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Relation of flow stress to the mean-square amplitude of atomic vibrations in cubic metals
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The critical resolved shear stress (CRSS) of 14 face-centered- and body-centered-cubic elements in the
temperature range 0 to 300 K has been examined as a function of the mean-square amplitude of atomic
vibration {u2) measured at room temperature. It is found that the CRSS of elements with a given crys-
tal structure is a unique function of {u?). For a given temperature and crystal structure, the CRSS de-
creases as {u?) increases. The dislocation lines composed of atoms with large {%2) value have low line
tension, and are easy to move in the slip plane of the crystal, resulting in a low CRSS value.

INTRODUCTION

The glide of dislocations results in slip, which is the
most common manifestation of plastic deformation in
crystalline solids. A characteristic tensile or compressive
stress is required to start slip in crystals; the component
of this applied stress, resolved on the slip plane in the slip
direction, is called the critical resolved shear stress
(CRSS). It is well established that the CRSS for slip in
metals depends on a number of factors, namely, crystal
structure, dislocation density, orientation of single crys-
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tals, grain size of polycrystals, elemental purity, strain
rate, and temperature at which crystal is deformed, and
heat-treatment prior to deformation, etc. Abundant data
on the CRSS of metallic crystals as a function of these pa-
rameters are available in the literature,!~2° and several at-
tempts have been made in the past to explain the observa-
tions in terms of sophisticated dislocation theories.?!~?°
Recent investigations carried out by Butt, Bashir, and
Khan?® on the interrelation between the micro and the
macro aspects of cubic elements have, however, set new
trends in the interpretation of the physical and mechani-
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FIG. 1. Semi-logarithmic representation of the temperature dependence of the CRSS for (a) single crystals of Ag' (O 99.99%,
E=7X10"*s7"), Ag? (0 99.99%, é=10"*571), 99.999% Pb’ (@), and Al* (A 99.99%, A 99.997%, é=T7X10"*s™"). (b) Polycrystal-
line Ni® (O 99.998%, [0 99.999%, grain size = 180 um, é=10"°s"1), Cu® single crystal (@ 99.996%, é=6X10"* s~ 1), and polycrys-
tals of Cu’ (O 99.999%, grain size = 130 um, é=1.3X1073s7!) and Cu® (A 99.99%, grain size 75 um, é=10""s~)).

47 8418 ©1993 The American Physical Society



47 RELATION OF FLOW STRESS TO THE MEAN SQUARE . ..

cal properties of crystalline materials. For instance, the
excellent correlations observed by Butt, Bashir, and
Kahn?® between the elastic constants C,;, C;y, and Cyy
and the mean-square amplitude of atomic vibrations
seems to have implications for the deformation behavior
of cubic crystals beyond the elastic limit as well. This
motivated the present study to explore the possibility of
correlating the macroscopic CRSS of cubic metals with a
single microscopic parameter: the amplitude of atomic vi-
brations.

The mean-square amplitude of atomic vibrations {u?)
is a fundamental parameter of a crystal at a given temper-
ature. The intensity of radiations (x rays, neutrons, ¥
rays, and electrons) diffracted from a crystal depends on
(u?), and its variation with temperature has been exten-
sively dealt with using the Debye-Waller theory.?”?
With the rise of temperature, (u?2) increases and the in-
tensity of diffracted radiations decreases by an exponen-
tial factor known as the Debye-Waller factor,
exp( —2B sin’0/A?), where 0 is the Bragg angle at which
the diffracted intensity is measured and A is the wave-
length of the radiation. The quantity B is usually re-
ferred to as the Debye-Waller thermal parameter or tem-
perature factor. For a monoatomic cubic crystal for
which the vibrations are isotropic, B =87*(u?) /3. In
1988 Butt et al.?° recommended the most accurate values
of B factor at room temperature for 22 cubic elements.
Using this data we shall investigate the correlation of the
microscopic Debye-Waller thermal parameter B with the
macroscopic CRSS of various face-centred-cubic (fcc) and
body-centred-cubic (bcc) metals, as well as that for the
line energy per unit length or line tension of the disloca-
tions in cubic crystals.

RELATION BETWEEN CRSS AND B FACTOR

The points in Figs. 1-3 depict the CRSS data as a
function of temperature in log/linear coordinates for 14
fcc (Agh?, Pb3, Al%, Ni’, and Cu®’) and bec (K¥!!, Li%!!
Nal®ll vi2 Mo!3 Tal®13 Nb'3, Fel®™ 1% and W) metal
crystals of different orientations, grain sizes, purities, etc.,
deformed at various strain rates in the temperature range
4-300 K. The details of various parameters referred to
above are given in the captions to the figures. It is
noteworthy that a Taylor factor of 1 was used to get the
CRSS values 7 from the available tensile yield stress o
(i.e., 0 =37) in the case of polycrystals. A linear relation-
ship between log 7 and temperature 7T is evident. On ex-
trapolating the line drawn through the logr/T data
points for a given crystal to T—0 K, the intercept made
on the stress axis gives a measure of the CRSS ry at T—0
K. The thermal behavior of the CRSS of a given element
can be quantified by a parameter, termed as fractional
thermal softening (FTS) factor=—(1/7y)(d In7/dT),
which not only specifies the rate of CRSS variation with
temperature (i.e., d In 7/dT) but also the exact position of
the log 7/T line on the semilogarthmic 7/T diagram.

Now we shall examine the dependence of the CRSS
Ta9s8> Ta00» T8> and 7y pertaining to 298, 200, 78, and O K,
respectively, as well as that of the FTS factor on the
Deybe-Waller thermal parameter B (room temperature)
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for 14 cubic elements referred to above. The points in
Fig. 4 represent the CRSS data for 0, 78, 200, and 298 K
as a function of the B factor in double-logarithmic coor-
dinates for Ni, Cu, Ag, Al, and Pb (fcc) as well as for W,
Ta, Mo, Fe, Nb, V, Li, Na, and K (bcc) crystals. Similar-
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FIG. 2. The 7/T data depicted in log/linear coordinates for
(a) single crystals of 99.99% K,? 99.999% Li,” and 99.999% Na
(Ref. 10) deformed at a strain rate of the order of 107*s™!. For
Na and Li, various symbols stand for different orientations; the
temperature scale given at the top is for K. (b) Coarse grain
(>1 mm) polycrystalline 99.999% K,!' 99.7% Li,'' and
99.998% Na (Ref. 11) deformed at é=1.1X10"*s™ 1.
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ly, Fig. 5 shows the dependence of the FTS factor on the
B parameter for fcc and bee elements. In each case, the
line drawn through the data points for a given crystal
structure by least-squares fitting is given by
InY=1InY,+M,lnB or by the power law Y=Y0BM°,
where Y stands for the mechanical property, i.e., CRSS
or FTS factor, and Y, and M, are numerical constants.
The values of these constants, which are found to be sen-
sitive to crystal structure and temperature, are given in
Table I. Thus for a given crystal structure and tempera-
ture, the CRSS of cubic elements is basically a function of
the mean-square amplitude of atomic vibrations {u?).
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RELATION BETWEEN LINE TENSION AND B FACTOR

The line tension of dislocations in a crystal is an impor-
tant parameter of strength and plasticity of crystalline
materials. It is defined as the increase in energy per unit
increase in the length of a dislocation line, and is given by
E =%Gb2, where G is the shear modulus and b is the lat-
tice parameter. The values of line tension E for 14 fcc
and bcc metal crsytals have been denoted by points in
Fig. 6 as a function of the Debye-Waller thermal parame-
ter B (room temperature) in log/log coordinates. The
straight line drawn through the data points by the least-
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FIG. 3. Semilogarithmic representation of the /7 data for (a) 99.9% V (Ref. 12) polycrystals of grain size 0.1 mm, deformed at

strain rate é:

A 3.3%X1072 571, 0 1.3X1072 57!, and @3.3X107° s7L

(b) High-purity single crystals of Mo (Ref. 13)

(0O €=4.5X1073s7 !, @ €=4.5X107° s7!), Ta (Ref. 14) (O é€=6X10"* s~ !), Ta (Ref. 15) (M é=1.3X10"*s7!), and Nb (Ref. 15)

(A €=1.3X10"*s71),

(c) Zone refined single crystals of Fe (Ref. 16) (O 99.999%, ¢=1.7X10"* s7!), Fe (Ref. 17) (@ 99.98%,

€=1.7X10"*s7!), Fe (Ref. 18) (A 99.98%, ¢=3.3X10"* s7!), and polycrystalline Fe (Ref. 18) (O 99.98%, grain size = 65 um,
€=3.3X10"*s71). (d) Single-pass zone-refined 99.99% W (Ref. 19) single crystal.
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squares-fit method is encompassed by the relation
In E = —24.80-0.88 In B, irrespective of the type of crys-
tal structure. Thus dislocation lines in crystals of ele-
ments with a large mean-square amplitude of atomic vi-
brations {u?2) have low line tension, and vice versa.
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INTERPRETATION OF EMPIRICAL CORRELATIONS

According to the kink-pair nucleation (KPN) model”?
of plastic flow, which will be discussed later, the CRSS of
metallic crystals should vary with temperature as given
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FIG. 4. The CRSS T as a function of B factor (room temperature) for various fcc and bec metals at (a) 298, (b) 200, (c) 78, and (d) O
K. The points represent CRSS values given in Figs. 1-3, except the lower one for Al (Ref. 20) single crystal (99.999%, (1111),
y=1.6X10"3s71),
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TABLE I. Values of constant In Y, and slope M, in the equa-
tion of straight line InY=1nY,+M,InB fitted to the data
points in the plots of Debye-Waller thermal parameter B (nm?)
vs mechanical parameter Y (CRSS or FTS factor) in Figs. 4 and
S.

Mechanical fce bce
parameter Y InY, M, InY, M,
7o (MPa) —5.75 —1.38 —5.19 —2.07
715 (MPa) —4.51 —1.07 —17.16 —2.27
To00 (MPa) —10.64 —2.72
Tyeg (MPa) —2.70 —0.54 —10.15 —2.46
FTS MPa~! K™} —3.91 +0.59 +1.57 +2.27
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FIG. 5. The fractional thermal softening (FTS) parameter as
a function of B factor (room temperature) for (a) fcc and (b) bec
metals.
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by the relation
T=1yexp(—mkT /W) , (1

where 7 is the CRSS at temperature T, 7—7gas T—0 K,
k is the Boltzmann constant, m =25+2.3 and W, is a
positive constant specific to the material. Equation (1) is,
however, valid at rather low temperatures only where
diffusional recovery processes in the crystal do not occur,
and it implies a linear temperature dependence of the log-
arithm of the CRSS. This is confirmed by experiment, as
is evident from Figs. 1-3.

Concerning the relationship between the CRSS (0, 78,
200, and 298 K) and the B factor (room temperature) for
various fcc and bee metals referred to in Fig. 4, it must be
pointed out that the values of CRSS pertaining to 0, 78,
and 200 K were also correlated with the room-
temperature B factor because reliable measured values of
the B factor for most of these elements at rather low tem-
peratures, like those available? at room temperature, are
scant. However, we know that the mean-square ampli-
tude of atomic vibrations is a function of temperature,
and its value decreases as temperature is lowered. Thus
on plotting the CRSS data obtained at a given tempera-
ture T below room temperature against the B factor for
the corresponding temperature (if available), the func-
tional form of the 7(T)/B(T) dependence would be ex-
pected to be similar to that depicted in Figs. 4(b)-4(d),
except that the data points will then shift to the left along
the B axis by an amount depending on the temperature 7.
Referring to Fig. 5, the excellent correlation between the
FTS factor and the room-temperature B factor for vari-
ous cubic elements of a given crystal structure indicates
that the temperature dependence of the CRSS between 0
and 300 K is also a unique function of the mean-square
amplitude of atomic vibrations at room temperature. It
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FIG. 6. The line energy per unit length or line tension E of
dislocations in fcc and bec metallic crystals versus B factor at
room temperature.



is noteworthy that, although somewhat outside the scope
of the present work, Butt, Bashir, and Khan?® found that
the melting point of cubic elements is also closely related
to their room-temperature B factor.

To elaborate the effect of the mean-square amplitude of
atomic vibrations on the CRSS of cubic elements, we
shall have recourse to the KPN model”?’ of plastic flow
in metallic crystals. In this model, yielding of bcc met-
als?® with high intrinsic lattice friction is visualized to
occur as a consequence of stress-assisted, thermally ac-
tivated, nucleation of a kink pair in the screw dislocation
segment trapped in a Peierls valley, leading to its forward
movement over the Peierls hill to the next valley, after at-
tainment of the saddle-point configuration. At a given
temperature, the dislocation line composed of atoms with
a higher mean-square amplitude of atomic vibrations
(u?) and thus having greater flexibility or lower line ten-
sion E (Fig. 6), will therefore find it easier to escape from
the Peierls valley to nucleate slip at rather lower applied
stress. Now, as the temperature of a given element is
lowered, the {(u?) value decreases, line tension E in-
creases, and, consequently, the escape of the trapped
dislocation segment from the Peierls valley by kink-pair
nucleation will be possible only at higher applied stresses.
This accounts for the observed increase in CRSS of bcc
metals with a decrease in temperature (Figs. 2 and 3).

In the case of fcc metals with low intrinsic lattice fric-
tion, the unit activation process of yielding’ comprises a
stress-assisted, thermally activated breakaway of an edge
dislocation segment from an array of pinning points, e.g.,
solid and gaseous impurities, forest dislocations, etc., by
cooperative unzipping, and at the same time expanding in
length sufficiently to facilitate the nucleation of a shallow
arc, in a manner somewhat similar to the “kink-pair
mode of escape” of screw dislocations from a Peierls bar-
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rier in bece metals. Again a more flexible dislocation line
composed of atoms with a higher mean-square amplitude
of atomic vibrations (u2) at a given temperature will be
able to detach itself from the anchoring points, and ex-
pand in length to attain a saddle-point configuration at
rather lower applied stress, and vice versa. The observed
increase in CRSS of fcc metals with decrease in tempera-
ture (Fig. 1) can also be explained by a reasoning similar
to one given earlier for bcc metals.

CONCLUSIONS

The foregoing evidence leads us to the following con-
clusions.

(1) The mean-square amplitude of atomic vibrations
(u?) is the most significant parameter which determines
the CRSS of cubic elements of a given crystal structure.

(2) For a given temperature and crystal structure, the
elements with smaller values of (u?) have larger CRSS
values, and vice versa.

(3) The FTS factor [ —(1/7y)(d In7/dT)] for elements
of a given crystal structure is also high for high (u?)
values.

(4) The dislocation lines composed of atoms with large
(u?) have low line tension, irrespective of the type of
crystal structure.

(5) The dislocation lines having low line tension or
large (u?) values are easy to move in the slip plane of
the crystal of a given structure, resulting in low CRSS.
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