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Relative chirality of octupolar columns in a triangular array

M. L. Plumer and A. Caille
Centre de Recherche en Physique du Solide et Departement de Physique, Universite de Sherbrooke,

Sherbrooke, Quebec, Canada J1K2R1

O. Heinonen
Department ofPhysics, Uni Uersity of Central Florida, Orlando, Florida 32816

(Received 10 August 1992)

The relative chirality of helical columns of planar disks having threefold symmetry is studied using a
model Hamiltonian derived from symmetry arguments that describe low-order octupole interactions.
The columns are assumed to pack in a triangular array perpendicular to the columnar axes. Ground-
state and finite-temperature mean-field phase diagrams are obtained as functions of interaction parame-
ters. Due to the structure of the disks, there appears a term in the Hamiltonian that is not present for
systems with lower internal symmetry, such as classical spin systems. This interaction is responsible for
the stabilization of phases in which one third of the columns have a chirality opposite to the others.
Such a phase has been observed in the discotic liquid crystal hexa-hexylthiotriphenylene.

I. INTRODUCTION

Studies of efFects associated with geometrical frustra-
tion and chirality have proven important in attempts to
further reveal the nature of ordered states and phase
transitions in magnetic' and polymer ' systems with
triangular coordination. Such concepts are also useful in
the understanding of orientational and positional order-
ing in the hexa-n-alkylthiotriphenylene liquid crystals.
The disklike molecules in these materials have stifF planar
cores linked by thiol groups to 6-carbon alkyl tails. Al-
though a number of difFerent phase-transition sequences
have been observed in related compounds with difFerent
tail lengths, the present work is concerned with HHTT,
hexa-hexylthiortriphenylene, the compound as described
in Refs. 6 and 7. As the temperature is lowered from the
isotropic phase I, there is an initial transition at T-93 C
to the D&d state where the disks become arranged in a tri-
angular configuration but with no long-range positional
or orientational order along the columns. At T-70'C
there is another transition to the H (also called Dho)
phase where positional and helical ordering of the disks
set in along the columns, and with additional
modifications of the structure as discussed below. Final-
ly, a monoclinic K phase appears at T-62'C. (Note that
both H and E phases have long-range order in all three
dimensions, and although thermal Auctuations remain
relatively large, these states are not strictly liquid crystal-
line. ' ) This paper describes a model of the H phase
(and to a limited extent the H D&d transition), —in partic-
ular the relative chirality of the columns.

A unique feature of these compounds is the threefold
symmetry of the disks. Thus, in contrast with the
magnetic-dipole moment of spin systems or previously
studied quadrupole moments of certain polymers, the
lowest-order moment of the mass distribution of HHTT
is octupolar. We demonstrate here that objects with this

symmetry occupying sites on a hexagonal lattice form a
system which allows for terms in the Hamiltonian (not
present in spin models) that are crucial in determining
the relative chirality of neighboring columns. Such terms
partially account for the frustrating efFects of the interdi-
gitation of hydrocarbon tails (cf. interlocking of gears) for
disks on a triangular lattice, a feature of these materials
emphasized in Refs. 6—8. We believe this to be the first
attempt to model these efFects. The present work also
serves to compliment a previous investigation of the ther-
modynamics of single columns" and also to provide a
basis for more realistic treatments of thermal phase tran-
sitions when intercolumn interactions are included.

In the H phase of HHTT, the molecules are stacked in
columns which are packed in a triangular configuration.
Some of the frustration is relieved by a displacement
of one-third of the columns along the c axis by half of the
interplanar spacing, z =

—,'c. The resulting configuration,
shown in Fig. 1, consists of bilayers which form inter-
penetrating honeycomb and triangular lattices. The new
unit cell has a basal-plane lattice constant a =&3ao,
where ao corresponds to the original simple hexagonal
lattice. A similar structure of magnetic ions occurs in the
quasi-one-dimensional antiferromagnet RbFeBr3', ' cer-
tain features of the magnetic phase transitions in that ma-
terial are similar to results described in the present work.
Because of the two interpenetrating sublattices, two types
of basal-plane interactions are considered here (as in Ref.
12), between nearest neighbors within the honeycomb lat-
tice and those between neighboring honeycomb and tri-
angular sites. It is noteworthy that all five of the possibil-
ities for relative chirality and orientational order in the H
phase of HHTT considered in Ref. 7 are a feature of the
present model with only these parameters.

This paper is organized as follows. In the next section,
a model Hamiltonian is derived from symmetry argu-
ments for a system which contains some relevant charac-

47 8479 1993 The American Physical Society



8480 M. L. PLUMER, A. CAILLE, AND O. HEINONEN 47

xtla

FIG. 2. Schematic showing the angle 0; which defines the
ocutpole rotor orientation relative to the hexagonal a~~ x axis.

FIG. 1. Schematic of the basal-plane octupole sites where
filled circles form a honeycomb lattice at z =0 (sites 1 and 2)
and open circles (sites 3) represent sites displaced by z = —'c, ar-
ranged on a triangular lattice. In this particular configuration,
octupoles on the displaced sites are rotated by 60. The basal-
plane unit cell is indicated by the thin line.

= A sin30;+B cos30;,

and tt t2= —
43o Wo3= —02i.

The Hamiltonian is constructed to be invariant with
respect to hexagonal symmetry. This requirement yields
two independent terms, which may be expressed as

teristics in common with HHTT. Illustrative ground-
state phase diagrams featuring different relative chirality
states as a function of interaction parameters are given in
Sec. III. Analysis of a Landau-type free energy based on
a molecular-field approximation provides a simple treat-
ment of thermal effects examined in Sec. IV. Conclusions
and a discussion of the results are given in Sec. V.

II. MQOKL HAMILTONIAN

+B (p, z )sinm (0—0; )], (I)

where (p, O, z) are cylindrical coordinates and 0; describes
the angle of one arm of the rotor relative to the hexago-
nal a axis, as shown in Fig. 2. The lowest-order term in
this expansion is m =3 (octupole moment), due to the
threefold symmetry of the disks. Invariance with respect
to the D3 point-group symmetry of the disks in sttu also
requires that A(p, —z)=A(p, z) and B(p, —z)

B(p,z). Th—e Hamiltonian is constructed from octu-
pole moments calculated using the definition

=4/(vr )pJ dOx'y M(p 0—0 z), (2)

where I +m =3 to lowest order. The following relations
are a result of this expression:

= 2 cos30; —B sin30, , (3)

For the limited purposes of this work, it is assumed
that the disklike octupoles (or rotors) are rigid and that
they lie perpendicular to the c axis on the rigid lattice
sites as shown in Fig. l. (Further remarks are made re-
garding this assumption in the following sections. ) It is
then convenient to construct a suitable Hamiltonian
which accounts for orientational degrees of freedom by
starting from multipole expansion of the rotor mass dis-
tribution, 4

M(p, 0—0;,z)= g [3 (p, z)cosm(0 —0;)

H= ——g J(R;—R) }[lfj (R;)Q„„(R~)
1J

——' QG(R, —R, )f,yy(R, )Pygmy(R, ) .
1J

In an effort to provide a simple model for relative chirali-
ty effects, it is assumed here that the disklike molecules
are fiat (and not the propeller blade structure discussed in
Refs. 6—9) so that z~ —z symmetry of the mass density
is imposed. This requirement gives 8 =0. With relations
(3) and (4), the Hamiltonian can then be expressed as

H [0, ]= ——g J(R; —RJ ) cos3(0; —
0~ )

1

1J

——g G(R; —R }sin30; sin30~,
l

1J

where we set 3 = 1 and note that the second term could
be equivalently written as a product of cosines or as the
sum cos3(0; —0 )+cos3(0;+0 ). Single-site anisotropy,
which has the form ' '" yg; cosn0; (where n =3 or
n =6), is omitted from the present simple model; investi-
gations of such anisotropy effects in the case of single
mean-field coupled columns are continuing. "" It is
noteworthy here that the usual signature of significant
anisotropy effects in helical structures (a nonconstant in-
terlayer turn angle, which induces higher harmonics in
the structure factor) has not been observed in HHTT;
however, such harmonics may be dificult to detect due to
the relatively large thermal motion of the molecules
along the c axis. '

The second term in (5) and (6) (G term) as derived
above does not appear in previous studies of related disk-
like systems. A different development of a model Hamil-
tonian for the study of quadrupole-moment columns in
an unspecified two-dimensional configuration is presented
in Ref. 4. In that work, terms are generated by the con-
traction of indices in the sum over quadrupole products.
Such a scheme yields only isotropic terms, and in the
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present case gives only the J term of (5) and (6). Our ap-
proach is specific to the underlying symmetry of the lat-
tice and generates all invariants. (In the case of quadru-
pole moments, a 6-type term of the form
g; G;. cos28, cos20& exists for square lattices). Other in-
teractions considered in Ref. 4 which arise from explicit
coupling to the lattice, not included in the present work,
do in fact yield a term of the same form as the 6 term
given above for octupoles in a triangular array. Note
that with the factor 3 replaced by 1, the first term in the
Hamiltonian (6) is just that encountered in the much
studied planar model of (dipolar) spin systems. The effect
of the G term in (6) (not present in magnetic Hamiltoni-
ans) on the relative chirality of octupolar columns is em-
phasized in this work.

III. GROUND-STATE PHASES

Relative chirality states at zero temperature are con-
sidered here using the model Hamiltonian (6) with only
close neighbor interactions included. The unit cell con-
tains three sites, labeled 1,2,3 in Fig. 1. Two types of
basal-plane couplings will be accounted for, between sites
1 —2: Jj and 6~, as we11 as between sites 1 —3 and
equivalently 2 —3: J„' and G i (also see Ref. 12). Assum-
ing a constant interlayer turn angle a =0„—0„& for the
helical configuration of disks along the c axis, the basal-
plane interactions for the three columns can be expressed
by

H J JJ g cos( P,„—$2„)—Gi g sing, „sin/2

—J Icos —a g [cos(P,„—P3„)+cos(Pz„—P3„)]
3

n

3—G icos —a g (sin/, „+sin/2„)sin/3„,
2

where n labels sites along the c axis, and for convenience
we define /=39. The factors cos( —,'a) arise from the cou-
pling of sites 1 and 2 to the two equidistant sites on chain
3 located at z =+—,'c.

A variety of different types of interactions may be as-
sumed to stabilize the helical orientation of disks along
the c axis. In so-called chiral models, an interaction of
the form '"

H~~
= —

J~~ g cos(P„—P„,—3a)

yields a constant interlayer turn angle n. The same state
may occur in a nonchiral model with ordinary first- and
second-neighbor interactions as described by the first
term in (6)',

H~~
— J) g (c$o„s((n —1) J2 g sc(o4 n (t'n —2)

with a determined by cos3o. = —J, /(4J2). The chirality,
right or left handed, is determined by the sign of a in the
Hamiltonian (8) but is unspecified by the form (9). For
crystal structures which contain a center of inversion
symmetry, such as HHTT, the Hamiltonian (9) is strictly
more appropriate. [CsCuC13 is an example of a helical
system exhibiting a preferred handeness described by
(8).' ] This difference may be of importance for thermo-
dynamic quantities for which excitations involving dy-
namic helicity reversal are important. ' ' Chiral degen-
eracy may be artificially introduced into (8) by the re-
placement a —++

~
a

~
so that either model may be assumed

for the purposes of the present work.
The value of interlayer turn ang1e a determined for

HHTT is sensitive to sample purity and experimental
conditions. The result reported in Refs. 6—8 for samples
of free-standing strands is 45.5, incommensurate with
the underlying lattice. A more recent study on samples
of HHTT powder revealed an exactly commensurate
value of a =2m /8. The difference is attributed to
surface-tension efFects present in the strands. It is of in-
terest to note that semiempirical conformational
analysis' of dimers similar to HHTT yields a relative
orientation of about 45'. There is, however, a natural
tendency for orientational order to be commensurate for
molecules lying on regular lattice sites. ' This effect
arises from the presence of Umklapp terms of the form
5(m Q —G), where Q denotes the orientational periodici-
ty and Cx is a reciprocal-lattice vector, in the Fourier ex-
pansion of the intermolecular potential. Higher-order
terms, e.g., the m =8 term of interest here, are usually
small but can be important if Q is already nearly com-
mensurate, as in the present case. For free-standing
strands, surface tension forces apparently dominate over
these Umklapp terms. (Analogous effects also appear in
magnetic systems; see, e.g., Ref. 19). For the purposes of
the present work, it is only important that 3a does not
have a value mar (see below).

The relative chirality of' the three columns is deter-
mined by the parameters Ji, Gi,Ji:—cos( —', a)J i, GI
—=cos( —,'a)G i (but is not affected by parameters in H~~ ).
The orientation of the disk on column p at layer n is as-
sumed to have the form

0p~
= 0p + n

Excel
(10)

Ei+++ = —(Ji+ —,
' Gi )cos(P, —Pz)

—(Ji+ —,'Gi )[cos(P& —P3)+cos($2 —P3)],

where 0 gives the relative orientation at layer 0 and
c„=+1indicates the chirality. (The definition P „:—30 „
is used below. ) There are only three independent
configurations of relative chirality for the three columns,
+ + +, + + —,and —+ +, which indicate the values of
[c ]c2c3 ] . After performing the sums over n in expres-
sion (7), the ground-state energies per disk for these three
states are given by

(9)
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E~ + = —
(J~+ —,'G~ )cos(P, —P2)

+ —,
' G j [cos(P, +P3) +cos($2+ P3)],

Et + = —(JI.+ —,'GI. )cos(Pz —P3)

+
2 Gtcos((( /+f2)+ ~GI cos(P, +$3)

(12)

(13)

In the derivation of these results, use has been made of
the relation

1 g e ' "=5(6a—2am), (14)

where N is the periodicity along the columns. It is as-
sumed here that aWm m/3, as appropriate for HHTT, so
that the sum (14) is zero. Note from (12) and (13) that
E~+ is independent of J~ and that Ej + is indepen-
dent of J~. The relative stability of the three states was
determined by numerically minimizing each energy ex-
pression (11)—(13) as a function of P„P2,P3 and compar-
ing the results. The phase diagram corresponding to the
ordinary triangular lattice, J~=J~ and 6„'=6~ so that
states + + —and —+ + are equivalent, is shown in Fig.
3. Four example G~ —G~ phase diagrams using values

J~ =+1.0 and J~ =+0.6 are shown in Fig. 4. The impor-
tant observations to be made regarding these results are
that each of the three possible chiral states can occur for
certain ranges of parameter values and in addition, only
the +++ state is stabilized if Gt=GI =0.

As could be anticipated from the structure of the ener-
gies (11)—(13), large regions of the phase diagrams display
states with P +P =0 or n; however, many other regions

exhibit effects o| frustration. Note also that the —++
state occurs only for cases (c) and (d) where J~ &0. Guid-
ed by these numerical results, it is straightforward to
derive analytic expressions for most of the phase boun-
daries using (11)—(13). For example, the boundary be-
tween phases +++ and + + —,indicated by the solid
horizontal line in each Fig. 4, is determined by
J~ +G ~

=0. The upper and lower broken phase-
boundary lines in Fig. 4(a) are given by
Gg = 2GJ 4JJ 2JJ and GJ =2G~ +4J~, respectively.
The intersection of the three chiral states in Figs. 4(c) and
4(d) is at G~ = —J~, Gt = —JI. The symmetry between
states with Jz )0 and J~ &0, evident by comparing the
results of Figs. 4(@) with 4(b) as well as Figs. 4(c) and 4(d)
can also be shown analytically from relations (11)—(13).

In the absence of some microscopic understanding of
the model Hamiltonian, it is not possible to a priori assign
realistic values for the parameters which might corre-
spond with HHTT. However, the H phase of this materi-
al appears to be in the ++—state with 0, =02 and 03
taking a value vr/3 relative to the other two sites (see

Fig. 1). This is precisely the state shown in the upper
right-hand region of Fig. 4(b). It is thus clear that the G
terms in the Hamiltonian are crucial for a realistic model
of the relative chirality and orientation of the helical
columns in HHTT.

IV. MOLECULAR-FIELD THEORY

Finite-temperature effects are examined here by
analysis of a Landau-type free energy derived from the
Hamiltonian (6) using the molecular-field approximation.
For this purpose, it is convenient to express (6) in terms
of pseudospin variables

$, (R;)=cos30;, S (R, )=sin38, ,

so that

(15)

H = ——g J(R; —R, )S(R; ) S(R, )
1

V

——g G(R, —R, )$ (R;)Sy(R ) .1

U

(16)

FIG. 3. Schematic ground-state phase diagram for the case
JJ Jg G j =6y . Thick solid lines denote first-order transitions
and broken lines represent continuous transitions. Chiralities of
columns 1, 2, and 3 are indicated by + or —.Also shown are
the relative phase angles of the first layer $~ =30~. For the re-

gions between the broken and solid lines of the ++—state,

P, +P,= —($2+/, ). Nate that ++—,+ —+, and —++
states are degenerate in this case.

The mean-field method of Bak and von Boehm may be
generalized to the present system' ' (or the density-
matrix formulation as described in Ref. 4) to yield a free
energy expressed as an expansion in powers of the
thermal average (S(R) ) =s(R), which to sixth order is
given by

E= ——g J(R, —R )s(R;).s(RJ)
1

lj

——g G(R; —R, )s (R, )s~(R, )
1

lJ

+T y [[s(R;)] +(1/4)[s(R;)]

+ (5/36) [s(R; ) ] + .

Following our previous analyses of such free energies, an
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expansion of the spin density as a single Fourier com-
ponent is assumed:

(18)

where R=R, +uz, R; are the simple hexagonal lattice
sites and u~ denotes the three basis vectors:
u&=aox, u2=2aox, u3= —,'cz. The wave vectors are as-
sumed to have the simple form Q„=c (3ct/c)z and the
complex polarization vectors can be written as

S =(1/&2)S (x Ey)—e

F=
Uii + U) + T g [S +S + (20/3 )S + . ],

where Ul= —J, g S, with J, =J~~ for the chiral model
(8) and J, =J( cos(gc)+ J2 cos(2gc) for the next-
nearest-neighbor model (9). Ut depends on the relative
chirality of the three chains as (11)—(13) with amplitude
factor S also included. For example, in the ++ + state,
the contribution to U~ is given by

Ut+++ = —(Jt+ —,'Gt)S, Sz cos(P( —Pz)

Using these expressions, the free energy F =F[S,P ]
with only close-neighbor interactions included (as de-
scribed in the previous section) can be written as

—(JI +—GI )[S,S3cos((t, —P3)

+S2S3cos((tz —
(t 3)], (21)

II II II

ll II II

(a)
J~&O
Jq&O (I) +(I),=

-((I),+(I),)~

Jq& 0
J~( O

(I),-(I), = o

(I)+(I) =o

(I),-(I),=o

I II

ll I II

II I I II

Il I' ll

(I),-(I),= o

$,+$, =rr

J~CO

Ji&o

(t))+4~ rr-

(I),+ (I),= -((I),+(I)a)
(I) -(t =rr

(I) +(I) =rr
l
I

(I)a-(I),=rr

$, +Q =rr

FIG. 4. Representative ground-state phase schematics constructed using J,=+1.0 and J& =+0.6 labelled as in Fig. 2. For the re-
gions between the broken lines of the —+ + state in Figs. 3(c) and 3(d), there is no simple relationship among the P~.
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(a) J=+.5
+++

Q, +II',=o

s.=o
I

I

2

with analogous results for the other two chiral states. It
is important to note, as with all such finite Landau expan-
sions, that the results described below are reliable only at
temperatures not too far from the disordered state.

Within this model, there is a continuous transition be-
tween the disordered D&d phase, characterized here by
S&=S2=S3=0, and the H phase where one or more of
the S are nonzero. Illustrative examples of Gz-T phase
diagrams for the case J~ =J~, Gz =G~ are presented in
Fig. 5. The results at low temperature can be seen to cor-
respond roughly with the ground-state phase diagram,
Fig. 3. In this case, all three of the columns are always
ordered (S )0). Three example Gt Tpha-se diagrams
are shown in Figs. 6—8 for various values of J~ Jz and
G~. The low-temperature results of Fig. 6 correspond to
a vertical cut in the ground-state phase diagram Fig. 4(b);
however, a new feature appears at higher temperatures.
In the region between the +++, ++ —,and disordered
states, a partially disordered (++) phase appears,
characterized by long-range orientational order on
columns I and 2 but not on column 3 (S3 =0). (A similar
magnetic state appears in some ABX3 compounds. '

) It
was originally believed that interdigital frustration was
relieved in HHTT by the H phase characterized in this
way, but further data analysis now favors the ++—

G,

2 - (t) +(t),= -&(t),+(t)g

-2
0

++»
(I) -(I) =o

1 2 /

(I)+$ =~

/

l

; SB=Q
I

I

+++
2

S;=0

FIG. 6. Phase diagram for the case J& = + 1, J&
= —1,

Gj = —4. The partially disordered phase indicated by S3 =0 is
in a + + relative chirality state, where P, —$2= ~.

state. Within the present model, as seen from Fig. 6, only
a small change in the parameter Gj is required to stabi-
lize either of these two states.

The G ~-T phase diagrams of Fig. 7 and 8 correspond to
parameter values of the ground-state phase diagram Fig.
4(c). The value of G~ used to construct Fig. 7 is large
enough so that only the —+ + state occurs, except along
the horizontal line where a partially disordered phase—+ is stabilized. A S3=0 state (++) is also seen to
occur for the parameter values of Fig. 8 ~ These results
demonstrate that a variety of phase-transition sequences
are possible with varying temperature. Unlike magnetic
systems, it can be expected here that the couplings be-
tween columns have relatively strong thermal dependence
due to the stiffening of the hydrocarbon tails as the tem-
perature is lowered, ' a feature which gives rise to anom-
alous behavior in the thermal expansion. Thus, the

l
0

(b) Ji=-2.0
++ $, -$,=o

/

4, +4,= -&g,+gy
v S- =0

I

+++

P

(t),-(I),=o

(I) +(t) =rr

(t)
—

(1) =rr

/'

/
I

/

S- =0
I

I

2

FIG. 5. Examples from the temperature-dependent phase di-

agram for the case J~ =J~, G~ =G~ from molecular-field theory,
labeled as in Fig. 2. The high-temperature state with no orien-
tational order is indicated by S~ =0.

FIG. 7. Phase diagram for the case J~ = —1, J~ = + 1,
G~ = +2. In the region between the broken lines of the —+ +
state, there is no simple relationship among the P~. A partially
disordered —+ phase, S3 =0, occurs along the sold line.
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0-

0

++-
&, -g, =o
(t) +(t),=o

I

2

effect of varying temperature on these model phase dia-
grams may not necessarily be taken as simple horizontal
straight-hne cuts.

V. CONCLUSIONS

FIG. 8. Phase diagram for the case J~ = —1, J~
= + 1,

6&= —1. The partially disordered ++ phase is indicated by

5, =0, where P, —Pz=~.

++ and —+, are a feature of this model. This result
contrasts with the realization of only the + + + state in
the absence of the 6 term. An indication of the range of
parameter values required to stabilize the observed
++—state can be made from easily obtained analytic
expressions for the phase boundaries associated with the
ground-state phase diagrams of Fig. 4. The possibility
that there may be phase transitions within the helical
phase of HHTT between other relative-chirality or rela-
tive phase-angle (P ) states should be considered in view
of the representative temperature phase diagrams of Figs.
6-8. Determination of the nature of the helical phase in
HHTT compounds with differing numbers of
hydrocarbon-chain tails and with varying sample-
preparation procedures is also of interest.

Frustration of interdigitated hydrocarbon tails is be-
lieved responsible for the displacement by —,'e of one-
third of the columns at precisely the temperature of the
H-Dzd transition. Although omitted from the present
study, this aspect associated with the onset of long-range
orientational order in HHTT is c1early of interest. It is
for this reason that the transition is first order in charac-
ter, and the manifestations of the possibly novel critical
behavior would be difficult to observe in this material. A
model which allows for displacements of the columns and
includes coupling between orientational order and this
lattice degree of freedom, and which demonstrates that
this structural/orientational phase transition is driven by
the triangular frustration, is desirable.

It has been demonstrated by this work that an interac-
tion (G term) unique to octupolar disks coupled in a tri-
angular array is responsible for a variety of possible
relative-chirality states associated with helically oriented
columns. For the case of interacting honeycomb and tri-
angular lattices relevant for HHTT, all five of the possi-
ble states considered in Ref. 7, +++, ++—,—++,
and the two finite-temperature partially disordered states
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