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Statistics of Voronoi polyhedra in a model silicon glass
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We clarify the local structure in a model silicon glass by use of Voronoi-polyhedron analysis. The
glass is produced by molecular dynamics with a Stillinger-Weber potential. The atoms in the glass are
nearly distinguishable: there are about 200 types in the system with 216 atoms. The analysis clarifies
that the polyhedra are formed by a small number of large-area polygons or by a large number of small-
area polygons. This feature is different from those in Lennard-Jones glasses or metallic glasses and is at-
tributed to the loose-packed structure even in the glass state, in which the atoms still have directional
bonding. The variety of Voronoi signatures that appear in the covalently bonded glass can be simplified
mainly into two types of signatures by constructing the polyhedra by use of the bonding atoms.

I. INTRODUCTION

The study of the structure of random systems has re-
ceived great interest from a statistical point of view.
Molecular-dynamics methods have been extensively used
for modeling the random systems. In order to identify
the local structures in the model random systems various
methods have been used such as Voronoi-polyhedron
analysis,! ~!2 bond orientational order parameters,'®!*
and a method by Jonnson and Andersen.!> Among these,
the Voronoi-polyhedron analysis gives very useful infor-
mation about individual atoms, since it gives a specified
signature for each atom. The concept of the polyhedron
was proposed by Voronoi.!® Bernal!” has modeled a ran-
dom structure by use of ball bearings and Finney' has an-
alyzed the structure. Tanemura et al.? later clarified the
nucleation process for supercooled model liquids using
this analysis. Since then, the method has been widely
used to analyze the local structures in random systems
such as sodium,®” ¢ rubidium,”’ ~° Lennard-Jones materi-
als,’ ! and soft-core systems.?> The crystallization pro-
cesses for supercooled liquids have also been analyzed.?!?
All of the above are close-packed systems. In these glass
systems this analysis has clarified that the most abundant
polygon is the pentagon, and the polyhedron with 14
faces appears to be the most abundant. These results are
insensitive to the potentials used as long as the system is
close-packed.

Covalently bonded systems such as silicon and ger-
manium easily vitrify into glassy states. The structure of
the model silicon glass has been clarified by use of pair-
distribution functions (PDF’s),®~23 static structure fac-
tors, 187212426 and information concerning the number of
bonds, *72* bond angles,?%2?* dihedral angle distribu-
tion,?! and the local stability of atoms in the
glasses. 72227 It has been found that the average num-
ber of bonds, bond angles, and dihedral angles are almost
the same as those in the crystalline state. As far as we
know, there has been no study on the application of the
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Voronoi-polyhedron analysis to loosely-packed glass sys-
tems. In the present paper we clarify the local structures
of a model silicon glass and compare with those in the
close-packed glass systems. In Sec. II, the computational
method will be described. In Sec. III, we will present the
structures of the model glass. In Sec. IV, we will discuss
the origin of the features, which are clarified with the
Voronoi-polyhedron analysis. In Sec. V, our conclusions
will be presented.

II. COMPUTATIONAL METHODS

There are a variety of potentials?® ~32 for simulating the
silicon system. Keating®' has proposed a harmonic poten-
tial for the crystal system. Baraff, Kane, and Schliiter, 2
have modified the potential by incorporating the results
of electronic total-energy calculations. Stillinger and
Weber!® have proposed a potential for the system, which
comprises two- and three-body terms. Later Tersoff,?
Biswas and Hamann,? and Kaxiras and Pandey® also
proposed potentials for Si. Among them, the Stillinger-
Weber (SW) potential has been widely used for the simu-
lations not only in the liquid'*!%23 but also to study crys-
tal growth from supercooled liquids®® and via deposi-
tion.?3 Glassy structures obtained by cooling,?>2%3* are
not well described by the original SW potential. The
pair-distribution functions (PDF) do not coincide with
those obtained by experiment. In order to avoid this
difficulty, some methods have been presented. One of
these involves increasing the volume of the simulation
box.!® The other involves increasing the strength of the
three-body term of the SW potential to force tetrahedral
bonding upon cooling.?”?* The third is to use a hybrid
method of molecular dynamics and the Metropolis algo-
rithm by rearranging the atom positions of the diamond
cubic structure.?®® Based on these earlier works, we use
the modified potential to realize the correct glass struc-
ture.

The system contains 216 atoms in a cubic cell and has
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periodic boundary conditions in three dimensions. We
have used the Andersen® constant pressure form of
molecular dynamics. The external pressure is fixed
at zero throughout the series of simulations. The
unit of length ¢=2.0951X10"'© m and energy
€=3.4723X 107! J. The units o and & are chosen to be
the minimum distance and the energy of the two-body
term of the potential. The initial edge length L of the cu-
bic cell is 7.750490 and unit of time 7=7.6634X 10" ' s.
The equation of motion has been integrated by use of
Beeman’s algorithm,3’ with an integration time step
At =5X107%r. The velocities of atoms have been con-
trolled by a modified momentum scaling method. 3~ 738

We prepared the glass as follows. (1) We arranged the
atoms randomly in the cell. We stabilized the system for
10* steps at 1850 K with the original SW potential in
which the coefficient A=21 for the three-body term. This
temperature is higher than the melting temperature'®
1750 K of the model silicon system. The liquid state was
confirmed by monitoring the mean-square displacement
of the atoms. (2) The coefficient A was changed continu-
ously from 21 to 31 for 5000 steps. During this process
the density decreased from 0.4900 3 to 0.4200 3. We
then stabilized the system for 5000 steps at that tempera-
ture. The value of A=31 was used to simulate the correct
glass structure of the silicon glass.?® (3) We then cooled
the liquid to 300 K with a continuous cooling
method, >**~*! with a rate of 0.0155 K for every step.
This corresponds to a cooling rate of 4.05X 10" Ks™!.
During this process the density increased from 0.4200 3
to 0.4300 ~3. (4) The coefficient A was continuously re-
duced to 21 for 2000 steps at 300 K in order to relax the
structure. During this time, the density increased to
0.4450 3. We continued to simulate the system for
48 000 steps in order to achieve stabilization. The density
increased to 0.4460 ~3. We used the last 10* steps to ob-
tain the statistical average of the structures.

III. RESULTS

A. Mean-square displacement of atoms

In order to examine the movements of atoms at 300 K,
we have measured the mean-square displacements of the
atoms, {[r;(z)—r;(0)]*). The displacement at 1850 K in-
creased quadratically with time in the initial region and
then increases linearly with time there indicating that the
system is in the liquid state. The quadratic increment ap-
peared in the initial region and is attributed to the
thermal vibration of atoms prior to migration.*> The
slope at 300 K, however, was zero, which indicates that
no long-range movement of atoms occurs at 300 K, ex-
cept for the local vibrations. We will examine statistical-
ly the local structures around atoms at this temperature
in the following section.

B. Pair-distribution function and number of bonds

Figure 1 shows the radial distribution g (7) of atoms in
the condensed system, averaged every 100 steps. The first
peak is located at r =1.140 and the second peak at
r =1.830. The peak positions and heights of g (r) coin-
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FIG. 1. Pair-distribution function at 300 K.

cide with those of earlier PDF’s.!*?® The peak position
of the first peak occurs nearer the origin (by 0.05¢ ) than
that of the PDF of Wooten, Winer, and Weaire.* Their
glass was formed by the hybrid method by use of the
Keating potential®! and gave a Gaussian line broaden-
ing.3® Here let us examine the bond statistics of atoms in
the glassy state. The PDF has shown a deep first
minimum at r =1.41c just outside of the first peak as
shown in Fig. 1. We use this distance as a cutoff for the
bonding statistics. The distribution of bond angles made
by two bonds of a triplet are shown in Fig. 2. As expect-
ed the most abundant angle is 108° and the average angle
is 108.22°, which is close to the value of 109.47° found in
the crystalline state. Table I shows the comparison of the
angles and the standard deviations of the broadnesses
among the earlier works. The present distribution is the
same as those of the earlier works. 22

Table 1I shows the fractions of atoms with various
number of bonds in the range of the first minimum of
PDF. The most probable number of bonds is four and
the average number of bonds is 4.13. Earlier works have
shown various values for the model silicon glasses such as
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FIG. 2. Bond-angle distribution for the glassy state.
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TABLE I. The average bond angles and the broadnesses
among the model silicon glasses.

Luedtke §tich, Car,
and and
Present work Landman?® Parrinello®
(T=300 K) (I'=300 K) (T=300 K)
Average bond 108.22° 108.3° 108.32°
angle
Broadness® 15.2 14.7 15.5

“Reference 20 calculated by SW potential.

PReference 21 calculated by ab initio molecular-dynamics
method.

‘Standard deviation of their distributions.

412,120 4,10, 4.0-4.05,%* and 4.03.2! The present
fractions of atoms and the average number of bonds are
almost the same values as those earlier works.2%2!23
Thus the crystal-like bonding nature is still realized even
in the glass state.

C. Voronoi-polyhedron analysis

In order to examine the local environments around
each atom in the glass, we have used a Voronoi-
polyhedron analysis. This analysis is a useful method to
identify the near-neighbor environments around each
atom in the condensed systems.!'™ !> The polyhedron is
constructed by the following procedure: A bisection
plane is formed from a central atom to one of the coordi-
nated atoms in the system. The planes are formed be-
tween the central atom and all the neighboring atoms
around it. The planes form a variety of shapes of
polygons around the central atom. The polyhedron con-
sists of the polygons which are the closest to the central
atom. We call it the Voronoi polyhedron. The polyhed-
ron corresponds to the Wigner-Seitz cell in the crystalline
state. Each polyhedron is identified by a signature
(n3,n4,ns,...1n;, . ..), where n; is the number of j-edged
polygons on the polyhedron.

We have examined the signatures of each atom in the
glass state. There are over 200 different signatures every
simulation step in our system of 216 atoms, indicating the
appearance of signatures which are almost independent.
In contrast to our studies on metal sodium glass,3'6 we
cannot analyze the glass state by classifying them into de-
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FIG. 3. Distribution of the number N, of faces on each
polyhedron in the glassy state.

creasing order of abundance. For sodium glass, there
were 129 signatures in our 864 atom glass; the most abun-
dant signature of which corresponds to 0.10 of the total.

In order to characterize the shapes of the Voronoi
polyhedra, we first counted the number N, of faces on
each polyhedron. Figure 3 shows the results for N,. The
distribution ranged from N,=11-26 and is a broad and
almost Gaussian function. The average N,=18.35 with
a standard deviation of 2.17. The most probable number
of faces is 18. For the sodium glass,>~° the range of the
distribution was only from 12 to 17, the most probable
number of faces was 14, and the standard deviation was
1.13. These parameters are greater for the present glass
than for the sodium glass, and indicate a variety of local
environments of atoms in the present glass.

We have also counted the number N, of edges on each
polygon, and have examined the fraction of N,. Figure
4(a) shows the fraction as a function of N,. The distribu-
tion has a sharp peak at N,=4 and a subpeak at N, =9.
The distribution is completely different from that which
appeared in the sodium glass,>~® which showed a single
peak with maximum at N,=5. In order to clarify the
distribution, we have identified the polygons which were
formed by the bonding atoms and have shown their frac-
tions in Fig. 4(b) as a solid line. We have also shown the
fraction of N, for the nonbonding atoms as a broken line.

TABLE II. Fractions of Si atoms with various numbers of bonds.

Number Present work Luedtke and Landman® Broughton and Li® Stich, Car, and Parrinello®
of atoms (7 =300 K) (T'=300 K) (T=754 K) ' (T=300 K)

3 0.006 0.005 0.012 0.002

4 0.861 0.878 0.866 0.966

5 0.133 0.115 0.118 0.032

6 0.001 0.003 0.002
Average 4.14 4.12 4.10 4.03

*Reference 20 calculated by SW potential.

"Reference 23 calculated by a method by Wooten, Winer, and Weaire (Ref. 35).
‘Reference 21 calculated by ab initio molecular-dynamics method.
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FRACTION

FIG. 4. Distributions of the number N, of edges for polygons
on all the polyhedra in the glass state: solid line in (a) is the dis-
tribution of the polygons with number N, formed by all the
coordinated atoms around each atom, the solid line in (b) is for
the bonding atoms, and the broken line in (b) is for the non-
bonding atoms.

The peak in Fig. 4(a) corresponds to the fraction of N,
formed by nonbonding atoms and the subpeak to the
bonding atoms. Let us specify the polygons on the Voro-
noi polyhedra formed by bonding atoms and those by
nonbonding atoms. We define these the bonding po-
lygons and the nonbonding polygons.

We have examined the shape of polyhedra appearing in
the glass. Figure 5 shows a typical shape of a polyhedron
that has a signature (5,4,3,3,1,0,0,2,1). There are two dis-
tributions in #n;, i.e., one of them is a group of polygons
with small area and the other is that with large area.
Generally there are three parameters needed to identify
the polygons on the polyhedron. These are the number
N, of edges, the area, and the distance from the central
atom.

We have examined the average areas as a function of
N,. Figure 6 shows the results. The circles represent the
average areas of polygons. The areas of the bonding
polygons are also shown together with those of the non-
bonding ones. Both areas increase linearly with increas-
ing N,. The areas of the bonding polygons approach the

FIG. 5. The shape of a Voronoi polyhedron in the glassy
state.
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FIG. 6. The average surface areas of polygons on the Voro-
noi polyhedra as a function of the number N, of edges on
polygons: The plus represents the areas of surfaces formed by
the bonding atoms, the cross represents the nonbonding atoms,
and the circles represent the coordinated atoms.

average at the large-N, region and those of nonbonding
ones at the low-N, region.

We have also examined the distance of polygons from
the central atoms. Figure 7 shows the interatomic dis-
tances as a function of N, together with the PDF shown
in Fig. 1. The interatomic distances of 1.90, which are
associated with the formation of the triangle N, =3, are
included in the second peak of the PDF and those less
than 1.150 with the formation of polygons with N, >9 in
the first peak. This relation is a measure of the inter-
atomic distances of the polygons on the polyhedron ap-
pearing in Fig. 5.

1V. DISCUSSION

In Sec. III, we have found that among the 216 atoms
there are more than 200 types of signatures which had
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FIG. 7. The relation between the average interatomic dis-
tance and the number of edges of the polygons N, on the bisec-
tion planes, which are formed from the central atoms to the
coordinated atoms. The PDF appearing in Fig. 1 is shown for
comparison.
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only one atom, and 10 types of signatures which had two
atoms, showing the independent appearance of the signa-
tures. These features are in complete contrast to those in
the sodium glass,®® Lennard-Jones glass,”!° and rubidi-
um glass.””? Here we discuss the reason for their ap-
pearance. In the case of sodium glass,3 ~% there were 129
types of signature for the 864 atom system studied: The
most abundant case had 80 atoms with the same signa-
ture. The second most abundant signature had almost
the same number. The sum of the fractions up to the
13th signature accounted for 0.64 of the total. The aver-
age number of bond atoms in the first peak of the PDF
was 12.96, which is greater than that in the present glass.
The average number of polygons on the polyhedra was
13.87. The difference 0.91 between the numbers indicates
that the contribution from the atoms outside of the first
peak is small. In the case of the present glass the average
bond angles is 108.22° and the average number of bonds
is 4.13. This indicates that the bonding character is co-
valent even in the glass state and means that the atoms
form directional bonding and a loose-packed structure
even in the glass. The variety of signatures relates to the
bonding. The average number of polygons on the Voro-
noi polyhedra was 18.35 from Fig. 3. The difference,
14.22, between the numbers is the contribution of the
nonbonding atoms outside of the first peak of the PDF.
Thus the bonding in the silicon glass is so directional that
the nonbonding atoms contribute to the formation of the
polygons.

The bisector planes formed by the nonbonding atoms
cut those formed by the bonding atoms. Since the non-
bonding atoms locate in the loose-packed space among
the bonding atoms, there are a variety of cutting direc-
tions. The bonding polygons have large N, and have
been located in the large-N, region as was shown in Fig.
4. On the contrary, the nonbonding atoms, which are lo-
cated among the bonding atoms, form the polygons with
small areas. Thus the number N, of the bonding polygons
increases and the nonbonding polygons have a small
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FIG. 8. The relation between the number of bonds and the
total number of faces on the polyhedron N;. The number N, is
a measure of contribution of the nonbonding atoms to the for-
mation of the polyhedra.
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TABLE III. Fractions of Voronoi polyhedra formed by
nearest-neighbor atoms at 300 K.

Number Fraction

Signature of bonds of atoms
(4,0,0) 4 0.8587
(2,3,0) 5 0.1325
(0,0,0) 3 0.0056
(1,0,0)* 4 0.0020
(2,2,2) 6 0.0007
(0,6,0) 6 0.0002
(3,1,0) 5 0.0001
(0,1,0)* 5 0.0001

#No polyhedron is constructed in these signatures.

number of edges. As a result the number of types of sig-
natures increases.

In order to confirm this point, we have examined the
relation between the number of bonds around each atom
and the number N, of each polyhedron. Figure 8 shows
the average number of bonds as a function of N,. The
number N, is a measure of contribution of the nonbond-
ing atoms to the formation of the polyhedra. The central
atoms with a large number of bonding atoms produce the
polyhedra with low N £ while the atoms with low number
of bonding atoms, four for example, produces the polyhe-
dra with large N,. The number N, increases with de-
creasing number of bonds, which is a measure of the
directional bonding. Such a situation produces the shape
of the polyhedron shown in Fig. 5. Thus the decrease of
the number of bonds results in space around the central
atoms; the nonbonding atoms locate in the space, and the
bisector planes produced by the nonbonding atoms cut
bisector planes formed by the bonding atoms. This is the
reason why the atoms with a low number of bonds pro-
duce polyhedra with large N,.

In order to eliminate the effect of faces with small
areas, we formed the Voronoi polyhedra with the atoms
in the first peak of the PDF g(r) shown in Fig. 1. The
fractions of signatures are shown in Table III in the order
of decreasing fraction. Almost all the polyhedra are
classified into (4,0,0) and (2,3,0) signatures. The sum of
their fractions is 0.99. Figure 9 shows a typical shape of
the polyhedra with (4,0,0) and (2,3,0) signatures. In the
(2,3,0) polyhedron there are two triangles. Each triangle
is surrounded by three squares. The smaller triangle is
formed by cutting one of the vertices of the (4,0,0)

<~

(4,0,0) (2,3,0)

FIG. 9. Typical shapes of the (4,0,0) and (2,3,0) Voronoi
polyhedra.
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polyhedron in the figure. Thus the variety of Voronoi
signatures appeared in the covalently bonded glass can be
simplified mainly into two types of signatures by con-
structing the polyhedra by use of the bonding atoms.

V. CONCLUSION

We have clarified the local structure in a model silicon
glass produced by the molecular-dynamics method with
the Stillinger-Weber potential. The local structure has
been analyzed by use of the Voronoi-polyhedron method.
Each atom has an almost independent signature, in con-
trast to the appearance of many common signatures in
the close-packed glasses. The origin of this observation
has been analyzed statistically. Directional bonding ex-
ists even in the glass state. The bonding atoms form a
loose-packed structure and the nonbonding atoms locate

8557

in the spaces, resulting in a large number of polygons on
the polyhedra. We have eliminated the small areas from
the Voronoi polyhedra by constructing the faces with the
bonding atoms. The elimination results in the
simplification of the polyhedra into the (4,0,0) and (2,3,0)
signatures.
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