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Normal-state anisotropic resistivity of Nd2 „Ce„Cuo4 „'. Evidence for scattering
by anisotropic spin fluctuations
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{Received 29 December 1992)

We report measurements of the anisotropic resistivity of the electron-doped copper oxide compound
Nd, Ce„Cu04 ~ using the Montgomery method. The full temperature dependence of both resistivity
components is well described using a simple Boltzmann transport analysis. Deduced values of the Fermi
wave vector, k~ =0.2/a, an effective interplanar coupling, J,=39 K, the effective mass ratio,
m, /m, =600, and the relevant electron-magnon matrix element, Igo I

=180 meV, are reported.

Much attention has recently focused on the anomalous
normal-state properties of the metallic copper oxides;
some of the less exotic proposals to explain the novel be-
havior have included Fermi-liquid-based approaches. '

Although a variety of scattering mechanisms have been
invoked in an attempt to explain the linear in-plane resis-
tivity of the hole-doped copper oxides, ' the nearly
quadratic in-plane resistivity observed for the
electron-doped Nd2 „Ce„Cu04 system has generally
been termed "conventional, " ' i.e., attributed to the
well-established T Fermi-liquid behavior due to
electron-electron scattering. However, the temperature
coefFicient of the T term is anomalously large, 10 —10
times greater than in conventional metals. Furthermore,
no consensus exists concerning the departure from T be-
havior at high T: both a correction due to two-
dimensional (2D) scattering and an electron-phonon con-
tribution have been suggested. Even more confusing are
the reports of anisotropy in Nd2 Ce CuO4 ~: the per-
pendicular resistivity has been reported both to exhibit a
T behavior' and to display logarithmic corrections; re-
ported values of the resistive anisotropy vary by as much
as a factor of 30. ' '"

A dominant difference between hole and electron dop-
ing in the copper oxides is manifested in their magnetic
behavior: the magnetic frustration that results from hole
doping leads to a rapid decrease in spin correlations and
a corresponding loss of long-range antiferromagnetic
(AFM) order at very low concentrations, x =0.02. ' The
primary effect of electron doping, however, is only to di-
lute the spin system, so that long-range spin correlations
are maintained to very high concentrations indeed,
long-range order with T&=160 K for x =0.15 has been
observed. ' The presence of local moments correlated on
length scales long compared to the electron mean free
path provides a framework for a simple understanding of
anisotropic transport in the electron-doped materials.

Here we present the first detailed study of the tempera-
ture dependence of the anisotropic resistivity of
Nd2 „Ce~Cu04 ~ using the Montgomery method. '

Previous measurements, using four-in-a-line, ' ' inap-
propriate, or unspecified' contact configurations, ap-
parently provide limited or misleading results, including

a mixing of the resistivity tensor components and a large
underestimation of the anisotropy. We show that the full
anisotropic resistivity can be understood in the simple
framework of a nearly cylindrical Fermi surface with
scattering by well-understood anisotropic spin Auctua-
tions. Many salient features of the anisotropic transport
in this system become transparent in this framework: the
Fermi wave vector kF scales inversely with impurity
scattering, presumably due to localization effects; devia-
tions from a nearly perfect T in-plane behavior increase
for smaller k~ due to Fermi-surface effects; the more
nearly T perpendicular resistivity arises naturally from
spin anisotropy. We also obtain estimates of the
effective-mass ratio, I, /m, =600, and the electron-
magnon scattering matrix element, Igo I

=1&0 meV.
Crystals (-2X 1 XO. 1 mm ) were grown from high

purity oxides (99.99% Nd203 and Ce02, 99.999% CuO)
in CuO-rich Aux, similar to techniques described previ-
ously their single crystal nature was verified with x-ray
Laue diffraction. Reduction anneals (750—950 C) were
performed to improve conductivity or induce supercon-
ductivity. Cerium concentrations, determined by energy
dispersive spectroscopy, are accurate and spatially homo-
geneous to Ax =0.01. Oxygen contents are only estimat-
ed (by =0.02) by comparison to similar polycrystalline
anneals. We stress that careful Montgomery method'
analysis is critical for distinction between resistance and
resistivity in highly anisotropic materials.

Typical anisotropic resistivity data for several crystals
are shown in Figs. 1 and 2 as functions of the square of
the absolute temperature over the temperature range
5 —300 K. The upper (lower) inset shows typical raw
resistance data for current applied along the c (a) direc-
tion. Experimental errors are smaller than the size of the
data symbols. In the lower panels, the in-plane resistivity
(p, —=p!~) is seen to vary markedly from sample to sample,
with notable features: the temperature-dependent part
varies very nearly as T, as noted previously, ' and
the slope of the T term increases with the residual
(T=0) resistivity. In the upper panels of Figs. 1 and 2,
much different behavior is evident for the out-of-plane
resistivity (p, —=pt); these data indicate that the
temperature-dependent component of p, both varies
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In Figs. 3(a)—3(c), we have plotted the extracted values
of the parameters m, /m„kFa, and J~ as functions of the
residual in-plane resistivity, pp ~ The effective-mass ratio
in Fig. 3(a) ranges between -400—800, with appreciable
scatter. The effective Fermi wave vector, k+=0.2/a, is
quite small; kz is seen to decrease slightly with increasing
impurity concentration; such behavior is plausible if one
considers that defects, particularly oxygen interstitials,
are believed to trap electrons and decrease the conduc-
tion electron density. In Fig. 3(c), the average value of
the effective interplanar coupling is J~ =39 K. We note
that this is much larger than estimated values for the
parent compound, where the condition for the 3D transi-
tion, J~( M/M 0) ((2D/a) =k~T&, has often been used
to estimate J~~ o~=0. 1 K. The large values of J~ ex-
tracted here may indicate that the doped carriers increase
the interplanar coupling significantly, or may be an ar-
tifact of the simplified model (e.g., neglecting J or other
dilution eft'ects on co ). Upon Ce doping, the c-axis lat-
tice constant shrinks significantly, a feature which may
augment the increased interplanar coupling in the metal-
lic state (in a pressure-dependent study on La2Cu04, the
calculated Jt increased a factor of 20 with an —

l%%uo de-
crease in the c-axis lattice constant). Finally, recalling

the form of Eq. (3), we report the average value of
gol

—=V'&/2J~~(m, /m)lgol =180 meV; we know of no
calculation for comparison.

In summary, we have presented measurements and
analysis of the normal-state anisotropic resistivity of
Nd2 „Ce~Cu04 ~ single crystals; we invoked a simple
model of scattering by anisotropic spin fluctuations. The
model simultaneously describes in-plane and out-of-plane
components, as well as the departure from T behavior
for high resistivity specimens. The full temperature
dependence is describable by very few parameters; a vari-
ation in the small kF =0.2/a with impurity level was not-
ed, as were typical values of m, /m, =600, J~ =39 K, and
~go ~

=180 meV. This work may lend support to models
of magnetic scattering in hole-doped compounds, al-
though there the spin-correlation lengths are so short
that the data do not lend themselves to such simple
analysis.
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