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Unusual scaling of the spectrum in a deterministic aperiodic tight-binding model
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Local and global scaling properties of the integrated density of states of the tight-binding Rudin-
Shapiro model are numerically derived by investigating the dependence of the bandwidths of its periodic
approximants on the size of the unit cells. Scaling relations intermediate between the power and ex-
ponential laws are found for various values of the energy and amplitude of the on-site potential V. An
analysis of the global properties of the spectrum performed in the case when V is equal to the hopping
integral t points out its multifractal structure. Multifractal arguments together with earlier results con-
cerning the nature of the wave functions indicate a pure point spectrum for V t, while for smaller
values of the amplitude V the spectrum reveals a mixed character.

I. INTRODUCTION

The elucidation of the inhuence the atomic distribution
has on the nature of the electronic states in multicom-
ponent structures is one of the fundamental problems of
solid-state physics. The nature of the states and spectra
in models of noninteracting electrons with periodic or
disordered atomic potentials is well known. The elec-
tronic wave functions in periodic solids are extended
(Bloch states) and the spectrum is absolutely continuous,
while the electrons are exponentially localized and the
spectrum is pure point in one-dimensional disordered
models. Also, the structural disorder favors the localiza-
tion in higher dimensions. ' Much less is known about
the intermediate class of aperiodic ordered structures,
where it is not clear what is the minimum deviation from
periodicity that is necessary to localize the electrons.
Earlier studies have shown that localization can occur in
incommensurate systems provided the amplitude of the
atomic potential is strong enough. On the other hand,
the absence of localization was proven in one-dimensional
binary alloys of quasicrystalline type, which display
singular continuous spectra and critical states (i.e.,
states which are not normalizable but which are "less ex-
tended" than the Bloch states in the sense that the distri-
bution of the charge density could present large Auctua-
tions). Also, sufficient conditions for the absence of the
absolutely continuous and pure point parts in the spectra
of systems generated through substitutions have been de-
rived.

Recently, a tight-binding model with two types of
atoms ordered according to the Rudin-Shapiro (RS) se-
quence has been proposed as a candidate for the study of
the electron localization in a deterministic aperiodic
medium. ' Numerical studies suggested that the elec-
tronic states of the model are generically localized (i.e.,
normalizable) and a detailed investigation of some partic-
ular cases indicated that the rate of spatial decay of the
wave functions is intermediate between the power and ex-

ponential laws. This means that the charge distribution
is less spread in space than in the case of the critical
states, but the localization is weaker than in a random
medium. These features make the RS chain a unique ex-
ample of an aperiodic ordered system whose atomic dis-
tribution generates properties in between those of the
quasiperiodic and disordered structures.

This paper reports numerical results regarding the na-
ture of the spectrum of the RS model. The method is
based on the investigation of the scaling of the integrated
density of states (IDS), that can be inferred from the
asymptotic dependence of the bandwidths of the periodic
approximants of the system on the size of their unit cells.
The IDS of periodic systems is known to scale locally
with the energy as a power law, with power 1 (inside the
bands) or —,

' (at the Van Hove singularities). Studies on
deterministic aperiodic systems such as Harper-Aubry '

and Fibonacci models led to the conclusion that the scal-
ing with powers smaller than 1 is generally associated to
the singular continuous spectra, while the power 1 is the
signature of absolutely continuous spectra. In the case of
localized states perturbational arguments suggest that the
size of the shift of the energy levels caused by the change
of the boundary conditions depends on the rate of spatial
decay of the wave functions. ' Thus, if the states are ex-
ponentially localized, the widths of the bands of the
periodic approximants decrease following an exponential
law when the length of the unit cell increases. Also, ex-
act results indicate in the case of the Maryland model
that the bandwidths scale exponentially when the states
are exponentially localized. "

One can expect that the existence of localized states
with a decay rate intermediate between the power and ex-
ponential laws in the RS model would have some impor-
tant consequences on the scaling of the bandwidths, lead-
ing to a qualitatively new behavior. Here it is shown by
means of numerical arguments that the IDS of the RS
chain generically scales following a logarithmic law. The
various types of scaling which occur for difterent energy
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values are investigated in Sec. II. Moreover, a multifrac-
tal analysis performed in Sec. III will permit the extrac-
tion of some important conclusions regarding the nature
of the spectrum of the RS model.

II. LOCAL SCALING

f) i+QJ+i+ V~QJ =EQ, , j 0, (2)

where i'. denotes the amplitude of the wave function on
site j, E is the energy of the electron, and the hopping in-
tegral is set to 1. The distribution of the on-site poten-
tials V given by Eq. (1) is in a one-to-one correspondence
with the RS sequence' which gains distinction among
the binary sequences through some peculiar statistical
properties. Namely, the distribution of V is ordered
enough to prevent the occurrence along the chain of most
of the possible finite clusters that can be built up by arbi-
trary concatenation of the two types of atoms, but is at
the same time far enough from periodicity to generate an
absolutely continuous Fourier measure like a disordered
chain.

The first purpose of this study is the derivation of local
scaling relations of the type

N(E+bE) —N(E) ~F(bE), DE~0, (3)

where N(E) represents the value of the IDS at the energy
E, and F denotes some function to be derived. In prac-
tice the model is approximated by periodic systems with
unit cells given by the successive generations of the chain
containing 2" atoms each, whose spectra o'"' are com-
posed of 2" bands of widths m "', i =1,. . . , 2". The num-

ber of states is normalized to unity, therefore the fraction
of states contained in each band (i.e., the variation b,N of
the IDS along the band) is equal to the inverse of the cell
size. Then, if w'"'(E) denotes the width of the band
which contains E at generation n, a relation of the type
w'"'(E)=g(EN) can be numerically derived, where g is
expected to become equal to the inverse of the scaling
function F from Eq. (3) in the limit of large n [For in-.
stance, in the case of the disordered systems the ex-
ponential law w ' "' =exp( —const2" ) implies

g ( b N ) =exp( —const /hN ) and therefore F(b E )
= —const/In( b.E ). ]

The above formalism was successfully applied to some
deterministic aperiodic models, where power-law scaling
was found of the type

N(E+bE) —N(E) (bE) ' ', bE 0, (4)

The system investigated in this article is a one-orbital
tight-binding model composed of two kinds of atoms dis-
tributed aperiodically on the sites of a regular chain with
unit spacing. The potential on the atom located on the
site j is given by

VJ
= V exp[ivrS(j )], V) 0,

where S(j) denotes the number of occurrences of "11"in
the dyadic representation of j. The electron can hop be-
tween nearest-neighbor atoms according to the equation
of motion

with spectral indices a(E) in the range ]0,1]. Thus, stud-
ies of the scaling at the center of the spectrum of the
Harper-Aubry model indicated a jump of the index a
from 1 to a smaller value when passing from the subcriti-
cal regime to the critical value of the strength of the on-
site potential. Also, further numerical evidence for the
Harper-Aubry and Fibonacci models revealed scaling of
the power-law type whenever the states are extended or
critical.

We have performed a numerical study of the scaling of
the bandwidths w'"'(E, V) of periodic approximants of
the RS model for various values of the energy and poten-
tial amplitudes. In general, if some energy belongs to the
spectrum of the mth approximant, its occurrence in the
spectra of approximants with n )m is not guaranteed.
The convergence of the procedure being faster at the en-
ergies which recur more frequently in the spectra of the
periodic approximants, we are interested to first apply the
method to those energy values for which the frequency of
recurrence has been derived analytically. This is the case
with the energies to which a general statement proven in
a previous paper applies, ensuring their recurrence in the
spec;ra of the periodic approximants given by each
second generation. The energies here investigated can be
classified in three groups. The first one contains energies
located at the center of the spectrum, ' whose existence
was proven for some decreasing sequence of values of
the potential strength V = V' +", m =0, 1,2, . . .
(V"'=V2, V' '=0.6071, etc.). The second class refers
to the energies E =+[2+(2+ V )'~ ]' for the particu-
lar value V=1. The third class consists of the energies
E=+E,( V), E, (V)=( V +2)', whose associated wave
functions were shown to be non-normalizable for some
infinite set of "critical" values of the amplitude
V= V,' '(1, m =1,2, . . . . The bandwidths at the nth
generation were computed by looking for those energies
for .which the absolute value of the trace of the transfer
matrix is less than or equal to 2 after n —1 iterations of
the trace map' of the model.

The states at the center of the spectrum were found to
be weaker-than-exponentially localized, the amplitude g;
of a state localized on some site ia decaying according to
a law of the type

~ @; ~

~ exp( —const
~
i i 0 ~

' ~ )—

[see Eq. (4.4) in Ref. 7]. Assuming on the basis of the
Edwards-Thouless argument' that the shrinking with n

of the associated bandwidths is governed by a similar ex-
pression w'"' ~ exp( —const2" ~ ), then the IDS should
scale at these energies following the logarithmic law

N(E+bE) N(E) ~ [ —In(bE—)], DE~0, (5)

with v=2. The numerical computations confirmed this
type of behavior for the first two classes of energies men-
tioned above with the index v=2. 00+0.02 in both cases
(see Fig. 1 for the data concerning the first class of states
when m =0, 1,2, 3, and 7). The scaling relation for the
bandwidths corresponding to Eq. (5) is stronger than a
power and weaker than exponential (note that the disor-
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FIG. 1. Representation of log&o~log, ow'"'~ for the bands
closest to the center of the spectrum as a function of the genera-
tion number n. The values of the amplitude are, from top to
bottom, V"'=&2, V' '=0.6071, V' '=0.2978, V' '=0. 1483,
and V'"'=0.0092. The scaling index v is given by v=log&O2/~,
where ~ is the slope of the asymptotic straight line resulting for
large n in each case.

deredlike exponential law corresponds to the limit value
v= 1).

The investigation of the widths of the bands which are
located in the neighborhood of the energy values
E=+E,( V) for critical potential amplitudes revealed a
qualitatively different behavior. The wave functions asso-
ciated to these energies are critical and a periodic subse-
quence of lattice sites on which the amplitude is constant
has been found analytically. Also, there is an infinite
subset of sites on which the amplitude scales algebraically
[see Eq. (3.17) in Ref. 6]. The wave functions being not
localized, the dependence of the energy shift on the
boundary conditions is stronger and it is plausible to as-
sume that the bandwidths are related to the size of the
unit cell through a power law. According to the numeri-
cal computations, the IDS scales in this case fo11owing
the relation (4), where the computed values of the index a
are o; =0.66+0.02 for V= V,'"=2 ' and
I/ I/(2) 2

—1/2( 1 +2
—1/2 )1/2

C

At the upper limit of critical values V=1 the states as-
sociated to the energies E =+E,( V) cease to be extended,
becoming localized, with a localization rate governed by
the law IP; I li in I

— ' [see Eq. (3.14) in Ref. 6].
This qualitative alteration of the nature of states near
E=+3' implies a weaker sensitivity to the boundary
conditions and the above reasoning suggests that
w'"' ~ (2") """'"~

~, therefore the IDS should scale like

X(E+b E ) —%(E)~ exp I
—const[ —1n(b,E ) ]~],

b.E~0, (6)

with g =
—,'. Numerical computations performed on

periodic approximants with large unit cells give
/=0. 50+0.01. This type of scaling is intermediate be-
tween the two previous laws Eqs. (4) and (5), and the
power-law regime (4) can be obtained from it by setting
=1.

A first step towards the global characterization of the
spectrum is the study of the dependence of the total
bandwidths 8 '"' of the periodic approximants on the size
of the unit cells. Thus, the vanishing of W'"' in the limit
of large n is generally credited as a proof of the absence
of absolutely continuous parts in the spectra. The cri-
terion does not exclude the existence of a dense point
part, since it refers to the size of the set of eigenvalues be-
fore taking its closure. Estimations of the size of the total
bandwidth have been performed for the Harper-Aubry
model at the metal-insulator transition, ' and in the Fi-
bonacci case. ' The numerical analysis of the scaling of
the spectrum of the RS chain, to be exposed below, indi-
cates the vanishing of the total bandwidth faster than a
power law for V~ l.

The study is performed in the frame of the multifractal
formalism, ' whose purpose is the derivation of the scal-
ing indices of measures defined on general sets of points
that are composed of interwoven parts with different scal-
ing properties, and to estimate the fractal dimensions of
the subsets on which the measure scales with the same in-
dex. Accordingly, the spectrum o-'"' of the nth periodic
approximant can be seen as a covering of the spectrum o.

of the infinite chain. A probability measure is defined on
every partition o'"' of o., by attributing to each band m "'
a weight 2 ". Then a partition function is defined
through

I „(q,r, o'"')= g 2 "Q, (r, w "'), (7)

where A, is a gauge function and q takes real values. The
explicit form of A, depends on the type of scaling to be
investigated. For instance, if it is assumed that the band-
widths scale algebraically with the size of the unit cell,
then

kq(7) w ) = w

where r(q) is derived from the condition'

lim I „(q,~, o'"')=1 .
p7 —+ oo

(9)

It was proven' that the Legendre transform of r(q),
which reads

f(a) =aq(a) —r[q(a)],
is the fractal dimension of the set of bands on which the
probability scales like (w'"') when n ~ ~.

The above framework was used for the investigation of
the spectra of Harper-Aubry, Fibonacci, and Thue-
Morse' tight-binding models. Its application to the RS
case for V=1 led to the results displayed in Fig. 2. The
tendency of vanishing of r(q) when the size of the unit
cell increases is clearly seen. This indicates the decrease
of the fractal dimension of the set of bands whose widths
scale algebraically with the cell site. The extrapolation of
these results to the limit of the infinite cell suggests the
absence of components with algebraic scaling in the spec-
trum o.. This leads to the conjecture that the spectrum of
the RS model has no continuous part when V=1, in
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agreement with earlier results concerning the nature of
states in this case.

The increase of the amplitude of the on-site potential is
expected to strengthen the localization tendency, and
therefore to conserve the pure point character of the
spectrum. Indeed, calculations of the spectra for higher
values of the potential strength show that for each fixed
generation n the total bandwidth 8""' is a monotonous
decreasing function of V. This together with previous re-
sults revealing the limited spatial spreading of the elec-
tronic wave packets during their time evolution for
V~ 1 support the conclusion that the spectrum keeps its
pure point nature in this range of amplitudes of the on-
site potential.

Numerical computations performed at V=1 indicate
that the distribution of the bandwidths is extremely
sparse, the largest bands being several orders of magni-
tude wider than any of the other bands. Therefore, the
scaling behavior of the total bandwidth is governed by
the very few bands with largest width. It turns out that
at V=1 the widest bands are those which are located in
the neighborhood of the energies E=+3' investigated
in Sec. II. Numerical checks make plausible the assump-
tion that the rest of the bandwidths of periodic approxi-
mants with large unit cells scale according to the law (5).

Thus, if the contributions of the type (6) are discarded,
the study of the logarithmic corrections to the multifrac-
tal behavior requires a gauge function of the type

A, (~, r„w ) = w ~q'( —lnw )
'

The scaling indices v and the associated logarithmic di-
mensions have been derived by means of the method from
Ref. 19, that generalizes the multifractal theory to parti-
tion functions with logarithmico-exponential corrections.
For a fixed q and ~ the value of ~& at the nth generation
was obtained from the normalization condition
I „(q,r, r&, o'"') = 1. Then the values of r(q) and ~&(q) are
derived from the coordinates of the point of intersection
in the plane (r, r&) of the curves r&(r) corresponding to
two successive generations. The logarithmic dimension is
plotted in Fig. 3 as a function of the scaling index v. The
continuous set of values taken by the scaling index proves
the multifractal nature of the spectrum.

As the example of the states located at the center of the
spectrum indicates, the logarithmic law of scaling persists
for amplitudes V lower than 1. However, the existence of
continuous parts in the spectrum is not excluded in this
range of values of V. In particular, when Vtakes one of
the special values V,' ' mentioned in the previous section,
there are singular continuous parts of the spectrum
characterized by the local scaling law (4) in the neighbor-
hood of the energies E=+E,( V) and the states are criti-
cal. The numerical computation of the inverse participa-
tion ratio and second moment performed in Ref. 6 for
V= V, shows that for energy values outside the neigh-(&)

borhoods of +E, ( V) the states are localized, that is, the
two singular continuous parts of the spectrum are sur-
rounded by a sea of pure point spectrum. This implies
the existence of four mobility edges separating the re-
gions with critical and localized states. (Here we call mo-
bility edge any energy value that separates regions with
normalizable states from regions with non-normalizable
states. ) The existence of singular continuous parts in the
spectrum, which is expected to take place for any critical
value V,' ', has important consequences on the electron
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FIG. 2. (a) The functions ~(q) for the generations 5, 6, 7, 8, 9,
and 10 (from top to bottom in the right half of the figure and in
the opposite order in its left half); (b) the functions f(a) for the
same generations (from right to left).

FICx. 3. Logarithmic dimension f, as a function of the scal-
ing index v computed by using the bandwidths at the genera-
tions 9 and 10.
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dynamics, being shown that the states near +E, ( V) cause
the subdiffusive expansion of the electronic wave packets
through the lattice (see Fig. 10 from Ref. 6 for the case
y —y(2) )C

IV. SUMMARY

The nature of the spectrum of the Rudin-Shapiro
tight-binding model was numerically investigated. A
study of the scaling properties of the bands of periodic
approximants performed for various values of the energy
and amplitude of the on-site potential V revealed scaling
relations intermediate between the power and exponential
laws. The corresponding IDS was found to scale in gen-
eral logarithmically, but power laws were also derived for
some special values of V. A multifractal analysis of the
spectrum at V= 1 indicated the absence of the power-law
scaling in the limit of the large system. This result to-
gether with numerical arguments regarding the total
bandwidth and the nature of states led to the conclusion
that the continuous components are absent from the
spectrum of the RS chain for V ~ 1. Nevertheless, the ex-
istence of parts of the spectrum that scale like a power
law indicated the presence at some fixed special values of
V(1 of at least two singular continuous regions in the
spectrum for which the states are critical. For such spe-
cial values of V the singular continuous parts are sur-
rounded by pure point spectrum, therefore at least four

mobility edges should exist, separating the regions of lo-
calized and critical states. Finally, the insertion of loga-
rithmic corrections to the gauge function permitted proof
of the multifractal nature of the spectrum for V= 1.

The above derived features put the RS chain in a spe-
cial position among the deterministic aperiodic models as
yet investigated. Namely, this is one of the very few ex-
amples of a non-quasi-periodic one-dimensional model
that displays mobility edges in its spectrum. Moreover,
the RS case shows that at least one type of scaling law
different from exponential can exist for the bandwidths of
systems with pure point spectra. These results suggest
that, in general, the study of complex deterministic
aperiodic systems can reveal qualitatively new phenome-
na that enrich the physical knowledge about the mecha-
nism of localization.
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