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Phase diagram of the one-dimensional Kondo-lattice model

Hirokazu Tsunetsugu
Theoretische Physik, Eidgenossische Technische Hochschule, 8095' Zurich, Switzerland

and Interdisziplinares Projektzentrum fur Supercomputing, Eidgenossische Technische Hochschule Zentrum,
8098 Zurich, Switzerland

Manfred Sigrist
Theoretische Physik, Eidgenossische Technische Hochschule, 8098 Zurich, Switzerland

and Paul Scherrer Institut, MM Villigen PSI, Switzerland

Kazuo Veda
Paul Scherrer Institut, MM Villigen PSI, Switzerland

(Received 1 September 1992; revised manuscript received 25 November 1992)

The phase diagram of the one-dimensional Kondo lattice is determined by numerical diagonal-
ization of both the original and an efFective Hamiltonian describing the strong-coupling limit. The
ground state in the strong-coupling region is ferromagnetic for all electron concentrations away from
half filling. The weak-coupling region is characterized by a paramagnetic Luttinger liquid. For
the finite-size systems studied here, the dominant spin and charge correlations are at 2k~ of the
conduction band.

The Kondo-lattice model (KLM) is one of the most
intensively studied models of strongly correlated elec-
tron systems. The KLM is expected to describe the ba-
sic physics of the heavy-electron materials which show
a rich variety of difr'erent phases, e.g. , a paramagnetic
(PM) metal with extraordinarily heavy mass, antiferro-
magnetism or spiral phases, and unconventional super-
conductivity, etc. Nevertheless, strong correlation ef-
fects leave many fundamental questions open and the
validity and limits of the model are still unclear. It is
therefore important to understand first the simplest one-
dimensional (1D) case.

Recently, the ground state at two limits of elec-
tron concentration was carefully studied. In the low-
concentration limit, it was proven that the one-electron
case is ferromagnetic (FM) for all nonzero Kondo cou-
plings J in any spatial dimensions. For the opposite
limit, the half-filled KLM in 1D was found to be a spin-
liquid insulator for all J ) 0.3

The less-than-half filling case in 1D was studied by
Troyer and Wiirtz using a quantum Monte Carlo (MC)
simulation at electron concentration p, = 3 and 3. They
found a FM behavior in the strong- and intermediate-
coupling regions. 4 This result contradicts the phase di-
agrams obtained earlier, mainly based on the mean-
field approximation, which has a FM phase in the
small J region and the Kondo singlet phase in the large
J region. The magnetic properties of the KLM are
usually discussed in terms of the competition between
the Ruderman-Kittel-Kasuya- Yosida (RKKY) mecha-
nisrn and Kondo screening: the former is believed to fa-
vor magnetically ordered states while the latter favor a
PM state. The paradoxical MC results indicate that this

naive picture must be reexamined. In order to study the
strong-coupling limit, the authors have derived an effec-
tive Hamiltonian by using the 1/ J expansion, and proved
that the ground state of a finite system has the maximum
total spin if J is large enough. However, the question
whether a FM phase exists in infinite size system-s is still
open.

In this paper, we will determine the ground-state phase
diagram of the 1D ELM in the J-p, plane, by using
numerical diagonalization. Generally, the only possi-
ble long-range order in 1D would be ferromagnetism, 7

because the total magnetization is a constant of mo-
tion. Other magnetic and charge-density-wave order pa-
rameters cannot become finite because of the divergence
of long wavelength fIuctuations. Phase separation also
seems unlikely, since there is no trivial limit in which
it is favored. Therefore, we concentrate on the FM-PM
phase boundary. We find that the FM phase exists in the
strong- and intermediate-coupling regions for all p, . It
is consistent with all known limiting cases and also with
the MC simulation, but qualitatively difFerent from the
earlier mean-field-type results. In this sense, the phase
diagram determined here by exact diagonalization is the
first reliable one. We will discuss the character of the PM
phase in the last part.

The Hamiltonian of the 1D ELM is written as

s» = t) (c, c,~, +H.c.) + J—) s„sp, ,

where S,s = P, c (&can) c~ and Sfs is a localized

spin with S = 2. Hereafter we will set t = 1 as units of
energy. Since the Hamiltonian (1) has an electron-hole
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symmetry, we will restrict ourselves to the case of less-
than-half filling, 0 ( p, = N, /L ( 1 (N„ the number of
conduction electrons; L, the number of sites).

In the limit of J = oo, the degrees of freedom per
site are reduced from eight to three: a local singlet com-
posed of one conduction electron and an f spin, and an
unpaired f spin (up or down). By assigning these local
singlets as vacant sites, the J = oo KLM is mapped to the
U = oo Hubbard model with N—:L —N, particles (say f
electrons). It is well known that the ground state of the
1D U = oo Hubbard model has a complete 2~-fold spin

degeneracy, because the nearest-neighbor hopping does
not change the spin configuration. The wave functions
in the ground-state multiplet are

3~&j~&" &gx

where the one-particle eigenfunctions (p ) are chosen to
be the lowest N levels of the kinetic term.

For finite but small t/J, second-order perturbation
gives an effective model for small t/J:

t
~ t

~ 3t0 2 fj+lo fj ~ + J f~+2afjn(1 nj+i) + fj+2g fj crnj+i + H c8J
Gt

4J ) fj+2r fj r' (~)rr' ' Sfj+i + H.c. + ) n, nj+i + const. ,
277'

where nj —= p f fj . The f electrons should satisfy
the local constraint of no double occupancy. The most
important terms are the second-neighbor hopping over a
particle, f +2 f~ nj+i and f +2 f~r o', S'.+», because
these two processes change the spin con guration and
lift the spin degeneracy. If the t2/J terms are small,
the effective spin interactions in the ground state multi-
plet may be calculated, keeping the charge configuration
fixed:

(I'(oi " o7v) l&etrll'(oi oiv))

= {o', oIvl J,fr&,.s, . s,+iloi os) + const. ,

2 ~ 2Jee =— sin 7rp —sin 27rp, p—:N/L.2~J mp

Thus this effective interaction is described by the Heisen-
berg model with FM coupling for all 0 & p & 1, and the
spin degeneracy is lifted yielding a ground state with the
maximum spin St,oq ——2¹= 1

The above treatment with charge configuration fixed
is justified when we fix the system size and then take the
limit of small t/J. However, it is not guaranteed that
a FM phase exists in infinite-size systems for large but
finite J, because it is no longer justified to approximate
the charge configuration by the single Slater determinant.

In the following, first we will confirm the FM phase of
H, fI by using numerical diagonalization.

We have calculated the total spin St t of the ground
state of H,~ by the I anczos method using open bound-
ary conditions (BC). The open BC have the advantage
of having a complete spin degeneracy in the J = oo
limit, while periodic and antiperiodic BC partially lift
this degeneracy by cyclic spin permutations. The result
is shown in Fig. 1 for L =8, 10, 12, and 14. The maxi-
mum spin S~ t ——2N occurs in the large and intermediate
J regions for all p, (above the solid lines in the figures).
In the small J region below the dashed lines, Sq~q has its
minimum value. As seen clearly in the figures, the L de-
pendence of the these phase boundaries is small: even the
smallest 8 site system shows very similar boundaries as
L = 14. Therefore, we may conclude that the FM phase
boundary in the infinite system is close to the results
shown in the figure. Of course, this conclusion means
that the FM phase exists in the KLM at finite J, at least
when the mapping to H, fs is valid (roughly, J + 4t).

Now we determine the phase boundary of the Kl M.
Figure 2(a) shows Sq q of the ground state for I, = 8.
Again, open BC have been used. As for H, ff, the re-
gion where Stot ——

2 N =
2 (L —N, ) extends in the

large and intermediate J regions for all p, . This FM
phase corresponds to the one discussed before, in which
N, localized spins are compensated by the c electrons
and all the other unpaired spins align in the same direc-
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FIG. 1. The total spin 2', q of the effective model. (a) L = 8, (b) L = 10, (c) L = 12, (d) L = 14.
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FEG. 2. (a) The total spin 2St;,t, of the Kondo lattice
model with L = 8. (b) The FM-PM phase boundary be-
lovr which S~~t takes the minimum value. Open symbols and
x: the boundary of St q ——2(L —N, ). Solid symbols: the
boundary of intermediate St, ~.

tion. Large spins are found in some cases in the small
J region. However this does not indicate FM but is
rather due to finite-size effects as will be discussed later.
(For example, at N, = 3, there is a narrow region with
2S&o&

——1 between J = 1.0 and 1.25. The spin 2S&ot ——3
at smaller J is a finite-size effect. ) Thus we may draw
the FM phase boundary as in Fig. 2(a) neglecting these
finite-size effects. The solid line denotes the boundary
of St~t ——

z (L —N, ) and the dashed one is for interme-
diate Sq~t. This FM phase boundary agrees quite well
with the MC result for system sizes up to I = 24 and
therefore should be close to the infinite system size phase
boundary.

We comment here on the large spins seen in Fig. 2(a)
which are not intrinsic. One is the triplet at N, = 6 and
J = 1.5 and the other is for odd N, and for very small J.
The former case becomes a singlet under difFerent BC and
the latter case is explained by the following argument. In
the J = 0 limit, the ground state for odd N has an open
shell in the c-electron configuration. When J is finite
but smaller than the charge excitation energies, only the
partially filled orbital interacts with the localized spins.
This subsystem would be well approximated by a charge
excited state of the X, = 1 case. Because this excited
state has the same S~ t as the ground state, the ground
state for odd N, and for J 0 has St~t ——

2 (L—1), rather
than the minimum. As L increases, the charge excitation
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FIG. 3. The f fspin structure factor-of the KLM.

energies decrease and this large-spin region vanishes.
This FM-PM phase boundary is confirmed by system-

atic calculations done for different system sizes. We have
calculated the critical J below which the total spin St~t
takes its minimum value. The results for the systems
of I=6, 7, 8, and 9 with open BC are plotted in Fig.
2(b). Here again we neglect large spins at smaller J for
odd N„because they are due to finite-size efFects as dis-
cussed above. Except in the small p, region, Si~t changes
from z(L —N, ) to its minimal possible value with de-
creasing J. At small p, (N, = 2 for L = 7, 8, 9), we
have observed a region with intermediate St & between
the "maximum" [S&~t ——2(L —N, )' and minimum spin
regions. However, from this calculation it is premature to
draw a conclusion of whether there is an intermediate FM
region with (S') & z (1 —p, ) and whether the FM-PM
transition is first, or second order. The order of critical
J of the FM-PM boundary is the same for the KLM and
its efFective model H,g. However, p, dependence of the
boundary shows difFerent behaviors for these two mod-
els. This is due to higher-order terms neglected in H,g,
which become important for J + 4t. The higher-order
corrections are more important in the large p, region, be-
cause the density of local singlets is higher there and the
contribution of their polarization becomes more signifi-
cant. This is the reason that the difFerence in the phase
boundary between these two models is larger near half
filling. It is worth noting that the FM region extends
down to weaker coupling for smaller concentration. This
is consistent with the rigorous results of the p, = 0 and

p, = 1 limits mentioned before. Considering this fact to-
gether with the small finite-size effects seen in Fig. 2(b),
we may conclude that the FM-PM phase boundary in the
1D KLM should be close to the one obtained here.

The spin-correlation function is another useful source
of information for magnetic properties. Figure 3 shows
the structure factor of the f fspin cor-relation, S(q), of
the KLM with N, = 4 for several J. We use the antiperi-
odic BC to have translational invariance. ~o We can see
the competition of the FM and PM phases in S(q). For
small j, S(q) has a prominent peak at q = 2vr, corre-
sponding to 2kF = p, vr of the c electrons. This strong
spin correlation comes from the RKKY mechanism. As J
increases, the 2k~ peak becomes weak and another peak
appears at q = 0. This can be understood by the Kondo
screening, which squeezes the localized spins. An impor-
tant point is that the interaction among the unpaired
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FEG. 4. The charge structure factor of the KLM.

spins is ferromagnetic. Thus, with increasing J, the FM
tendency is gradually enhanced, so that it competes with
the RKKY mechanism.

It is also important to determine the nature of the PM
phase. In this phase the c electrons have a strong 2k~
spin correlation, similar to the localized spins. In this
sense, we may call this phase a Luttinger liquid. This
conclusion is supported by our results for the charge cor-
relation function. Figure 4 shows the c-electron structure
factor C(q). It is easily seen that C(q) has a "cusp" at

q = 2a for small J and this singularity moves to q = vr

with increasing J. Therefore, the charge correlation in
the PM phase has also a Luttinger liquid behavior charac-
terized by 2A:~ of the c electron. On the other hand, q = ~
corresponds to 4k~ of the f electrons in H, g, 4kF = 2pvr.
The reason why 4k~ becomes dominant rather than 2k~
is that the ground state of H,g is ferromagnetic. There-
fore, this crossover reHects the locking of the c electrons
with the localized spins. At least for this system size,
there is no evidence that the localized spins cooperate to
make a large Fermi surface, but whether this occurs for
L = oo is an open question. Further study is also neces-
sary to confirm the Luttinger-liquid behaviors of the cor-
relation functions and to obtain their critical exponents,
since the system size studied here is not large enough to
draw a definitive conclusion. The superconducting cor-
relations are also calculated for on-site, nearest-neighbor
singlet and triplet pairs, but no enhancement is found for
any J.
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