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Wave propagation in isotropic random media with nondiscrete spherical perturbations
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In our studies on the optical properties of artificial anisotropic material, synthesized with methods of
nuclear trace and etching technology, we have to investigate wave scattering by nondiscrete cylindrical
perturbations. Unfortunately, most previous Twersky-type multiple-scattering theories as well as
Keller-type random-medium theories exclusively deal with discrete scattering problems. In this prelimi-
nary work we use the theory of stochastic differential equations in order to study the low-frequency limit
of scalar and electromagnetic wave scattering from an unbounded isotropic medium into which isotropic
nondiscrete (partially overlapping) spherical perturbations are embedded. By taking into proper account
the strong singularity of the Green s tensor in the application of the first-order smoothing method it is
shown that the effective dielectric tensor is a multiple of the unit dyad and can be calculated approxi-
mately via isotropic two-point autocorrelation functions which allow overlap of the spherical scatterers.
These random-medium results are compared with those from discrete scattering theory. It is shown that
there exists a joint scope of both theories in the limit of small volume fraction and of small size of the
perturbations. In the electromagnetic case the degree of agreement between both methods is not as
significant as in the scalar case. Finally, we present isotropic correlation functions for overlapping circu-
lar cylinders of finite as well as of infinite length.

I. INTRODUCTION

Homogeneous isotropic optical materials can be made
anisotropic by methods of nuclear trace technology as
one of us has recently suggested (Thielheim'). As a result
of such procedures as bombarding a plastic sheet with
high-energy heavy ions and etching the resulting tracks
in the material, an arbitrary large number of partially
overlapping parallel cylindrical perturbations is embed-
ded in the originally isotropic optical material bestowing
it with properties of anisotropy. In our present work we
have undertaken the investigation and theoretical
description of these optical properties by methods of
random-medium theory. The fundamental questions are
whether such a material can be described approximately
by means of an effective dielectric tensor and how
coherent modes of plane electromagnetic waves can prop-
agate within an optical material of this type in which
nondiscrete scatterers are embedded.

The problem of wave scattering by random media has
been studied extensively (Tatarskii, Frisch, Ishimaru, '

Twersky, ' Keller, '" ' Karal and Keller, ' Keller and
Vizetti, ' Tsang and Kong, ' ' Tsang, Kong, and
Newton, and Sobczyk ) and has found applications,
e.g. , in the propagation of waves through turbulent atmo-
spheres (Tatarskii and Ishimaru ) and in microwave
remote sensing (Stogryn, Tsang and Kong, ' ' Fisch-
er, Tan and Fung and Zuniga and Kong ).

However, according to the authors' knowledge, the
bulk of the Twersky-type multiple scattering theories as
well as the Keller-type random-medium theories ex-
clusively deal with scattering problems in stochastic
media with discrete spherical or cylindrical perturbation
geometries.

In this preliminary work, which is a first approach to a
closed theory of artificial anisotropic media of
Thielheim-type, we will thus discuss the theory of sto-
chastic differential equations applied to the propagation
of scalar or electromagnetic waves in unbounded isotro-
pic random media into which partially overlapping
spherically shaped scatterers are embedded. To deter-
mine the macroscopic properties of such media a
rigorous study of the basic mathematical methods for cal-
culating the effective permittivity e,z and the effective
dielectric tensor e,z of an isotropic randomly inhomo-
geneous medium is imperative (cf. Sec. II). We here
make use of the first-order smoothing approximation (Pri-
mas, Keller and Karal, Karal and Keller, ' Frisch, Ta-
tarskii, Ryzhov and Tamoikin ') which is equivalent to
the Twersky integral equations (Ishimaru ). For scalar
wave propagation, in the limit of low frequency, this re-
normalization method (Tsang and Kong ) is valid for
both weak and strong fiuctuations of refractive index (Ta-
tarskii and Gertsenshtein ) and by familiar integral equa-
tion techniques yields the desired approximation of e,z in
the decomposed form of a constant and a wavelength-
dependent part.

In the electromagnetic case additional secular terms
are generated by the strong singularity of the G-reen's
tensor at the origin (van Bladel, Tai, Ryzhov and
Tamoikin, ' and Stogryn ) which are absent in the scalar
case. The removal of these perturbation terms consti-
tutes the main difficulty in the computation of e,z, and
the final result is that e,~ can be represented as a multiple
of the unit dyad. Here we base our considerations on the
results of Ryzhov et al. , Ryzhov and Tamoikin, '

Tamoikin, Karal and Keller, ' Tsang and Kong, and
Tsang, Kong, and Newton in deriving weak and strong
fluctuation theories for a random medium with a spheri-
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cally symmetric correlation function and randomly distri-
buted discrete scatterers.

The applicability of this general mathematical theory
of effective permittivities to our specific model with iso-
tropic nondiscrete stochastic spherical perturbations (cf.
Sec. III) mainly depends on the determination of the
two-point autocorrelation functions which allow overlap
of the embedded spherical or cylindrical scatterers. As
far as we know such correlation functions have not yet
been studied explicitly in the literature and will be estab-
lished here for the first time (cf. Sec. IV). Consequently,
we succeed in the approximative computation of e,z and

e,z in the validity range of the smoothing approximation.
Again, random-medium results of this type for non-
discrete scattering problems do not seem to be available
in the vast literature and a comparison with correspond-
ing results from discrete scattering theory yields the re-
markable fact that there exists a joint scope of both
theories in the limit of small volume fraction and of small
size of the spherical perturbations. However, in the elec-
tromagnetic case the degree of agreement between the
two methods is not so significant as in the scalar case.
For discrete scatterer problems similar investigations
have been made, e.g. , by Tsang and Kong and Tsang,
Kong, and Newton.

Finally, note the interesting fact that the formal struc-
ture of our autocorrelation functions for overlapping cir-
cular cylinders (cf. Sec. IV) is essentially identical with
that of the MTF (modular transfer function) of an imag-
ing system with a circular aperture of constant diameter
(Ishimaru ).

II. WAVE PROPAGATION
AND EFFECTIVE PERMITTIVITIES

We here discuss wave propagation within a layer of an
unbounded inhomogeneous random medium with a
spherically symmetric correlation function. In the limit
of low frequency we want to compute approximately the
effective permittivities for the scalar and electromagnetic
cases, respectively.

(i) In the scalar case, wave propagation is governed by
the random Helmholtz wave equation for the random
monochromatic scalar wave function %(r)

satisfying

AGO(r, r')+ko(e)Go(r, r')=6 (r —r') .

In order to obtain e,s from Eqs. (5) and (6) we make use
of the first-order smoothing approximation (Primas; Ta-
tarskii and Gertsenshtein; Frisch ) for the stochastic in-
tegral (6) which is applicable as long as the correlation
length I is small compared with the wavelength, i.e.,

+(co )k l (&1 . (9)

Under the condition (9) we obtain the approximation

L(%(r)) =ko fGo(r, r')A(r —r')(+(r'))d r' . (10)

For low frequency, most of the contribution to the in-
tegral (10) comes from the neighborhood of r=r' on the
wavelength scale. Hence we can approximate Eq. (10) by

I.(%'(r)) =ko(4(r)) f Go(~r'~)A(r')d r' .

Since A is isotropic, i.e., A(r)= A(~r~ ) the comparison of
Eq. (5) with Eq. (11) yields, via Eq. (7), the effective
dielectric constant

e,s.=(e)+ko f exp(i&(e)kor)A(r)y dr,
0

(12)

valid under the smoothing condition (9).
(ii) We now turn to the electromagnetic case. Wave

propagation here is governed by the random Maxwell
wave equation for the random electric field E(r)

incorporated in the averaged wave equation (1) for the
mean coherent wave amplitude ( %'(r) )

b ( %(r) ) +kor, s( %(r) ) =0 .

In view of Eqs. (1)—(3) we obtain by familiar methods the
exact stochastic integro-differential equation

L(@(r))=ko f Go(r, r')(co(r)co(r')+(r'))d r', (6)

where L is the Helmholtz operator L—:b. +ko(e) and
the free-space Green's function G0 is defined by

exp(ik, &(,e) ~r —r'~)
Go(r, r') = —

4

b%'(r)+koe(r)%(r) =0,
—V X [V XE(r) ]+k0e(r)E(r) =0, (13)

The statistical properties of e(r) are described by the au-
tocorrelation function

A (b r) = ( e(r)e(r+ hr) ) —(e ) (4)

Hence our aim is to compute the effective permittivity e,z

where k0 is the vacuum wave number. The medium is
characterized by the random dielectric constant.

e(r)=(&)+ (r),
(e) is the ensemble average (independent of the spatial
variable r) and the perturbation function co has zero
mean, i.e.,

(3)

where the permeability is dropped.
In contrast to the scalar case we use the decomposition

e(r) =e, +co(r), (14)

—V X [V X (E(r) ) ]+k F, (E(r) ) =0 .

Here we review, modify, and extend results of Ryzhov
et al. , Ryzhov and Tamoikin, ' Tsang and Kong, and

where the value of e,W(e) is a deterministic constant to
be determined by a criterion of elimination of secular
terms which are absent in the scalar case.

Hence our aim is to compute the effective dielectric
tensor e,z incorporated in the averaged wave equation
(13) for the mean field (E(r)):
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Tsang, Kong, and Newton. By Eqs. (13) and (14) we ob-
tain

—V X [V X E(r) ]+koe, E(r) = —koco(r)E(r) . (16)

In order to solve Eq. (16) we need the Green's tensor
Go(r) satisfying the random vector wave equation

—V X [V X Go(r) ]+koe, Go(r) =I5 (r), (17)

60(r),

with A=V and

where I is the unit tensor.
Applying the distributional Fourier transform method

to Eq. (17) yields, through familiar techniques,

60(r) = I+ (18)
koe

F(r) =E;„,(r) —ko fGo" (r —r'g'(r')E, „,(r')d3r'

+ko G" r —r' G" r' —r"

Xg(r')g(r")F(r")d r'd r" . (27)

(Pr)&=0
or equivalently

(28)

sr+2@, (29)

Hence e, is determined by Eq. (29).
In view of Eqs. (27) and (28) we obtain for the mean

field

For the removal of secular terms we have the following
condition:

exp(ik Q e~r~)
60(r) =—

Hence Eq. (16) is equivalent to the integral equation

E(r) =E;„,(r) —ko f Go(r —r')E(r')co(r')d r',

(19)

(20)

(F(r)) =E;„,(r)+k,' f fGo'(r —r')Go'(r' —r")

X (g(r')g(r")F(r") )

Xd r'd r" . (30)

where E;„, is a solution of the homogeneous wave equa-
tion and 60(r, r')=Go(r —r') in view of the translation
invariance of the medium.

The strong singularity of Go at the origin (r =r') re-
quires the decomposition (Ryzkov et al. and Tamoi-
km )

+(g')kol'« I . (31)

Under the condition (31) one has

We now make use of the first-order "smoothing" approx-
imation for the stochastic integral (30), which is applic-
able as long as the correlation length I is small compared
to the wavelength, i.e.,

60(r, r') =PV, GO(r, r')+(3k02e, ) 'I53(r r'), — (21) (g(r')g(r")E(r") ) = A&(r', r")(F(r")), (32)
where I'V, stands for the principal value of Go with
respect to a spherical infinitesimal volume excluded about
the singularity. Substituting Eq. (21) in Eq. (20) yields
the integral equation with a nonsingular kernel:

—ko G o' r —r' E r' co r' d r',

A &(r', r" ) =—3&(r' —r') —= ( g(r')g(r" ) ), (33)

which is assumed to depend only on g=r' —r". Hence
the mean field can be approximated by

(F(r) & =E;„,(r)+ko f f G o"(r—r')6 ~"(r' —r")

where 3& denotes the autocorrelation function of the
function g

where

6 o"(r—r'):—PV, GO(r —r') .

Hence we obtain

F(r) =E;„,(r) —ko f6 o"(r—r')F(r')g(r')d r',

where the random field F is given by

(22)

(23)

(24)

(25)

X (F(r")).A&(r', r")

Xd r'd r".
For low frequency we obtain the approximation

f G z~'(r' —r")(F(r")) A &(r, r")d 3r"

=(F(r')) f G ~"(r")A&(r")d r" .

Combining Eqs. (34) and (35) finally yields

( F(r) ) =E;„,(r) —ko f6 0"(r—r')g( F(r') )d r',
where the tensor g is defined by

g= —ko f 6 o"(r)A&(r)d r .

(34)

(35)

(36)

(37)

and the perturbation function g is defined by

e(r) —e,(r)—:3e,' e(r)+2e,
(26)

We now are able to approximately calculate e,& via the
tensor g. We assume that the correlation function A& is
isotropic, i.e.,

By iteration we obtain from Eq. (24) A~(r) = A~(r ), (38)
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and that the components g'„of g satisfy g& « 1. By use
of a well-known principle of variational computation we
obtain by comparison of the averaged versions of Eqs.
(24) and (36):

(g(r}F(r))=g(F(r)) . (39)

A similar argument applied to Eqs. (13}and (15) yields

(e(r)E(r)) =r, (E(r)) . (40)

Note that Eqs. (39) and (40) only hold approximately.
Through Eq. (25), (26), and (39) we get

(e(r)E(r)) =E, (E(r))+g(F(r)) . (41)

and the comparison with Eq. (40) shows that

e,tr= Ie, + I 1

3c
(43)

Since g„« 1 we can neglect higher than linear terms in

g. Hence

c,if=Ie, +g (44)

Inserting the averaged form of Eq. (25) into Eq. (41) leads
to

(e(r)E(r)) =e, (E(r))+—,'g(E(r))+ g(e(r)E(r))1

C

(42)

III. WAVE SCATTERING BY STOCHASTIC
OVERLAPPING SPHERES

In this section the random-medium theory of the previ-
ous section will be used to discuss the propagation of sca-
lar and vector electromagnetic waves scattered by ran-
dom medium with stochastic overlapping spherical per-
turbations. In order to calculate the effective permittivi-
ties we have to introduce new two-point autocorrelation
functions. Furthermore, we will compare the random
medium results with those from the Mie-Foldy-Lax mul-
tiple scattering theory. The aim is to determine a joint
scope of both theories. For this purpose the mathemati-
cal formalism of the previous section will now be applied
to the specific model of an unbounded homogeneous iso-
tropic background material with dielectric constant e0 in
which randomly distributed isotropic spherical scatterers
are embedded which, in this case, are partially overlap-
ping spheres of dielectric constant e& and radius p.

The random process is non-Gaussian, as the random
dielectric function e(r) can take on either of the two
values e0 or e, . Without loss of generality we discuss the
case of two stochastic spheres with radii p and centers at
the origin and the point Q, respectively, so that
dist(0, Q) =

~r~ =r. In what follows u & [0, 1] is the rela-
tive volume fraction of spheres. For small v (practically
no overlapping of spheres) we have

U = 4~Xp (50)

where X is the number density of the spheres. We obvi-
ously have

and through Eq. (37) we obtain P[e(0)=@0]=1—v and P[e(0)=e, ]=v, (51)

F,ff=IE, —ko J G ~"(r)A&(r)d r . (45) where P stands for probability.
The corresponding two-point autocorrelation function

In order to show that e,& is a multiple of the unit tensor
we make use of the decomposition (Tartarski and Gert-
senshtein )

A "(r)= ( e(r)e(r') ) —( F. )

is here given by

(52)

G 0"(r)=PV, G, (r )I+PV, Gz(r )e„e„, (46)

where e„ is the radial unit vector with je„e„d co= ,'I and—
exp(ikon@, r )

Gi(r ) =(1 iko+e, r koe, —r-
4&k 06 r

(47)

exp(iko+r-, r )
Gz(r)—= (

—3+3iko+e, r+koe, r )
4~k 0m, r

(48)

Inserting these expressions into Eq. (45) finally yields the
effective dielectric tensor in the case of an isotropic corre-
lation function

u(1 —u )(e, —eo) (1 —r l2p) (1+r l4p)
(53)

e,s = ( e ) + u (1 —u )(e, —eo)

3lpk0x —
& e) '+ j,(&& e)pko)

r 2p
0 r)2p

and has not yet been mentioned in the literature of
random-medium theory.

Details of the calculation of Eq. (53) will be given in
the next chapter, where we also will introduce two more
correlation functions for circular cylinders of infinite or
finite length, which —as far as we know —have not yet
been discussed in literature.

(i) We first turn to the calculation of the effective
dielectric constant in the scalar case. In view of Eqs. (12)
and (53) a straightforward calculation yields the new ap-
proximation.

oo

g s I p, + —k~~ rA&(r)e x(pik +0@,r )dr
3 0

valid under the smoothing condition (31).

(49)

Xh, (V'(e)pko), (54)
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where j, (z) and h, (z) are the spherical Bessel and Hankel
functions of order 1, respectively, and

( E) =Eo+v(Ei eo)

The approximation (54) is valid for pkp (( 1 and
v K[0, 1].

Hence we get

E~s ~ ( E) +V(1 v )(E( 'E'o)
pko «1

X (pko—)'+ —&( e ) (pko )'

also holds for pko )) 1 though only if U «1. Thus we are
led to the hypothesis that the range where both theories
are applicable is given by the range pkp «1 and U «1.

To verify this suggestion we use the Mie-Foldy-Lax
theory in order to solve the scattering problem of a scalar
wave by a single sphere with radius p and dielectric con-
stant e, in a medium with dielectric constant eo.

For this purpose we consider the scalar wave equation
in spherical polar coordinates. If the incident wave is
given by

4;„,(r)=exp(iV Epkoz)

then the scattering wave has the following series expan-
sion

and the double limit becomes

Ees ~ (E) +v(e) Ep) —(pko) + VFp(p—ko)
pko «1 5 3

U «1

'Ils(r) = g i "(2n+1)a„h„(Vepkor)P„[cos(8)]
n~0

(r= r )p), (57)

(56)

It is well known that the theory of multiple scattering
I

where P„ is the Legendre polynomial and 8 denotes the
polar angle relative to the z axis. The scattering
coeScients a„originally due to Mie are given by

j„(V'e,Pk )jo„'(V eoPkp) —V'(e, /ep)j„(V'epPkp)j„'(V'e, Pko)

j.(V &iPko)h„'(V eiPko) V &i~@oh„(V e oPkp)j„'( Ve,Pko)
(58)

and the forward-scattering amplitude F, (0) in view of Eq.
(57) becomes

4~
so+ Np (e, —eo)

pko 1

F,(0)= — g (2n+1)a„.
V &pko n ~o

(59)
X I+(e) —eo) —(pko)

Under these premises the theory of multiple scattering
yields the following effective dielectric constant + —V eo(pko) (62)

@*=up+4m.Nko F,(0), (60)

where again X is the number density of the spheres.
If pko ((I then the expansion of ao and a, via Eq. (58)

yields

ao ~ —V eo(pko) (e, —eo)
pko«1 3

X 1+—(pko ) (2@i—3Eo)

which, in view of Eq. (50), coincides with Eq. (56). Hence
in the scalar case we have the remarkable result that both
theories yield identical results up to the third order in

ko.
(ii) We now turn to the electromagnetic case. In order

to compute the effective dielectric tensor F,~ we need the
value of e, as well as the correlation function 2 &' of the
function g(r). From Eqs. (29) and (51) we obtain the
well-known Bruggemann formula (Bruggemann, Tsang
and Kong, Tsang, Kong, and Newton )

and

+—V'eo(pko) (e, —eo)

a, ~ so~ (pko) (e( —eo) .
ko& 1

(61) E1 EO Cc
v +(1—v) =0 .

61 +2E' 6'P +2E

This quadratic equation for e, yields

—+(s) ++(s)

(63)

(64)

Inserting these expressions into Eqs. (59) and (60) results
in the approximation with
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=
4 [2Ep —E) +3v (E) —Ep) ],

92 s [(2~0+e)) +3v(~1 eo)[2(2Ep 6 ))

(65)
G0

Ec ~ 60 1+3U
u «1 6'1 +26'0

(71)

+3v(e) —ep)]]'~

Since (g) =0 we have A(&'(r) = (g(0)g(r) ). Hence
A (&'(0)= ( g )"and Eq. (53) leads to

( g2 ) (s)

u «1

2
3Ep(E) ep)

@1+2eo
(72)

In the limit of small radius p of the spherical scatterers
we obtain from Eq. (70)

(g2)(s)
2p

0, r)2p .

1+, r ~2p
4p

(66)
r, (r ~ I e, +—(g')" —(pk())'+ Q~—, (pk o)'

pko «1

(73)
The variance is easily computed by means of Eqs. (26)
and (51):

2

Through Eqs. (71) and (72) we thus finally get in the
ranges pk0 « 1 and U «1:

( g2 ) (s) 9e2 1 Ec

1+~Ec

&0 ~c+(1—u)
6'p+ 26

(67)

2 2 2e,~ ~ Imp 1+3u)(+ 6u eoa —(pk() )
pko «1 5

u «1
By simple manipulations we obtain

9u(1 —u )(e') ep) e,—
[v Ep+ (1—u )e) +2@,]

(68)
with

+—Qeo(pko ) (74)

e =I e+ —k (g)"J r 1—
eft' c 3 0

0 2p
1+

4p

X exp(ikpQE, r )dr

Inserting these expressions into Eq. (49) yields
2

(69)

E1 E0

61+2E'0
(75)

We will now compare these results with those from the
theory of multiple scattering. As in the scalar case the
medium under consideration can be characterized by an
effective dielectric constant of the form

Hence we finally get the new approximation

1 31pk0+ j)(Qe,pkp)e,

X h ) (Qe,pk() ) (70)

Here e, and ( g )"are defined by Eqs. (64), (65), and (68)
and j1,h1 denote the spherical Bessel and Hankel func-
tions of order 1, respectively. Thus we have shown by
methods of the theory of stochastic differential equations
that F,z exists under the special "smoothing" condition
pk0 « 1.

In the limit of small volume v we obtain the following
limiting results from Eqs. (64), (65), and (68) in the first
order in u (Tsang, Kong, and Newton ):

v*=up+4)r&ko F, (0) .

F, (0)= g (2n+1)(a„+b„) .
2k() Qeo ~ ~ ]

(77)

The scattering coeKcients are given by

Here e* is a scalar since F, (0) is the copolarized
forward-scattering amplitude which, in view of the radial
symmetry of the scattering problem, does not depend on
the direction of propagation or of polarization of the
wave. The behavior of e in the range pk0«1, U «1
can be studied by means of the results of the Mie-Foldy-
Lax theory.

It is well known that

a+„(koP+ei))I) (koP+eo) )Is (koP1~ eo))I)n(koP+e))

a%'„(kopje))= (kop+eo) = (kop+eo)V (kop+~i)
(78)

( kpP )sr E i )0 (koP lr eo) a% (kpP lr Ep)% ( kpP+ci )

)I( (kopje) )= (kopje'o) a=„(kop+eo))I( (kop+~) )
(79)
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with a =Qe, /eo and

%„(z)=zj„(z), :-„(z)=zh„(z),

where j„(z),h„(z) are the spherical Bessel and Hankel
functions of order n, respectively.

In the expansion of F, (0) in terms of small pko up to
the sixth-order substantial contributions only result from
the coefficients a i, a2, and b ~. Through Eqs. (78) and
(79) we thus obtain

2S 3/2 3 && &0
a, ——eo' (pk, )

pk0 « 1 3 E') +2Ep

r(p . r /—12), r & 2p
V =V V, r&2p. (83)

The following considerations are based upon the simple
equivalence assertion: Si contains no (at least one) center
of a perturbation sphere if and only if e(0)= eo( =e, ).

We thus have to calculate

& "(r)= (~(0)~(r) ) —(~)' .

= V2= —3~p .
If D, =—S, /(S, AS&) (i = 1,2) then the volumes VD of

i

D, become

2; 5&2 5 (e, —2eo)(ei ~o)5/2( k )5

2
4 3 6 && ~0+—eo(pko )

Ei+2E0

The second-order moment can be written as

1

(e(0)e(r)) = pe;P(E;)(e(r) e(0)=e;),
i =0

(84)

5/2 5a2 ~ —
Eo (pko )

pk0 «1 15 2E') + 3EO
(81)

b, ~ — so~ (pko ) (e, —eo) .
pk0 «1 45

Inserting these expressions into Eqs. (77) and (76) results,
through Eq. (50), in the approximation

where P(E;) is the probability measure of the event
e(0)=e, and (e(r)~e(0)=e;) is the conditional average.
Obviously P(eo)=1 —v and P(e&)=v. Hence the evalua-
tion of Eq. (84) reduces to the calculation of the condi-
tional averages.

It should be noted that the value of ( e(r) ) at the point
Q essentially depends on the number density of the
centers of perturbation spheres contained in S2. Hence
by definition of the mean the condition e(0)=eo implies

Ci + 27EDE'i +3860e* ~ e0 1+3UK+ UK —
(pko )

k 2e&+3@0 5
(~(r)~~(0)=eo) = VD

V2

VD
so+

' (e)
V2

(85)

+2ie (pko ) (82) and in the alternative case e(0)=E,

with

E'i CpK-
E') +260

(e(r)~e(0)=e, ) = 1—

where

V)

VD, VD,
Ei+ (E)

Vi
(86)

Here the comparison with Eq. (74) shows that there is a
discrepancy in the quadratic term of pka which is only
negligible in the case of weak fluctuation of the refractive
index. Hence the degree of agreement is not as
significant as in the scalar case.

IV. AUTOCORRELATION FUNCTIONS
FOR SPHERES AND FOR CIRCULAR CYLINDERS

(E) =Eo+v(ei Fo)

Now Eqs. (83) and (87) furnish

(e(r)~e(0)=e )

2

co+ v(e, —eo) 3
3p—

4 3
r 2p

(87)

We here shall calculate the two-point autocorrelation
function for overlapping spheres already suggested in
Sec. III. In addition to that we shall also introduce the
correlation functions for circular cylinders of finite or
infinite length.

To deduce Eq. (53) we make use of the fact that the
material is invariant under translations. Hence without
loss of generality we may consider two stochastic spheres
S, and S2 with radii p and centers at the origin and at the
point Q, respectively, so that the distance between 0 and
Q is ~r~ =r. Then we have S, AS2%0 (r &2p) and
Si AS2 =0 (r )2p). The volumes V, of S, are Vi

(e), r)2p (88)

(E(r)~e(0) =6i )

e, —(1 —v )(e, —eo) 3
3p-

4p3

(e), r &2p .

r ~2p

(89)

Inserting Eqs. (88) and (89) into Eq. (84) we obtain by
straight-forward computation
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2

(1—v)Eo+ue, —v(1 —u)(e, —eo) 3 3p +
(e(r)e(0)) = 4p

(e) [eo(1 —u)+e, v], r ) 2p

r +2p

(90)

which yields the desired correlation function (53).
If the embedded perturbations are overlapping circular cylinders of infinite length parallel to the z axis with radius p

then the autocorrelation function has the form

v, (1 —u, )(ei —eo) —[arccos(R /2p) —(R /2p)t/I (R—/2p) ], R ~ 2p

0, R)2p

where u, is the relative volume fraction of the cylinders and R—:1/x +y .
For overlapping circular cylinders of Gnite length 2l the correlation function is given by

(91)

zg~

A "(R,~z~~)=
v, (1 —u, )(e, eo) [—arccos(R /2p) —(R /2p)(/I —(R /2p) ] l~
0, R ) 2p or ~z& ~

)2l,

R ~2p Izgl ~2l

(92)

where z& is the z coordinate of the center Q of the second cylinder and, without loss of generality, the center of the first
one is taken at the origin.

Note that the formal structure of the correlation functions (91) and (92) is essentially identical with that of the MTF
of an imaging system with a circular aperature of constant diameter (Ishimaru ).
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