotropic case,
a = 1, the gap opens for all positive U and is exponen-
tially small if U/t ( 1, in agreement with the results
mentioned above. Otherwise, if t„= 0.9t~ the ground
state is found conducting up to (U/t), = 1.8. The sys-
tem behaves like an insulator in both cases when U/t is
large, where we know that the Hubbard model is equiv-
alent to the Heisenberg model (see Ref. 55, for example)
and then there would be no electron motion. Even if
we have not computed the gap numerically for the whole
anisotropy interval o. &[0, 1], we can still guess a qualita-
tive phase diagram in the half-filling case (Fig. 6), where
we plot the critical (U/t), as a function of n. In fact,
we know only three points: a = 0, 0.9, 1, but pertur-
bative calculations show that (U/t), is, although small,
nonzero for all n g 0, 1 (see Table X). It should be noted
here that the results at U = 0 are taken as the limit
U/t ~ 0. That is to say, we first obtain the U (& t re-
sult, and we assume the same structure for the ground
state at U = 0. This procedure avoids the ambiguity in
defining the ground state in the degenerate case. In fact,

0.00

—0.50

—1.00

—1.50

TABLE VIII. Renormalization results at U/t = 0.5,
o, = 1, and di6'erent numbers of iterations. The fixed point in
this case is U/t = oo.

4

2

10
15
20
22

Ep/t—
1.21069
1.212 38

7x10
1x10
4x10 5

4x10
11 x 10
9x10

D
0.162 70
0.162 69

(U/t) (n;g)
0.548
0.610
0.936
1.819
27.45

114495

FIG. 4. The ground-state energy per site: renor-
malization-group result Eq. (25) (broken line) and upper
(Hartree-Fock) and lower bound results from Ref. 54 (solid
lines). For the values in the interval U/t (5,&10) only three
iterations are possible because off the cutoff U/t = 1000 dis-

cussed in the text. The actual value of the renormalization-
group energy should be therefore even slightly smaller than
the one presented here.
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iE-03

iE-05-

iE-07-

iE-09

TABLE X. Renormalizing factor of the (U/t)'/(U/t) ratio
in the U (& t limit and for three different electronic densities.
At half filling there are two marginal cases o; = 1, 0, which
corresponds to an insulating ground state.

iE-i 1

iE-13
1
0.9
0.0001
0

1

1/2
1/2

1

7/9
3/4
3/4
3/4
3/4

5/9
0
0
0
0

Oo

FIG. 5. Variation of the insulating gap with U/t for two
values of the hopping, n = 0.9 (solid line) and n = 1 (broken
line). The upper pair of lines correspond to the mean-field
results (see, for example, Refs. 54 and 24). The two lower
lines represent the renormalization gap (RG). The results for
the RG isotropic case for the small values of U/t are shown
in the inset.

this ambiguity could be the signature of a nonanalytical
behavior of the thermodynamic limit at U = 0, similar
to the one of the one-dimensional case. Recently Zlatic
and Horvatic have pointed out that this nonanalyticity
could occur in two dimensions as well in the n = 1, U = 0
case.M To get a more detailed description of the ground
state we have determined the double occupancy, the local
moment, and the effective hopping.

In Fig. 7 we have plotted the double occupancy
obtained by expression (32) for two anisotropy values
n = 0.9, 1 and compare it with an interpolation formula
given by Baereswyl and von der Linden, so

It should be noted that the renormalization-group results
agree with (43) if n g 1. Otherwise, in the isotropic case
the degeneracy reduces the double-occupancy amount
contrary to the one-dimensional system, where there is
no discontinuity in the exact value. We show in Fig. 8
the results for the local moment obtained from (36) and
(38). It presents the same behavior as the double occu-
pancy: it is "normal" if n g 1 and "anomalous" if n = 1
as well on the central site as the averaged value.

Another interesting property is the so-called effective
hopping defined as

t s (c cg +c~ c; )~
(c, cz +c c, )p

t,g s, (U/t) —UD
s.(0)

(44)

which is in turn proportional to the plasmon frequency
In the frame of the renormalization group this ef-

fective hopping becomes

with

1+cgU

4(l + csU+ csU + c4U )
'

cy: 0~491 ) c9:0~594) c3:0~216) c4:0~026~

(43) We show the results in Fig. 9. We find quantitative
agreement with quantum Monte Carlo results. ss For ex-
ample, at (U/t) = 4 and n = 1 we have D = 0.879 (0.856)
at n = 1 (0.9). On the other hand, D = 0.924 if n = 7.
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FIG. 6. Phase diagram for the Hubbard model at half
filling depending on the anisotropy parameter n = t„/t . In
fact only three critical values of the interaction strength have
been computed, for n = 0, 0.9, and 1 (open squares).

FIG. 7. Double occupancy at the half filling for a = 1
(open squares) and n = 0.9 (crosses) obtained from the ex-
pression (32) in the macroscopic limit. The solid line shows
the values obtained by the interpolation expression (43) (Ref.
50).
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0.150

O. iOO-

0.00 0.50 1.00

FIG. 8. The local moment in the thermodynamic limit
obtained from the recursion expression (37) taken at the ceri-
tral site for n = 1 (open squares) and o; = 0.9 (open triangles)
and the local moment computed from Eq. (36) (solid stars
and crosses, respectively).

B. Non-half-Qlled band, n = —"
9

Away from half filling the expected behavior of the
Hubbard Hamiltonian is richer, in particular concerning
the magnetic configurations and at least in the mean-
field approach. s Vnfortunately, there are no exact re-
sults about the nature of the ground state like the two
Lieb theorems 2 except in the limiting case considered
in the Nagaoka theorem. We cannot therefore impose
a minimum spin in diagonalizing the 3 x 3 block as in
the half-filled case. On the other hand, if we want to ap-
ply the same doublet scheme we cannot choose the states
with an even number of electrons as a spin doublet: the
electronic density should then be si, ss, s, or s. Further-
more, the results when U —+ 0 have to be consistent with
a free-electron system. All these conditions and results
reported in Table X allow us to state that the real-space
renormalization method, restricted to the choice of four
states in each iteration, remains valid only in the n = s
case. For example, if n = s the

~
J, ') and ~0') states has

to be chosen so that s =
2 and s = 0, respectively. The

renormalized hopping would then be zero; that is to say,
the method would predict an insulating ground state for
a free-electron system.

The reasons for this behavior have to be sought in an
implicit hypothesis on the first approximation: when we
had chosen only four states, we implicitly assumed no
charge fluctuations. This circumstance is surely correct
near the half filling but, far away from this limit it is too
naive to represent a block by just four configurations and
an efFective repulsion. Instead, it would be more natural
to imagine the existence of the difFerent exchange terms
produced by keeping more than four states. This is how-
ever, an ambitious program and for now we will show and
interpret the results obtained at n =

z by the "standard"
procedure explained in Sec. II. It should be noted, how-
ever, that

~
J.'t') does not correspond to the true ground

state in the N, = 8 subspace. The actual ground state
will have an energy of, say, Es smaller than Ez + U for
the state defined in (15);4i but our choice permits us to
avoid, again, the proliferation of couplings in the band
term. These couplings are, in addition, energetically un-
favorable. We must therefore no longer interpret U~

like a gap but just like a fixed point in the parameter
space.

We report in Fig. 10 the results for the ground state en-
ergy per site at n = 9, 1 together with the lower bounds
found by Valenty, Stolze, and Hirschfield, m and the exact
result at U = 0. In Fig. 9 we show the effective hopping
at n = 9, n = 1 to be compared to the half-Mled case.
It should be noted that qualitatively different behavior
results depending on whether there is a finite density of
holes or not. We expect a zero t,g in the half-filled case
at U/t = oo and a finite value if n g 1 in the same limit.
We can observe this tendency for the results obtained
with the renormalization-group method.

We have also estimated the total spin of the system.
We have first to reinterpret the renormalization flow of
the U/t parameter. Here the U = 0 fixed point refers to
a paramagnetic state and the U/t = oo limit corresponds
to a weakly ferromagnetic state. For example, if we be-
gin the process already at the infinity limit (U ) 1000t),

1.00» p

0.00

—0.50-

0.90- —1.00

0.80-

00 2
U/t

4

FIG. 9. The effective hopping defined by Eq. (44) at the
half filling in the isotropic case (squares) and at o. = 0.9
(diamonds). The triangles represent the case n = 7/9, o. = 1.

—3.0$ 4
U/t

6 8 10

FIG. 10. The ground-state energy per site for n = 7/9
(solid line) and n = 1 (dashed line) from (25) compared to
the exact value at U = 0 (the cross) and to the lower bound
from Ref. 59 (stars).
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the spin per site will be (2)(&) = is. On the other
hand, the U = 0 case has zero spin per site value. The
intermediate values are separated in two zones by a crit-
ical point (U/t), 2. We have carried out the renor-
malization procedure as if the ground state were para-
magnetic. Additional work is needed to take into account
the spin symmetry-breaking explicitly produced by the
spin-dependent hopping (21). The lower bound of the
total spin is then estimated as the ratio s&""&/9"'", where
s&"") is the spin of block at (U/t) (n;t) and 9"" represents
the size of the lattice at the n;t iteration. This estimate
is computed from an expression for the total spin per
site, which is obtained by the same kind of arguments
as those we used to get the total energy and the double

occupancy per site: (8,)/N = Q", i s,' /9'+ (S," /9").

VI. CONCLUSIONS

Macroscopic description of the ground state is, in gen-
eral, dificult to infer from microscopical model Hamil-
tonians by means of analytical or numerical techniques.
The real-space renormalization-group analysis of the two-
dimensional Hubbard model that we have presented here
is an attempt to fill this lacking. We have Grst im-
proved the understanding of the method itself: we keep
the fermionic character of the second quantization oper-
ators and, at the same time, we are able to avoid the
proliferation of eouplings, which is highly desirable in or-
der to keep the computing work up to reasonable limits.
Besides, we have outlined the way in which, away from
half filling, the spin symmetry can be "naturally" broken
in the frame of the renormalization group.

In what concerns the description of the ground state we
have studied two electronic density cases: n = 1 and 7/9.
At half filling (n = 1) we have analyzed the dependence
on the hopping anisotropy n = t„/t . We find that the
isotropic system n = 1 behaves like an insulator for all
positives values of the interaction parameter U. On the
other hand, if a. ( 1 the ground state becomes a conduc-
tor up to a critical value of the ratio (U/t), . In particular,
at n = 0.9 we find (U/t), = 1.8. The one-dimensional
insulating behavior is recovered at n = 0. One should
note the remarkable behavior of the system in the n in-

terval. One could naively think that the half-filled system
is insulating in the entire a interval because of the two
insulating limits. However, the physical picture is differ-
ent in the one-dimensional case (n = 0) compared to the
isotropic two-dimensional system (n = 1). The former
presents a Mott-Hubbard transition at U = 0, which can
be considered as a one-dimensional feature without spin-
broken symmetries. The latter, on the other hand, has a
degeneracy at U = 0 which induces, even in finite clus-
ters, a difFerent behavior for U/t ~ 0 and U/t = 0 cases.
The standard treatment of this degeneracy is done by
an explicit spin-broken symmetry (Hartree-Fock), which
can be related, in the frame of the one-particle view,
with the insulating gap. For the rest of the n values,
where no results are known, the system shows a genuine
Mott-Hubbard transition, where a broken symmetry is
not necessarily implied.

Away from half filling the situation is less clear. We
have to interpret in a slightly different manner the two
trivial fixed points. At U/t = 0 the system represents a
conducting paramagnet and if U/t = oo we still assume
the conducting behavior but in a weak ferromagnetic
background. The transition between the two regimes is
estimated at (U/t), 2 2 and the intermediate values
have to be viewed as a paramagnet with renormalized
parameters if U ( 2t or as a weak ferromagnet if U ) 2t.
More work is needed in this region of the density of elec-
trons in order to improve the renormalization procedure.
This improvement must be done in two ways. Firstly,
the spin-broken symmetry has to be taken into account
when the small cluster is diagonalized. Secondly, one
should consider the possibility of keeping more than four
states in each iteration in order to describe correctly the
low-density limits, where a block cannot be assimilated
to an s-like atomic orbital.
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